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Understanding the problem

In Machine learning (ML) we train models to infer new instances of data

It is ideal to classify data in batches, not one at a time

Given the burstiness of data inference needs in real life applications, this can be
difficult to achieve
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Fig. 1: Real-world traces from [29] and [30].



Previous work

Sagemaker: An industry standard solution which uses an laaS platform to infer

data[1]

Problem: Strategy does not lend itself to bursty ML workloads.
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Previous work

MArk: Creates AWS EC2 instance and creates serverless functions to deal with
bursty workloads [2]

Method far outperforms SageMaker in latency, but can still struggle with bursty

workloads
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Authors Work

Use Functions as a Service (FaaS) to horizontally scale to workloads

Challenges
- Given the stateless nature of Faa$, batching is not supported
- Inference needs low latency

- Dynamic tuning of FaaS parameter

Authors introduce their framework, BATCH, to solve these issues



BATCH Framework

Empirical Measurements of Empirical measurements of
Arrival Process - Service Times
i

a
Arrival Process:
Observes distribution A K

of incoming jobs (1a) »

Service Times: How
long it takes to infer
data (1b)



Profiler: Transforms
incominginto a
stochastic process (2a)

Uses regression
analysis to capture the
relationship between
system configuration
and request service
times (2b)
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Performance
Optimizer: Takes
multiple inputs and
tries to determine
optimal batch
size/timeout

Budget: How much we
are willing to spend

SLO: How much
latency we are willing
toendure

BATCH Framework
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Empirical measurements of
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Performance
Optimizer:
Recommends ideal
batch size/timeout (4a)

Memory Size: storage
for FaaS (4b)

Workload: Data to
EES)

Batch Dispatching
Buffer: array of data to
infer (6)
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The Profiler

Uses an analytical model to predict runtimes and cost for batches on different hardware

No machine learning involved, interpolates based on data for low computational cost and low
latency

Runs intermittently, takes 10s in tests (on t2.nano)

Avg. Err. = 5.97%
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Fig. 13: Request latency distribution with arrivals driven from real workload traces.




BATCH overhead

When compared to AWS SageMaker, cost is only half ($0.14/day)

All components of BATCH run on a single, low cost VM (in the authors’ test a t2.nano)

BATCH is itself bursty, lending to cost savings
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Fig. 9: CPU and memory usage over three hours of an AWS
t2.nano instance hosting BATCH components. The daily cost
of a r2.nano instance is less than $0.14.




Testing Distribution
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. 10: Intensity of arrival processes used to evaluate BATCH.

Decently models bursty workloads!



Results: Latency
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BATCH generally keeps latency within acceptable bounds, but is significantly higher in
general



Results: Cost
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At the cost of latency, cost is dramatically reduced
Batch is vastly better than SageMaker in all workloads tested

Batch is even better than optimally configured lambda



CRITIQUE OF RESEARCH PAPER

- Title

- Keywords

- Section I: Introduction

- Section Il: Motivation and Challenges

- Section lll: BATCH Design

- Section IV: Problem Formulation and Solution
- Section V: Prototype Implementation

- Section VI: Results

- Section VII: Related Work

- Section VIII: Concluding Remarks



STRENGTHS

- Clear and concise

- “The Performance Optimizer is the core component of BATCH”

- Incorporating “Observation #” boxes within paper

- Numerous and relevant references

- Documentation



WEAKNESSES

- Figure 11
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Fig. 11: Coefficient of variation (CV) of service time for
various memory/batch size configurations.




GAPS IN RESEARCH

“To the best of our knowledge this is the first analytical model that can
capture accurately the shape of the latency distribution in the
presence of bursty arrivals and deterministic service times.”



FUTURE WORK

“Future working includes extending BATCH to support different service
time distributions and adopting optimization algorithms that are faster
than the exhaustive search used here to support co-optimization of
latency and cost.”
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