
Serverless Containers – rising
viable approach to Scientific

Workflows
Krzysztof Burkat, Maciej Pawlik, Bartosz Balis, Maciej Malawski, Karan Vahi, Mats Rynge, Rafael Ferreira da

Silva, Ewa Deelman

 Team 9

 Siddharth Sheth | Patrick Moy | Srivatsav Gopalakrishnan

Outline
● Introduction
● Discussion of key terminology
● Related work from authors
● Advantages of Serverless computing
● FaaS vs CaaS
● Cluster of Containers vs Container Platforms
● Experimental Framework
● Experiment Evaluation (Fargate vs Lambda)
● Conclusion
● Critique (Strength/ Weakness)
● Gaps & Future-work
● Questions

Introduction

● What?
○ Evaluating capabilities of elastic containers and their usefulness for scientific computing for scientific

workflows

● How?
○ Hyperflow engine

○ 4 real-world scientific workflows

● Major Contributions

Discussion of key terminology

● Scientific workflow

● Hyperflow

● AWS Fargate

● Google Cloud Run

Background: related works
Publication Takeaway

Serverless execution of scientific workflows: Experiments with
HyperFlow, AWS Lambda and Google Cloud Functions (2017)

●FaaS efficient, possibly more cost-effective than traditional IaaS
●Not all workloads are suitable - granularity

Serverless execution of scientific workflows: Experiments with
HyperFlow, AWS Lambda and Google Cloud Functions (2017)

●AWS Lambda highly ideal for scientific workflow applications
●Hybrid execution DEWE superior to traditional cluster execution

Challenges for Scheduling Scientific Workflows on Cloud Functions
(2018)

●Adapted existing Serverless Deadline-Budget Workflow Scheduling
algorithm for AWS Lambda

Real-time resource scaling platform for Big Data workloads on
serverless environments (2019)

●Auto-scaling container clusters used to exceed FaaS limitations
and have flexibility of CaaS

So what’s next?

Advantages of serverless computing

● Resources managed by Cloud Provider

● Elasticity and Scalability

● Cost

FaaS vs CaaS

Cluster of containers vs Serverless
container platforms

● The way tasks are mapped to containers.

● Workflow management.

Experimental Framework

Experiment Evaluation
Services compared

● Amazon Fargate
● Google Cloud Run

Cold start & Cache for containers

4 Scientific workflows

● Ellipsoids
● Vina
● KINC
● Soy-KB

Objectives

● Fargate vs Lambda
● Cloud Run vs Fargate limits and Burst rate
● Hybrid approach

Comparing the performance of
Fargate and Lambda

Comparing Cloud Run and Fargate limits-1

A

B

Comparing Cloud Run and Fargate limits-2

C D

Hybrid approach - Fargate & Lambda

SoyKB workflow

● Many stages
● Different number of tasks
● Different execution time

Lambda

● Small-grained tasks

Fargate

Conclusion/ Takeaway

Strengths
● Detailed explanation
● Elasticity and Scalability

○ Workflow system does not need to manage resource decisions
● Hybrid approach

○ Choose task based on limits
○ Memory, disk space, or CPU requirements.

Weakness
● Caas and Scientific workflows

● Fargate memory limit coupled to vCPU value
○ May pay for extraneous memory when seeking CPU performance

● Limitations of Fargate
○ Fargate task limit
○ Burst rate Throttling Exception

Evaluation
● Authors don’t investigate the theorized AWS API limitations

● Overall workflow-to-model evaluation not rigorous enough
○ Only one or two workflows for each model
○ Only one data-intensive workflow (soyKB) evaluated

● CaaS viable for workflows?
○ To a degree, but has several limitations
○ Hybridized approach with FaaS necessary
○ Preliminary - more research necessary

GAPS & Future Work
● Lambda vs CloudRun (or) Google functions vs Cloud Run ?

● Other services (Azure)

● Extend prototype implementation

● Hybridization favored - what about PaaS?

● CPU allocation decisions crucial for CaaS but not discussed

THANK YOU!

