
11/30/2020

1

Microservice Architecture
Enables DevOps

Raj Deol
Shru

Madhuri

Outline

• Paper Overview
• Background/Related Work
• Summary of Microservices Architecture
• Key Findings from the Paper
• Author’s Evaluation
• Author’s Conclusion
• Critique: Strengths/Weaknesses
• Critique: Evaluation
• Gaps & Challenges to Microservices

11/30/2020

2

Paper Overview
• Bactory experience and lessons learned for migrating to Microservices Architecture

• Backtory: Mobile Backend as a Service

• Backtory Company Problem
• Needed an agile way to grow and scale the product meet growing demands and speed
• Current toolsets were ‘monolithic’, slow to adapt, and were not cloud native
• Changes to products took lot of time; they were looking for a continuous delivery model
• Realization to change the architecture when faced with need to add chat as a service

• Hypothesis/Solution
• Backtory envisioned rearchitecting their product using Microservices architecture
• Planned an incremental migration approach to rearchitect product and delivery model
• Lot of success but also lot of lessons learned

Related Work
• Microservices architecture has become an industry norm.

• Even though new companies may not start with this approach, they eventually migrate
to make their business scale to growing demands

• Uber Case Study – Starting Architecture
• Started with monolithic architecture approach for single offering in single city
• Expansion to other cities and growing demand showed limitation of monolithic approach
• Each improvement required rebuild, redeployment, and testing of entire application
• REST API for passenger-driver connect, 3 adapters, MySQL db

• Uber Case Study – Migrated to Microservices Architecture
• Migrated to multiple codebases to form microservice architecture
• Introduced API gateway through which all drivers/passengers are connected
• Different microservice for billing, notification, payments, driver mgmt., passenger mgmt.
• Each microservices can scale independently with its own deployment and testing

11/30/2020

3

Summary of Microservices Architecture
• Microservices is a cloud native architecture style that aims to realize software

systems as a package of small services.
• Each service is organized around business capabilities and by small team
• Independently deployable and highly maintainable and testable
• Loosely coupled – can run in it’s own process while communicating through REST

• Not a new concept; most organizations have already adopted or in process of
adopting it beyond a product to company wide

• Not a ‘silver-bullet’ - has potential drawbacks
• Can be higher cost
• Difficulty of Integration
• Increased latency due to high volume of remote calls
• Difficult to debug and test whole system

Key Findings from Paper
• Microservices and DevOps popularity started growing in 2012 and are one of the most

searched technology keywords from 2013-2020.

• Microservices helped Backtory in shipping new features more frequently and providing
scalability for the collective set of users

• After migration, deployment in the development environment was difficult
• Although isolated services, there were many dependencies across services

• Distributed-system development required highly skilled developed
• Despite lot of training, many developers struggled

• While benefit of each service designed autonomously sounds great (e.g. separate
programming languages), too many differences creates chaos to manage

• Overall great benefit to Backtory as their system needed flexibility and they had the right
tools and skills (Spring Cloud and Netflix OSS), which made migration/development easy

11/30/2020

4

Backtory’s Change to Delivery Model

Microservices Critique: Strengths/Weaknesses

• Strengths
• Without doubt, Microservices helps make the software product be flexible and scalable
• Enables DevOps to bridge gap between development and operations
• Enables organizing by business capabilities – maximizes focus to specific customer product
• Cloud native approach and take advantage of latest technologies like Containers

• Weaknesses
• Requires up front planning & design (e.g. capabilities, integration, tools selection)
• While easy to build individual service, lot of complexity in overall distributed system
• High degree of skills in architecture planning and service development
• Need well thought out migration plan, otherwise high change of failed effort

11/30/2020

5

Paper Evaluation
• Positives

• Paper presented Microservices in context of a real world example
• Covered both technical architecture components and DevOps process
• Covered both benefits and drawbacks of microservices
• Clarified technologies used (Netflix OOS, Docker, Maven, Oracle, Spring, etc.)
• Detailed the migration pattern for adopting Microservices

• Negatives
• Small company case study with not lot of products
• Did not describe why the final architecture had lot of dependencies
• Technical descriptions/diagrams were confusing and hard to understand
• Did not describe specifics of how data was separated or kept together
• The article makes heavy emphasis on Netflix OOS and Spring for Microservices

• In reality, microservices should be technology agnostic

GAPS
• Article described Microservices in context of re-architecting full product

• Couldn’t Backtory take incremental approach – i.e. start microservices only for new feature?

• Are there specific technologies that help adopt Microservices faster?

• What if there is lot of data integration between products? What are some cases
where data can be fully separated versus kept as shared?

• If every team is making enhancements independently, how to manage
compatibility when one product is behind and others are ahead?

• How to quantify cost and benefits for Microservices?

11/30/2020

6

Questions?

