
BATCH: Machine
Learning Inference
Serving on Serverless
Platforms with
Adaptive Batching

Samuel Adams

Richard Brun

David Melanson

Outline

● Batching workloads in Machine Learning (ML)
● Bursty workloads in ML
● Utilization of Function as a Service (FaaS)
● Lightweight BATCH framework
● Results
● Criticisms and concerns

Understanding the problem

In Machine learning (ML) we train models to infer new instances of data

It is ideal to classify data in batches, not one at a time

Given the burstiness of data inference needs in real life applications, this can be

difficult to achieve

Previous work

Sagemaker: An industry standard solution which uses an IaaS platform to infer

data [1]

Problem: Strategy does not lend itself to bursty ML workloads.

Previous work

MArk: Creates AWS EC2 instance and creates serverless functions to deal with

bursty workloads [2]

Method far outperforms SageMaker in latency, but can still struggle with bursty

workloads

Authors Work

Authors introduce their framework, BATCH, to solve these issues

Challenges

- Given the stateless nature of FaaS, batching is not supported

- Inference needs low latency

- Dynamic tuning of FaaS parameter

Use Functions as a Service (FaaS) to horizontally scale to workloads

BATCH Framework

Arrival Process:

Observes distribution

of incoming jobs (1a)

Service Times: How

long it takes to infer

data (1b)

BATCH Framework

Profiler: Transforms

incoming into a

stochastic process (2a)

Uses regression

analysis to capture the

relationship between

system configuration

and request service

times (2b)

BATCH Framework

Performance

Optimizer: Takes

multiple inputs and

tries to determine

optimal batch

size/timeout

Budget: How much we

are willing to spend

SLO: How much

latency we are willing

to endure

BATCH Framework

Performance

Optimizer:

Recommends ideal

batch size/timeout (4a)

Memory Size: storage

for FaaS (4b)

Workload: Data to

infer (5)

Batch Dispatching

Buffer: array of data to

infer (6)
Figure was inspired by Fig. 5 of the paper

The Profiler

Uses an analytical model to predict runtimes and cost for batches on different hardware

No machine learning involved, interpolates based on data for low computational cost and low

latency

Runs intermittently, takes 10s in tests (on t2.nano)

BATCH overhead

When compared to AWS SageMaker, cost is only half ($0.14/day)

All components of BATCH run on a single, low cost VM (in the authors’ test a t2.nano)

BATCH is itself bursty, lending to cost savings

Testing Distribution

Decently models bursty workloads!

Results: Latency

BATCH generally keeps latency within acceptable bounds, but is significantly higher in
general

Results: Cost

At the cost of latency, cost is dramatically reduced

Batch is vastly better than SageMaker in all workloads tested

Batch is even better than optimally configured lambda

CRITIQUE OF RESEARCH PAPER

- Title

- Keywords

- Section I: Introduction

- Section II: Motivation and Challenges

- Section III: BATCH Design

- Section IV: Problem Formulation and Solution

- Section V: Prototype Implementation

- Section VI: Results

- Section VII: Related Work

- Section VIII: Concluding Remarks

STRENGTHS

- Clear and concise

- “The Performance Optimizer is the core component of BATCH”

- Incorporating “Observation #” boxes within paper

- Numerous and relevant references

- Documentation

WEAKNESSES

- Figure 11

- Optimization

- Is this the best we can do?

- Assumptions

GAPS IN RESEARCH

“To the best of our knowledge this is the first analytical model that can
capture accurately the shape of the latency distribution in the
presence of bursty arrivals and deterministic service times.”

FUTURE WORK

“Future working includes extending BATCH to support different service
time distributions and adopting optimization algorithms that are faster
than the exhaustive search used here to support co-optimization of
latency and cost.”

Citations

[1] “Amazon. Build, train, and deploy machine learning models at scale.”

https://docs.aws.amazon.com/lambda/latest/dg/configuration-console.html, [Online; accessed

06-December-2020].

[2] C. Zhang, M. Yu, W. Wang, and F. Yan, “Mark: Exploiting cloud services for cost-effective,

slo-aware machine learning inference serving” in 2019 USENIX annual technical Conference

(USENIX ATC 19), 2019.

https://docs.aws.amazon.com/lambda/latest/dg/configuration-console.html

