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Introduction

e What?
O Evaluating capabilities of elastic containers and their usefulness for scientific computing for scientific
workflows
e How?

O  Hyperflow engine

O 4 real-world scientific workflows

e Major Contributions




Discussion of key terminology

e Scientific workflow
e Hyperflow
e AWS Fargate

e Google Cloud Run




Background: related works

Publication

Serverless execution of scientific workflows: Experiments with
HyperFlow, AWS Lambda and Google Cloud Functions (2017)

Serverless execution of scientific workflows: Experiments with
HyperFlow, AWS Lambda and Google Cloud Functions (2017)

Challenges for Scheduling Scientific Workflows on Cloud Functions
(2018)

Real-time resource scaling platform for Big Data workloads on
serverless environments (2019)

So what’s next?

Takeaway

eFaaS efficient, possibly more cost-effective than traditional 1aaS
eNot all workloads are suitable - granularity

e AWS Lambda highly ideal for scientific workflow applications
eHybrid execution DEWE superior to traditional cluster execution

eAdapted existing Serverless Deadline-Budget Workflow Scheduling
algorithm for AWS Lambda

e Auto-scaling container clusters used to exceed FaaS limitations
and have flexibility of CaaS




Advantages of serverless computing

e Resources managed by Cloud Provider
e Elasticity and Scalability

e Cost




Table 3.1: Comparison of chosen cloud services.

AWS Lambda AWS Fargate Google Cloud Run

Execution environment Amazon Linux User defined User defined

o Java, Python, Node.js, Go, Depends on execution Depends on execution
Supported languages Ruby, C# environment environment
Memory allocation From 128 MB to 3008 MB From 0.5 GB to 30 GB From 128 MiB to 2 GiB
CPU allocation Automatic (AWS controlled) From 0.25 to 4 virtual cores From 1 to 2 virtual cores
Disk space 512 MB 10 GB Uses memory
Maximum execution time 900s No limit 900s
Maxu‘n‘um parallel 1000 100 1000
executions

Deployment unit Zipped code Container Container




Cluster of containers vs Serverless
container platforms

Workflow Workflow

e The way tasks are mapped to containers. =0uYs Engine

Create
and run
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e Workflow management. K N v X
Worker =~ Worker Container = Container
Process Process Task Task
Cluster of containers Serverless container platform
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Experimental EFramework
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Figure 4.2: Proposed solution framework.




Experiment Evaluation

. 4 Scientific workflows
Services compared
e Amazon Fargate e Ellipsoids
e Google Cloud Run e Vina
e KINC
Cold start & Cache for containers e Soy-KB

Objectives

e [argate vs Lambda
e Cloud Run vs Fargate limits and Burst rate
e Hybrid approach




Comparing the performance of
Fargate and Lambda
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Comparing Gloud Run and Fargate limits-1
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Fargate-4096MB-2vCPU
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SoyKB workflow
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Conclusion/ Takeaway

Table 6.1: Comparison of evaluated cloud service models.

CaaS

FaaS

Hybrid

Serverless

Serverless

Serverless

Runs containers

Runs functions

Runs containers and
functions

Scalable

Well-scalable

Well-scalable

Moderate quotas limits

Major quotas limits

Moderate quotas limits

Minor execution time limits

Major execution time limits

Minor execution time limits




Strengths

e Detailed explanation
e FElasticity and Scalability

o Workflow system does not need to manage resource decisions
e Hybrid approach

o Choose task based on limits

o Memory, disk space, or CPU requirements.




Weakness

e (Caas and Scientific workflows

e Fargate memory limit coupled to vCPU value
o May pay for extraneous memory when seeking CPU performance

e Limitations of Fargate
o Fargate task limit
o  Burst rate Throttling Exception




e Authors don’t investigate the theorized AWS API limitations

e Overall workflow-to-model evaluation not rigorous enough

o Only one or two workflows for each model
o  Only one data-intensive workflow (soyKB) evaluated

e (CaaS viable for workflows?
o To a degree, but has several limitations
o Hybridized approach with FaaS necessary
o  Preliminary - more research necessary




GAPS & Future Work

e Lambda vs CloudRun ( or) Google functions vs Cloud Run ?
e Other services (Azure)

e Extend prototype implementation

e Hybridization favored - what about PaaS?

e CPU allocation decisions crucial for CaaS but not discussed
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