BATCH: Machine
Learning Inference
Serving on Serverless
Platforms with
Adaptive Batching

Samuel Adams

Richard Brun

David Melanson

QOutline

Batching workloads in Machine Learning (ML)
Bursty workloads in ML

Utilization of Function as a Service (FaaS)
Lightweight BATCH framework

Results

Criticisms and concerns

Understanding the problem

In Machine learning (ML) we train models to infer new instances of data

It is ideal to classify data in batches, not one at a time

Given the burstiness of data inference needs in real life applications, this can be
difficult to achieve

N
n o

wn

| — Feb. 14 May25 |
— Feb. 15

06:00 12:00 18:00 06:00 12:00 1s:00
time time

(a) NYS Thruway (b) Twitter

w W
L™ 1™
= =
> >
= -
w w
c b
g 10 g
£ £
s e
—
E E
< 0 <

Fig. 1: Real-world traces from [29] and [30].

Previous work

Sagemaker: An industry standard solution which uses an laaS platform to infer

data[1]

Problem: Strategy does not lend itself to bursty ML workloads.

Lambda — Sagemaker

v
v
"
>
o
c
o
b/
[
-

700
Time [min]

(a) Latency

Previous work

MArk: Creates AWS EC2 instance and creates serverless functions to deal with
bursty workloads [2]

Method far outperforms SageMaker in latency, but can still struggle with bursty

workloads

—
N
LY
"

—

-
v

[~

o
L

L]
-

600 1200 1800

Time [sec]

(a) Latency

Authors Work

Use Functions as a Service (FaaS) to horizontally scale to workloads

Challenges
- Given the stateless nature of Faa$, batching is not supported
- Inference needs low latency

- Dynamic tuning of FaaS parameter

Authors introduce their framework, BATCH, to solve these issues

BATCH Framework

Empirical Measurements of Empirical measurements of
Arrival Process - Service Times
i

a
Arrival Process:
Observes distribution A K

of incoming jobs (1a) »

Service Times: How
long it takes to infer
data (1b)

Profiler: Transforms
incominginto a
stochastic process (2a)

Uses regression
analysis to capture the
relationship between
system configuration
and request service
times (2b)

BATCH Framework

Empirical Measurements of
Arrival Process

Arrival Process

Empirical measurements of
Service Times

Service Time Model

Performance
Optimizer: Takes
multiple inputs and
tries to determine
optimal batch
size/timeout

Budget: How much we
are willing to spend

SLO: How much
latency we are willing
toendure

BATCH Framework

Empirical Measurements of
Arrival Process

Arrival Process

Empirical measurements of
Service Times

Performance
Optimizer:
Recommends ideal
batch size/timeout (4a)

Memory Size: storage
for FaaS (4b)

Workload: Data to
EES)

Batch Dispatching
Buffer: array of data to
infer (6)

Budget

BATCH Framework

Empirical Measurements of
Arrival Process

Arrival Process

Workload

Empirical measurements of

Performance %
Optimizer

Batch Dispatching

&

Buffer

.
@
<

A
el Serverless Platform

Figure was inspired by Fig. 5 of the paper

The Profiler

Uses an analytical model to predict runtimes and cost for batches on different hardware

No machine learning involved, interpolates based on data for low computational cost and low
latency

Runs intermittently, takes 10s in tests (on t2.nano)

Avg. Err. = 5.97%

0 0.5 7 0.3
Latency, t [s] Latency, t [s] Latency, t [s]
(a) MoBiNet, NYS Thruway, 6-7am (b) ResNet-18, NYS Thruway, 7-8am (c) MoBiNet, Twitter, 8-9pm
Memory=3008 MB, Timeout=100ms Memory=2048 MB, Timeout=100ms Memory=2496 MB, Timeout=50ms
Max Batch Size=20 Max Batch Size=20 Max Batch Size=20

Fig. 13: Request latency distribution with arrivals driven from real workload traces.

BATCH overhead

When compared to AWS SageMaker, cost is only half ($0.14/day)

All components of BATCH run on a single, low cost VM (in the authors’ test a t2.nano)

BATCH is itself bursty, lending to cost savings

— CPU ---- Memory
512 %
384 3
256 &
128 3
o Z
1 2 3
time [hr.]

