12/7/2020

Faasm: Lightweight
|Isolation for Efficient
Stateful Serverless
Computing

Jordan Overbo
Zoe Sadeghi

\ Outline

Introduction

Explanation of Problems

Related Works

Overview of Faasm

Key Contributions From Author

Author’s Evaluation

Author’s Conclusions

Critiques: Strengths/Weaknesses/Evaluation
Gaps in Research

12/7/2020

Introduction (FaaSs)

Function as a Service allows easy development, testing , and running of
applications
Very popular with data-intensive applications
Decomposing computation can exploit the inherent cloud parallelism
Many companies provide FaaS
Functions are isolated in ephemeral, stateless containers
Problems:
o DataAccess Overhead
o Container Resource Footprint

Problems

Function

Container

State in external storage 10101011
000010001
00100010

Local copy of data ----

12/7/2020

Importance

State must be maintained externally, incurring costs
Has resulted in an inefficient model of bringing data to the function
Repeatedly paying overhead penalties with each function call
The large container memory footprint reduces scalability

o Typically only a few thousand containers per 16GB of RAM
Current solutions have solved problems individually

Related Work For Data Access Overhead

PyWren introduced to reduce user overhead

Idea is to share containers between tenants

Pros
o This spreads the data access overhead

Cons
o Results in the loss of fine-grained parallelism
o Further increases container size

Related Work for Container Resource Footprint

Cloudburst: a stateful FaaS platform
Adds extra services to containers
Pros
o Provides a low latency mutable state for communication
o Also maintains autoscaling benefits of serverless computing
Cons
o Duplicates locally
o Increases the isolation overhead

Overview: Faaslets

Isolation mechanism for data-intensive applications

Strong memory and resource isolation guarantees

Provides sought after efficient shared in-memory

Supports lightweight virtualization through host interface
Maintains memory footprint below 200KB with cold starts less than
10ms

Figure 1: Faaslet abstraction with isolation

12/7/2020

12/7/2020

Overview: Host Interface

Targets minimal virtualization in order to minimize overhead

Low-level API built to support high-performing serverless applications
and offers:

o Chained serverless function invocation
o Interaction with shared memory states
o Range of POSIX-style functions
Results, inputs, and state for functions represented as byte arrays

Overview: Shared Memory Regions

Adds new concept of shared regions to existing WebAssembly model
Offers functions concurrent access to disjoint sections of shared
memory

No extra overhead as shared memory is supported with OS virtual
memory

Maintains security guarantee offered by current WebAssembly model

Offset: @ +A -AcSI
FaasletA ey [—— .

Proc. memory [EAT F=B= ==

Faasiet B :’:‘
) $B1 4845

Figure 2: Faaslet shared memory region mapping

12/7/2020

Overview: Local and Global State

Stateful serverless applications offered through distributed data objects
DDOs represent a single state value

Represent state through key/value abstractions

Local consistency ensured by local read and write locks between Faaslets
Global consistency varies, strong provided with global read and write locks

Host 1
F1 F2

Memory mapping | (] (ST
Local tier ---| (CAT_TBT) [TETICi

i
Global tier (<. . [B] « o=

Figure 4: Faaslet two-tier state architecture

Overview: Faasm Runtime

Serverless runtime that operates using Faaslets to

provide stateful applications AEBIE incoming calls

Distributed shared state scheduler to ensure as as many f{""‘;;“,:jj:‘“ F’t:‘h';jj:fe;

functions as possible are executed with warm faaslets (Fasets T Al
. A

Proto-Faaslets included to further reduce cold start et { DEE}

Figure 5: FAasm system architecture

latency

Proto-Faaslets are Faaslets that contain a snapshot with
the function’s stack, heap, function table, stack pointer
and data

Further reduces cold start initialization to the hundreds
of microseconds

12/7/2020

Key Contributions

Lightweight Isolation of serverless functions
o Compiled using WebAssembly
o CPU cycles constrained using Linux cgroups
Support of efficient local and global state access
o Faaslets share the same address space
o Two-tier state architecture
Fast initialization times
o Reducing the cold start issue of FaaS
Flexible host interface
o Balance between virtualization and overhead

