Serverless Gontainers - rising

viable approach to Scientific
Workflows

Krzysztof Burkat, Maciej Pawlik, Bartosz Balis, Maciej Malawski, Karan Vahi, Mats Rynge, Rafael Ferreira da
Silva, Ewa Deelman

Team 9

Siddharth Sheth | Patrick Moy | Srivatsav Gopalakrishnan

W

Introduction

Discussion of key terminology

Related work from authors

Advantages of Serverless computing

FaaS vs CaaS

Cluster of Containers vs Container Platforms
Experimental Framework

Experiment Evaluation (Fargate vs Lambda)
Conclusion

Critique (Strength/ Weakness)

Gaps & Future-work

Questions

Introduction

e What?
O Evaluating capabilities of elastic containers and their usefulness for scientific computing for scientific
workflows
e How?

O Hyperflow engine

O 4 real-world scientific workflows

e Major Contributions

Discussion of key terminology

e Scientific workflow
e Hyperflow
e AWS Fargate

e Google Cloud Run

Background: related works

Publication

Serverless execution of scientific workflows: Experiments with
HyperFlow, AWS Lambda and Google Cloud Functions (2017)

Serverless execution of scientific workflows: Experiments with
HyperFlow, AWS Lambda and Google Cloud Functions (2017)

Challenges for Scheduling Scientific Workflows on Cloud Functions
(2018)

Real-time resource scaling platform for Big Data workloads on
serverless environments (2019)

So what’s next?

Takeaway

eFaaS efficient, possibly more cost-effective than traditional 1aaS
eNot all workloads are suitable - granularity

e AWS Lambda highly ideal for scientific workflow applications
eHybrid execution DEWE superior to traditional cluster execution

eAdapted existing Serverless Deadline-Budget Workflow Scheduling
algorithm for AWS Lambda

e Auto-scaling container clusters used to exceed FaaS limitations
and have flexibility of CaaS

Advantages of serverless computing

e Resources managed by Cloud Provider
e Elasticity and Scalability

e Cost

Table 3.1: Comparison of chosen cloud services.

AWS Lambda AWS Fargate Google Cloud Run

Execution environment Amazon Linux User defined User defined

o Java, Python, Node.js, Go, Depends on execution Depends on execution
Supported languages Ruby, C# environment environment
Memory allocation From 128 MB to 3008 MB From 0.5 GB to 30 GB From 128 MiB to 2 GiB
CPU allocation Automatic (AWS controlled) From 0.25 to 4 virtual cores From 1 to 2 virtual cores
Disk space 512 MB 10 GB Uses memory
Maximum execution time 900s No limit 900s
Maxu‘n‘um parallel 1000 100 1000
executions

Deployment unit Zipped code Container Container

Cluster of containers vs Serverless
container platforms

Workflow Workflow

e The way tasks are mapped to containers. =0uYs Engine

Create
and run

7

e Workflow management. K N v X
Worker =~ Worker Container = Container
Process Process Task Task
Cluster of containers Serverless container platform

W

Experimental EFramework

f HyperFlow \ ﬂ:loud Provider (Google/AWSN

AWS AWS
callfjob Lambda » Lambda
done Function d—. Handler
calV job AWS AWS s
transfer
l-lyE(:‘erFlgw <« 5 Fargate » Fargate -
gin Function Handler
callfjob
done Cloud Run > Cloud Run
Function - Handler
_ P X
—

Figure 4.2: Proposed solution framework.

Experiment Evaluation

. 4 Scientific workflows
Services compared
e Amazon Fargate e Ellipsoids
e Google Cloud Run e Vina
e KINC
Cold start & Cache for containers e Soy-KB

Objectives

e [argate vs Lambda
e Cloud Run vs Fargate limits and Burst rate
e Hybrid approach

Comparing the performance of
Fargate and Lambda

G00-

stage

1 exacution
I setup

o=

Time [4
Time [s]

025."05 U.5.f1 1!2

256 512 1024 1835 1702 2048 2560 3008
AWS Larmbda memoary (ME] AWS FargatevCP UImemory [c oresIG B]

stage

. exacution
. setup

W

Comparing Gloud Run and Fargate limits-1

CloudRun-2048MB-2vCPU

200~

A
150- B
CloudRun-2048MB-2vCPU
500-
1
S 100 400-
%
" @ 300- stage
aEa - execution
= 200- . setup
50-
B . -
) e
100 300 500 1000

Tasks [count]

0 100 200 300
Time [s]

Fargate-4096MB-2vCPU

100-

75-

Machine [count]
3

25+

Tasks burst [count]

D
CloudRun-2048MB-2vCPU
1000~
750~
500- *
250~

| i

rur'1 1 rur'12 rur'\3 rur'\4 rurlm 5 ru;16 rur'\7 ru|'18 rur'19
Run [number]

task_amount
-~ 100
-=- 300
-=- 500
-=- 1000

W

KB kfl ==
SoyKB workflow

L = reterencs
oo

) ’ sort aam |

e Many stages b
e Different number of tasks '3 g
e Different execution time

‘ dedup ‘

add replace

redign target
cregtor

il 4

@ @

Lambda

indel realign
haplotype
caller
combine
ariants 10-
select
ariants anp

Machine [count]

e Small-grained tasks

genotype
gwfe

select
vaiants indel
filtering indel

Fignre 5.13: Structure of the SoyKB warkflow.

Fargate

40-

w
o
v

n
o
v

Fargate-6144MB-1vCPU

0

2000

4000
Time [s]

6000

8000

Hybrid approach - Fargate & Lamhda

task_name

add_replace
alignment_to_reference
combine_variants
dedup

filtering_indel
filtering_snp
genotype_gvcfs
haplotype_caller
indel_realign
merge_gcevf
realign_target_creator
select_variants_indel
select_variants_snp
software-wrapper

sort_sam

Conclusion/ Takeaway

Table 6.1: Comparison of evaluated cloud service models.

CaaS

FaaS

Hybrid

Serverless

Serverless

Serverless

Runs containers

Runs functions

Runs containers and
functions

Scalable

Well-scalable

Well-scalable

Moderate quotas limits

Major quotas limits

Moderate quotas limits

Minor execution time limits

Major execution time limits

Minor execution time limits

Strengths

e Detailed explanation
e FElasticity and Scalability

o Workflow system does not need to manage resource decisions
e Hybrid approach

o Choose task based on limits

o Memory, disk space, or CPU requirements.

Weakness

e (Caas and Scientific workflows

e Fargate memory limit coupled to vCPU value
o May pay for extraneous memory when seeking CPU performance

e Limitations of Fargate
o Fargate task limit
o Burst rate Throttling Exception

e Authors don’t investigate the theorized AWS API limitations

e Overall workflow-to-model evaluation not rigorous enough

o Only one or two workflows for each model
o Only one data-intensive workflow (soyKB) evaluated

e (CaaS viable for workflows?
o To a degree, but has several limitations
o Hybridized approach with FaaS necessary
o Preliminary - more research necessary

GAPS & Future Work

e Lambda vs CloudRun (or) Google functions vs Cloud Run ?
e Other services (Azure)

e Extend prototype implementation

e Hybridization favored - what about PaaS?

e CPU allocation decisions crucial for CaaS but not discussed

W

THANK YOU!