&
=
)
2
o
O

Fig. 9: CPU and memory usage over three hours of an AWS
t2.nano instance hosting BATCH components. The daily cost
of a r2.nano instance is less than $0.14.

Testing Distribution

— MMPP(2); — MMPP(2),

w
=
>
=
@
c
()
o
=
©
>
=
—
<

Arrival Intensity [r/s]

: 06:00 12:00 18:00
time [hr] time

(a) Arrival rate of MMPPs (b) Arrival rate of real traces

e’
)

. 10: Intensity of arrival processes used to evaluate BATCH.

Decently models bursty workloads!

Results: Latency

u

Norm. Latency
Norm. Latency
o
w
Norm. Latency

Norm. Latency

0 0
06:00 12:00 18:00 06:00 12:00 18:00 06:00 12:00 18:00

06:00 12:00 18:00
time time time

time

(a) TensorFlow, ResNet-v2 (b) MXNet, ResNet-50 (c) TensorFlow, ResNet-v2 (d) MXNet, ResNet-50

Oth
90th
99th

99.9th
0.5 1.5 0.5 1 0.5 1 1.5
Norm. Latency Norm. Latency Norm. Latency

0.5 1.5
Norm. Latency

(e) TensorFlow, ResNet-v2 (f) MXNet, ResNet-50 (g) TensorFlow, ResNet-v2 (h) MXNet, ResNet-50
—— Latency SLO Lambda (max Mem.) —+— Lambda (cherry pick) —=— SageMaker —@— BATCH

BATCH generally keeps latency within acceptable bounds, but is significantly higher in
general

Results: Cost

sl]

1

0.5

, y
8 8°
o O
£ 5
2 2

Norm. Cost
Norm. Cost

0 0 0
(i) TensorFlow, ResNet-v2 (j) MXNet, ResNet-50 (k) TensorFlow, ResNet-v2 (1) MXNet, ResNet-50
—— Latency SLO Lambda (max Mem.) —— Lambda (cherry pick) ——=— SageMaker —@— BATCH

At the cost of latency, cost is dramatically reduced
Batch is vastly better than SageMaker in all workloads tested

Batch is even better than optimally configured lambda

CRITIQUE OF RESEARCH PAPER

- Title

- Keywords

- Section I: Introduction

- Section Il: Motivation and Challenges

- Section lll: BATCH Design

- Section IV: Problem Formulation and Solution
- Section V: Prototype Implementation

- Section VI: Results

- Section VII: Related Work

- Section VIII: Concluding Remarks

STRENGTHS

- Clear and concise

- “The Performance Optimizer is the core component of BATCH”

- Incorporating “Observation #” boxes within paper

- Numerous and relevant references

- Documentation

WEAKNESSES

- Figure 11
g g
A 7]
- Optimization g g
® <o}
- Is this the best we can do? e s
88 88
A t Memory [MB] Memory [MB]
= mption
ssumptions (a) Inception-v4 (b) ResNet-v2

Fig. 11: Coefficient of variation (CV) of service time for
various memory/batch size configurations.

GAPS IN RESEARCH

“To the best of our knowledge this is the first analytical model that can
capture accurately the shape of the latency distribution in the
presence of bursty arrivals and deterministic service times.”

FUTURE WORK

“Future working includes extending BATCH to support different service
time distributions and adopting optimization algorithms that are faster
than the exhaustive search used here to support co-optimization of
latency and cost.”

Citations

[1] “Amazon. Build, train, and deploy machine learning models at scale.”
https://docs.aws.amazon.com/lambda/latest/dg/configuration-console.html, [Online; accessed
06-December-2020].

[2] C. Zhang, M. Yu, W. Wang, and F. Yan, “Mark: Exploiting cloud services for cost-effective,
slo-aware machine learning inference serving” in 2019 USENIX annual technical Conference
(USENIX ATC 19),2019.

https://docs.aws.amazon.com/lambda/latest/dg/configuration-console.html

