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OutlLine

- For FAAS, the providers seek to achieve high function performance
at the lowest possible resource cost. There are 3 main aspects to
achieve this.

= ].More warm starts than cold starts

= 2.spend less memory for functions

= 3.Functions may have widely varying resource needs and
invocation frequencies from multiple friggers. These characteristics
severely complicate any attempts to predict invocations for
reducing resource usage.

= This goal requires a deep understanding of the characteristics of
the FaaS workload.



OutlLine

In summary, main contributions in this article are:

- ¢ A detailed characterization of the enftire production FaaS workload at a large
cloud provider;

- ¢ A new policy for reducing the number of cold start function executions at a low
resource provisioning cost;

= ¢ Extensive simulation and experimental results based on real traces showing the
benefits of the policy;

= ¢ An overview of our implementation in Azure Functions;

- ¢ Alarge sanitized dataset containing production Faas fraces.




Intfroduction

- What's the problem:

- Providing high function performance at low cost requires a deep
understanding of the characteristics of the FaaS workload.

- But there has been no public information on the characteristics
of production workloads.

- The provider needs to deeply understand the characteristics of the Faas
workload.



Introduction

- Why is it a problem:

~ Prior work focused on

= (1) running benchmark functions to

assess performance and/or reverse-engineer how providers manage resources;
- (2) mplementing prototype systems to run benchmark functions.

We needed a comprehensive characterization of the users’ real Faas

workloads on a production platform from the provider's perspective.




Introduction

- Why are we interested in this problem:
Providers seek to achieve high function performance at the lowest possible

resource cost for FAAS. There are
three main aspects to how fast functions can execute and
the resources they consume.

1. Functions warm start

2. Memory storage
3. Multiple triggers for functions



Background / Related Work

What have others done related to the problem ?
1.Works that characterize FaaS platforms and applications
2.Works that propose and optimize Faas serving systems.

A few studies characterized the main commercial FaasS
providers, but only from the perspective of external users.

For optimizing each cold start



Background / Related Work

What have AWS/AZURE done ?

AWS and Azure use a fixed “keep-alive” policy that retains the
resources in memory for 10 and 20 minutes after a function
execution.

Advantage of this policy: simple and practical

Disadvantage of this policy: it disregards the functions’ actual
Invocation frequency and patterns, and thus behaves poorly
and wastes resources.



Background / Related Work

What have others done related to the problem ?
For optimizing each cold start

1.Mohan find that

pre-allocating virtual network interfaces that are later bound
to new function containers can significantly reduce cold start

times.



Background / Related Work

What have others done related to the problem ?
2.SOCK proposes to optimize the loading of Python

functions in OpenLambda by smart caching of sets of libraries,
and by using lightweight isolation mechanisms for function:s.
3.SAND uses application-level sandboxing to prevent the

cold start latency for subsequent function invocations within
an application.



Background / Related Work

Some people propose a policy for deciding on function multi-tenancy, based on a predictive model of
resource demands of each function.

1.EMARS proposes using predictive modeling for allocation of memory to serverless functions.

2. Kesidis proposes to use the prediction of the resource demands of functions to enable the provider to
overbook functions on containers.

In this article the author track invocation patterns and use this knowledge to reduce cold starts and
memory waste.




new technology

In this arficle, the authors propose a different policy from the original policy
being used by Azure/AWS. This policy has 2 main features

(1) It uses a different keep-alive value for each user's workload, according to
its actual invocation frequency and pattern;

(2) It enables the provider in many cases to pre-warm a function execution
just before its invocation happens (making it a warm start).



FaaS Workloads

The author characterize the FaaS workloads seen by Azure Functions, focusing
on characteristics that are intrinsic to the applications and functions (e.g.,
their arrival pattern). They collected data on all function invocations across
Azure's entire infrastructure between July 15th and July 28th, 2019.

It contain four main parts:

(1)Functions, Applications, and Triggers
(2)Invocation Patterns

(3)Function Execution Times

(4)Memory Usage



Functions, Applications, and Triggers
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Figure 1: Distribution of the number of functions per app. F'gure 2: Functions and invocations per trigger type.

(a) Apps with > 1 of each trigger. (b) Popular trigger combinations.
Figure 3: Trigger types in applications.

Figure 1 shows the CDF of the number of functions per application (top curve).
Figure 2 shows the fraction of all functions, and all invocations, per type of trigger.

Figure 3 shows how applications combine functions with different trigger types.



Invocation Patterns
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Figure 4: Invocations per hour, normalized to the peak.

Figure 4 shows the volume of invocations per hour, across the entire
platform, relative to the peak hourly load on July 18th.
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Invocation Patterns
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Figure 6: CV of the IATs for subsets of applications.



Function Execution Times

Another aspect of the workload is the function execution time, i.e. the time
functions take to execute after they are ready to run. Figure 7 shows the
distribution of average, minimum, and maximum execution times of all
function executions on July 15th, 2019.
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Figure 7: Distribution of function execution times. Min, avg,
and max are separate CDFs, and use independent sorting.



Memory Usage

Application is the unit of memory allocation in the platform. Figure 8 shows the
memory demand distribution, across all applications running on July 15th, 2019.
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Figure 8: Distribution of allocated memory per application.



Conclusion

From the observations, we now have three main conclusions:

(T)Functions vary a lot when it comes to invocation frequency, making it
necessary to customize resource management policies for different functions.

(2)Since the vast majority of functions have execution times on the same
order of magnitude of their cold start fimes, it's crifical to reduce the number
of cold starts.

(3)40% of functions have a CV of their IATs higher than 1, which makes the
prediction challenging. Especially when invocation is infrequent, the
prediction may not be an effective solution



Evaluation

We focus on section 3 of this paper. The author didn't give an evaluation
about this section.



Critiqgue: Strengths

1.This paper is from the perspective of cloud providers.

2.There has been little to no public information on these characteristics of the
FaaS workload. This paper characterize the FaaS workloads seen by Azure

Functions from four aspects.
3.This paper use a lot of figures to make the data more specific.



Critigue: Weaknesses

Given the extreme scale of Azure Functions, the invocation counts are binned
in 1-minute intervals, i.e. their dataset does not allow the precise
reconstruction of interarrival times that are smaller than one minute.

For this paper, this granularity is sufficient.



Question?




