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What does today’s cloud offer as a 
service?
● Generic compute and storage resources

● Specialized accelerators 

Introduction
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■ Pipeline-based programmable devices
→In-network switches 
→At-host SmartNICs

■ Enable wide-range innovations for classical networked systems
→Consensus: NOPaxos, NetPaxos
→Caching: NetCache, IncBricks 
→Storage: NetChain, SwitchKV

Emergence of programmable network 
devices

4



12/1/2020

3

❖ Challenge: Need multitenancy support

❖ Benefit
➢ Provider’s aspect

■ Improve resource utilization
⭑One application can hardly consume all the hardware 
resources
⭑Heterogeneous resource requirement

➢ Tenant’s aspect
■ Enable innovations 
⭑New programs can be easily tested w/o impacting basic 
network functionality

Why not offer such system as a cloud service?
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Requirements:
❖ Resource efficiency

➢ Little overhead 
❖ Isolation

➢ Performance
➢ Allocated resource

The vision of this paper:
a hybrid compile-time and run-time solution

How to enable multitenancy for 
programmable devices? 
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Background on programmable network 
devices
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❖ Various types of hardware resources
➢ Most are decided during compile time 

❖ Limited run-time support
➢ Hardware wirings are decided during compile time
➢ No temporal scheduling (e.g., CPU scheduling)
➢ No spatial reconfiguration (e.g., FPGA)

Programmable devices’ characteristics
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➢ Compile-time program linker 
○ Target generic resources (e.g., SRAMs/TCAMs, action units, etc.)
○ But static

➢ Run-time memory allocator
○ Target stateful memory
○ But limited 

A hybrid compile-time and run-time 
solution
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System overview
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● Restrict resource usage
● Provide isolation

○ Ensure tenant program does not inference with others’ 
○ Ensure no infinite packet resubmitting
○ Ensure no loop forwarding configuration

Goals of compile-time linker
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Parser
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Control (ingress and egress) pipeline
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Run-time memory allocator
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❖ design a hybrid compile-time and run-time 
solution to multitenancy

❖ efficient resource utilization

❖ isolation of tenant programs

Key contribution
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❖ Hyper4 and HyperV
➢ virtualize software switches by declaring primitive 

tables and actions to emulate tenant programs
➢ incur high HW overhead

❖ P4Visor
➢ enables lightweight virtualization through program 

analysis
➢ not enough isolation for multi-tenants

❖ daPipe
➢ common system program and compile-time merging
➢ incremental P4 programming
➢ does not consider run-time dynamics memory 

reallocation

Related Work
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➢Resource usage on Tofino
➢Packet-level validation on PTF

➢Sys program
➢Basic parsing and forwarding logics

➢[SOSP’17] NetCache
➢[NSDI’18] NetChain

➢Overhead
➢Additional gateway tables to check which program to be    
executed
➢Additional tag-along PHV containers

Compile-time program linker correctness
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Compile-time program linker correctness
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➢Experimental Setting
➢64 tenants submit 1-min heavy hitter detection task 

against source IP address within its /6 subnets
➢10-min CAIDA trace replay

➢Evaluation metric
➢Utility: memory hit ratio
➢Satisfaction: time fraction w/ utility > 0.9
➢We show the mean and 5th percentile

Run-time memory allocator efficiency
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Run-time memory allocator efficiency
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➢A hybrid solution for multi-tenancy support

➢Compile-time linker: general but static 

➢Run-time memory allocator: dynamic but limited

Conclusion 
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❖ Resource efficiency
➢ Overhead is negligible. 

❖ Isolation
➢ Apply in the context where each tenant runs its own program and is 

distrustful of others tenants

❖ Targets pipeline-based ASICs and multitenant

❖ A hybrid solution
➢ Consider dynamics and developed run-time memory reallocation mechanism

Critique: Strengths
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❖ Only considered a model where consumers submit entire programs 
to run on programmable devices.

➢ higher-level API?  simpler, less device-specific programming? 
lightweight isolation, e.g. paravirtualization?

❖ As a device OS, failed to provide other common services for 
applications

➢ such as, abstractions for scalable and fault-tolerant storage

❖ In the evaluation part, only 3 testcases performance were displayed.
➢ Also, lacked comparisons with other systems and architectures

Critique: Weaknesses
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❖ Three Metrics: isolation, resource efficiency, run-time efficiency
➢ It mentioned that other architectures already provided some support for 

multitenancy in the form of OSes, but failed to show any performance 
comparisons in any aspect

❖ Easy to repeat/reproduce test
➢ Picked 5 shared tutorial programs with NetCache architecture to create the 

test programs.

Critique: Evaluation
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★ Future Work
○ Seek new hardware design, both general and dynamic. 

For example, HW supports for partial reconfiguration, or 
dedicated hardware for IP & MAC address translation.

○ In the program linker, consolidate among tenants programs 
during merging to conserve hardware resources.

★ Open Problems
○ Diversity of resource types makes it hard to determine an 

efficient and fair policy for partitioning among tenants. 
Tenants may lie about requirements to get higher allocations.

Identify GAPS
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1. https://www.usenix.org/system/files/hotcloud20_paper_wang.pdf
2. https://www.usenix.org/system/files/hotcloud20-paper74-slides-

wang.pdf
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QUESTION ?

27


