
12/1/2020

1

Multitenancy for Fast and
Programmable Networks in
the Cloud
Tao Wang*, Hang Zhu*, Fabian Ruffy, Xin Jin, Anirudh Sivaraman, Dan Ports,
and Aurojit Panda

NEW YORK UNIVERSITY, JOHNS HOPKINS UNIVERSITY, Microsoft Research

by: Group 5
Jiawei Yao, Jiayu Li, Xiaowan Guo

1

● Paper Overview
● Background
● System Overview
● key contributions
● Related Work
● Evaluation
● Conclusions
● Critique: Strengths, Weaknesses and Evaluation
● GAPS

Outline

2

12/1/2020

2

What does today’s cloud offer as a
service?
● Generic compute and storage resources

● Specialized accelerators

Introduction

3

■ Pipeline-based programmable devices
→In-network switches
→At-host SmartNICs

■ Enable wide-range innovations for classical networked systems
→Consensus: NOPaxos, NetPaxos
→Caching: NetCache, IncBricks
→Storage: NetChain, SwitchKV

Emergence of programmable network
devices

4

12/1/2020

3

❖ Challenge: Need multitenancy support

❖ Benefit
➢ Provider’s aspect

■ Improve resource utilization
⭑One application can hardly consume all the hardware
resources
⭑Heterogeneous resource requirement

➢ Tenant’s aspect
■ Enable innovations
⭑New programs can be easily tested w/o impacting basic
network functionality

Why not offer such system as a cloud service?

5

Requirements:
❖ Resource efficiency

➢ Little overhead
❖ Isolation

➢ Performance
➢ Allocated resource

The vision of this paper:
a hybrid compile-time and run-time solution

How to enable multitenancy for
programmable devices?

6

12/1/2020

4

Background on programmable network
devices

7

❖ Various types of hardware resources
➢ Most are decided during compile time

❖ Limited run-time support
➢ Hardware wirings are decided during compile time
➢ No temporal scheduling (e.g., CPU scheduling)
➢ No spatial reconfiguration (e.g., FPGA)

Programmable devices’ characteristics

8

12/1/2020

5

➢ Compile-time program linker
○ Target generic resources (e.g., SRAMs/TCAMs, action units, etc.)
○ But static

➢ Run-time memory allocator
○ Target stateful memory
○ But limited

A hybrid compile-time and run-time
solution

9

System overview

10

12/1/2020

6

● Restrict resource usage
● Provide isolation

○ Ensure tenant program does not inference with others’
○ Ensure no infinite packet resubmitting
○ Ensure no loop forwarding configuration

Goals of compile-time linker

11

Parser

12

12/1/2020

7

Control (ingress and egress) pipeline

13

Run-time memory allocator

14

12/1/2020

8

❖ design a hybrid compile-time and run-time
solution to multitenancy

❖ efficient resource utilization

❖ isolation of tenant programs

Key contribution

15

❖ Hyper4 and HyperV
➢ virtualize software switches by declaring primitive

tables and actions to emulate tenant programs
➢ incur high HW overhead

❖ P4Visor
➢ enables lightweight virtualization through program

analysis
➢ not enough isolation for multi-tenants

❖ daPipe
➢ common system program and compile-time merging
➢ incremental P4 programming
➢ does not consider run-time dynamics memory

reallocation

Related Work

16

12/1/2020

9

➢Resource usage on Tofino
➢Packet-level validation on PTF

➢Sys program
➢Basic parsing and forwarding logics

➢[SOSP’17] NetCache
➢[NSDI’18] NetChain

➢Overhead
➢Additional gateway tables to check which program to be
executed
➢Additional tag-along PHV containers

Compile-time program linker correctness

17

Compile-time program linker correctness

18

12/1/2020

10

➢Experimental Setting
➢64 tenants submit 1-min heavy hitter detection task

against source IP address within its /6 subnets
➢10-min CAIDA trace replay

➢Evaluation metric
➢Utility: memory hit ratio
➢Satisfaction: time fraction w/ utility > 0.9
➢We show the mean and 5th percentile

Run-time memory allocator efficiency

19

Run-time memory allocator efficiency

20

12/1/2020

11

➢A hybrid solution for multi-tenancy support

➢Compile-time linker: general but static

➢Run-time memory allocator: dynamic but limited

Conclusion

21

❖ Resource efficiency
➢ Overhead is negligible.

❖ Isolation
➢ Apply in the context where each tenant runs its own program and is

distrustful of others tenants

❖ Targets pipeline-based ASICs and multitenant

❖ A hybrid solution
➢ Consider dynamics and developed run-time memory reallocation mechanism

Critique: Strengths

22

12/1/2020

12

❖ Only considered a model where consumers submit entire programs
to run on programmable devices.

➢ higher-level API? simpler, less device-specific programming?
lightweight isolation, e.g. paravirtualization?

❖ As a device OS, failed to provide other common services for
applications

➢ such as, abstractions for scalable and fault-tolerant storage

❖ In the evaluation part, only 3 testcases performance were displayed.
➢ Also, lacked comparisons with other systems and architectures

Critique: Weaknesses

23

❖ Three Metrics: isolation, resource efficiency, run-time efficiency
➢ It mentioned that other architectures already provided some support for

multitenancy in the form of OSes, but failed to show any performance
comparisons in any aspect

❖ Easy to repeat/reproduce test
➢ Picked 5 shared tutorial programs with NetCache architecture to create the

test programs.

Critique: Evaluation

24

12/1/2020

13

★ Future Work
○ Seek new hardware design, both general and dynamic.

For example, HW supports for partial reconfiguration, or
dedicated hardware for IP & MAC address translation.

○ In the program linker, consolidate among tenants programs
during merging to conserve hardware resources.

★ Open Problems
○ Diversity of resource types makes it hard to determine an

efficient and fair policy for partitioning among tenants.
Tenants may lie about requirements to get higher allocations.

Identify GAPS

25

1. https://www.usenix.org/system/files/hotcloud20_paper_wang.pdf
2. https://www.usenix.org/system/files/hotcloud20-paper74-slides-

wang.pdf

Reference

26

12/1/2020

14

QUESTION ?

27

