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Understanding the problem

In Machine learning (ML) we train models to infer new instances of data

It is ideal to classify data in batches, not one at a time

Given the burstiness of data inference needs in real life applications, this can be 

difficult to achieve



Previous work

Sagemaker: An industry standard solution which uses an IaaS platform to infer 

data [1]

Problem: Strategy does not lend itself to bursty ML workloads.



Previous work

MArk:  Creates AWS EC2 instance and creates serverless functions to deal with 

bursty workloads [2]

Method far outperforms SageMaker in latency, but can still struggle with bursty 

workloads



Authors Work

Authors introduce their framework, BATCH, to solve these issues

Challenges

- Given the stateless nature of FaaS, batching is not supported

- Inference needs low latency

- Dynamic tuning of FaaS parameter

Use Functions as a Service (FaaS) to horizontally scale to workloads



BATCH Framework

Arrival Process: 

Observes distribution 

of incoming jobs (1a)

Service Times: How 

long it takes to infer 

data (1b)



BATCH Framework

Profiler: Transforms 

incoming into a 

stochastic process (2a) 

Uses regression 

analysis to capture the 

relationship between 

system configuration 

and request service 

times (2b)



BATCH Framework

Performance 

Optimizer: Takes 

multiple inputs and 

tries to determine 

optimal batch 

size/timeout

Budget: How much we 

are willing to spend

SLO: How much 

latency we are willing 

to endure



BATCH Framework

Performance 

Optimizer: 

Recommends ideal 

batch size/timeout (4a)

Memory Size: storage 

for FaaS (4b)

Workload: Data to 

infer (5)

Batch Dispatching 

Buffer: array of data to 

infer (6)
Figure was inspired by  Fig. 5 of the paper



The Profiler

Uses an analytical model to predict runtimes and cost for batches on different hardware

No machine learning involved, interpolates based on data for low computational cost and low 

latency

Runs intermittently, takes 10s in tests (on t2.nano)



BATCH overhead

When compared to AWS SageMaker, cost is only half ($0.14/day)

All components of BATCH run on a single, low cost VM (in the authors’ test a t2.nano)

BATCH is itself bursty, lending to cost savings



Testing Distribution

Decently models bursty workloads!



Results: Latency

BATCH generally keeps latency within acceptable bounds, but is significantly higher in 
general



Results: Cost

At the cost of latency, cost is dramatically reduced

Batch is vastly better than SageMaker in all workloads tested

Batch is even better than optimally configured lambda



CRITIQUE OF RESEARCH PAPER 

- Title
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- Section III: BATCH Design

- Section IV: Problem Formulation and Solution

- Section V: Prototype Implementation

- Section VI: Results

- Section VII: Related Work

- Section VIII: Concluding Remarks



STRENGTHS

- Clear and concise

- “The Performance Optimizer is the core component of BATCH”

- Incorporating “Observation #” boxes within paper

- Numerous and relevant references

- Documentation



WEAKNESSES

- Figure 11

- Optimization

- Is this the best we can do?

- Assumptions



GAPS IN RESEARCH

“To the best of our knowledge this is the first analytical model that can 
capture accurately the shape of the latency distribution in the 
presence of bursty arrivals and deterministic service times.”



FUTURE WORK

“Future working includes extending BATCH to support different service 
time distributions and adopting optimization algorithms that are faster 
than the exhaustive search used here to support co-optimization of 
latency and cost.”
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