
Costless: Optimizing Cost of Serverless Computing
through Function Fusion and Placement

Alina Saduova, Brian Wolk,
Richard Bankhead

1

2

● Presents algorithm to optimize price of serverless applications in AWS Lambda

● Three factors affecting price are described

● Threshold held on latency

● Algorithm allows for exploration of different function fusion-placement solutions

● Achieved cost optimization of over 37-57% with latency increases of 5-15%

● Link to paper: https://arxiv.org/pdf/1811.09721.pdf

3

How prices are calculated in AWS Lambda

1) Number of times function is executed per month

2) Memory allocated to the function

3) The runtime of the function

4) The price per 1 Gig of memory and 1 Second (Gb-s)

4

Factors Affecting price in AWS Lambda

1) Fusing a sequence of functions

2) Splitting functions across edge and cloud resources

3) Allocating the memory for each function

5

Fusing a sequence of functions

Number of state transitions

● A state machine can be created to let one Lambda function

do the work of two or more while avoiding the cost of

transitioning between the different Lambdas

● Example: Face Detection and CheckFaceDuplicate can be fused in example workflow

● However because of the need to memory allocate 512 MB across both functions, the cost

saved on state transitions is outweighed by the additional memory allocation in this case

● Conclusion: It is not trivial to decide which functions to fuse, Could have implications on

price and latency of the fused functions

6

Splitting functions across edge and cloud resources

Edge vs. cloud computation

● Computing functions on edge devices can be cost effective because charge is

per-device, no matter how many functions are run on the device

● Edge device usually communicates with cloud through Amazon S3 - additional cost

● Latency increase for transition from edge device to cloud

● Desirable to place the functions that reduce transmission time on edge devices

● In model, computation and transmission times considered and best placements chosen

with respect to price and latency

MODELS

Workflow model

Directed acyclic graph
Gf = (Vf, Ef) , where
Vf = { fi | i = 1...n} and
Ef = { fi → fj | i = j , 1 ≤ i, j
≤ n}

fi → fj means fi is executed
before fj and the output of
fi is the input of fj

Data model

● JSON format data

Resource model:

● Edge - device close to
the data source (price
for connecting is pe/mo)

● Cloud - set of
user-defined functions
{fi | i = 1...n} with
memory allocation of
mi,C

● If binary (i.e.
compressed image) →
persistent storage +
JSON encoding

7

MODELS cont.

Execution Time Model

Total execution time:

Price model:

❏ Xi is 1 for Cloud and 0 for
Edge

❏ Entire workflow of functions
is executed for r times

❏ The number of transitions
for n functions is n+1

Execution time of function fi:

is a transmission time
of intermediate data

Function Profile

Profile of function includes:
1) Execution cost ei,E or ei.C
2) Transmission time:

where Dfi is size of daata and B is
bandwidth from E to C

3) Allocated memory mi,C
4) Scheduling delay si,C

8

Problem definition
Let G f = (V f ,E f) be the new function graph
after function fusion, where

Vf = { fi| i = 1...m} and fi = f1 | f2 | f3| …

Let X i be the placement variable
{Xi | i = 1...m}

We define the cost optimization problem as
finding the fused graph Gf and the
placement variables {Xi | i = 1...n} such that
the price P is minimized and the execution
time does not exceed a certain threshold
Tthresh

Proposed approach
Feasible Solutions: Each solution requires
deciding which functions to fuse if any
(Function fusion) and assigning each fused
function to E or C (Function placement).

Cost Graph Representation:

9

Algorithm

01

02

03

04
Create an intermediate form of
different workflow types:

.

 Construct cost graph:

We define a function L(f’) that
denotes the set of possible
placements of function f’ .

Solve the CSP problem:
The main idea behind LARAC
algorithm is to apply Dijkstra’s
shortest path algorithm on an
aggregated cost cuv/c*+λduv/d*
that includes both the price and
the delay values

 Add cost graph links:

We add links for all nodes:
1 - From START to first functions
2 - last function in FnSeq to the
END node
3 - between intermediate nodes,
where j is the successor of i in
FnSeq

10

Evaluation
● Goal: Show that Costless is an effective means of choosing configuration

for function placement, fusion and memory to reduce FaaS costs
● Method: compare Costless results against against real-world data
● Used small image processing app to explore the effects of function fusion

○ 5 functions, two of which are run in parallel - same structure as displayed in slide (X)

● Table shows data for each function when run without any fusion:
○ Averages are calculated over 20 runs

11

Evaluation - Model Accuracy

● Compared model estimates (Costless) against live
data for each possible combination of
fused/non-fused functions (Ground truth)

● Average error for model compared to actual
shows that Costless is very accurate
○ Considered all possible combinations of fused and

non-fused functions
○ Results within 1.2% of model for price and 4%

execution time!

12

Evaluation - Results

● Most expensive option is the fastest
○ Original configuration! Fast because it leverages

parallelism in functions 3 and 4 but expensive
due to many function transitions

● Slightly cheaper option fuses one additional function from previous config
○ Limiting the number of fusions keeps the code modular and maintainable

● Inexpensive option which is still quite fast
○ Same as cheapest option but does not use edge device

● Least expensive option is less than half the price of the most expensive
○ Places f1 on edge device and fuses all of f2, 3, 4 and 5 to reduce function transition cost

13

Evaluation: Conclusion
● Function fusion is an effective way to reduce cost

○ Especially in situations where FaaS pricing is dominated by transition cost

● Choosing which functions to fuse together in a FaaS application is a
non-trivial problem

● The Costless algorithm was developed to solve this problem by
transforming the problem into a constrained shortest path problem

● Algorithm was able to find a function configuration that reduced cost by
37% while increasing latency only 5% on an image processing app
○ Price reduction can be increased to 57% when functions are placed on edge devices

14

Critique: Strengths
● Model produces very accurate results compared to the real-world tests
● Costless is a useful way to demystify the billing model of FaaS

15

Critique: Weaknesses
● Modularity of code is an important factor in program maintenance which

is mostly ignored by the authors in favor of more quantifiable statistics

16

Critique: Evaluation
Pros:

● Authors make a strong case for
the importance of fusion

● Clear benefits to examining
configuration options for
cost:performance analysis

● Algorithm runtime is a huge
improvement over a brute-force
alternative

17

Cons:

● Scalability listed as a benefit to
Costless but the evaluation only
covers a small 5 function example

● Perhaps outside the scope of the
paper, it would be interesting to
learn how well Costless would
translate to cloud platforms
outside of AWS

Questions
Slide for letting the audience ask questions

18