Author Evaluation: Setup

Match Faasm against high-end serverless platform
o Knative, which is a container-based platform built using Kubernetes
Tested using the same code
o Knative-specific implementation due to inability to share between functions
Faasm Integration
o Replicate Faasm runtime instances with Knative through the default
autoscaler
Faasm and Knative both ran on the same Kubernetes cluster
Metrics include execution time, throughput, latency, as well as billable memory

12/7/2020

Author Evaluation:; Methods

Machine learning training
o Textclassification using the HOGWILD! Algorithm
o Knative and Faasm both ran using an increasing number of parallel functions
o Reduced training size to determine performance and resource overheads
Machine learning inference
o Tests theinitialization times on cold starts
o Inference serving application using TensorFlow Lite
Language Runtime Performance
o Matrix multiplication using Python and Numpy
Efficiency of Faaslets vs. containers

o Footprint and cold start initialization latency of containers and Faaslets

Author Evaluation: Results

e Machine learning training
o 10% improvement in runtime with low parallelism, 60% with 15 parallel functions
At 38 parallel functions, improvement reaches 80%
Both show increasing network transfers, but Knative starts higher and increases
faster
Billable memory increases much slower for Faasm
50

— Knative
1 Faasm
0

5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 5 10 15 20 25 30 35
Parallel Functions Parallel Functions Parallel Functions

(a) Training time (b) Network transfers (c) Memory usage

Sent + recv (GB)

Usage (GB-second)

12/7/2020

Author Evaluation: Results

e Machine learning inference
O All cold start ratios for Knative result in increasing median latency by 100 r/sec while Faasm
maintains a latency of 120 ms through 200 r/sec
Faasm also maintains tail latency of under 150ms for all cold start ratios whereas Knative has a
tail latency of over 2 seconds for 35% of calls

—— Faasm
0% cold
— 2% cold
~ —— 20% cold
0 50 100 150 200 250 0 500 1000 1500 2000
Throughput (request/s) Latency (ms)

Median latency (ms)
% requests

(a) Throughput vs. latency (b) Latency CDF

Author Evaluation: Results

—— Knative
Faasm

S/

o

2 4 6 8 2 4 6 8
Matrix size 1e3 Matrix size %

Sent + recv (GB)

e Language Runtime Performance
o Faasm and Knative duration increase

at almost identical rates
Faasm achieves 13% less network
traffic across matrix sizes
Polybench shows comparable
overhead in all but 2 benchmarks S0
Python sees a few benchmarks reach
50-60% extra overhead vs native () Polybench

(a) Duration (b) Network transfer

SO O S LD O BB,
O
&

L NG P
RN SRR
<SS oo%\b SHE
Eg S

Vs. native

(b) Python Performance Benchmark

12/7/2020

Author Evaluation:; Results

e Efficiency of Faaslets vs. containers
o Docker begins at ~2 sec initialization and increases after 3 executions/sec
o Faaslets begin at ~5 ms initialization and maintain that until around 600 executions/sec
o Proto-Faaslets begin at ~0.5 ms initialization and manage that until about 4000 executions/sec

ﬂ Docker
Faaslet

—+— Proto-Faaslet

Latency (ms)

R
10° 10 102 10°
Container/ Faaslet creation per second

Author Evaluation:; Conclusions

Their Faasm runtime is able to provide high performance state without
compromising isolation

Faaslets execute functions which allow memory sharing while maintaining memory
safety

Initialization times have been addressed through Proto-Faaslet snapshots

Faasm'’s two-tier architecture givers users parallel in memory processing while still
allowing host-to-host sharing

Faaslets also support different language runtimes

10

Critique: Strengths

Performance increased across nearly all tests

Faasm manages to solve both problems mentioned
Solution also maintains scalable nature of the cloud
Would reduce costs by limiting data access overhead

Critique: Weaknesses

The sets of techniques introduced are limited to FaaS delivery model and do not combine
well with other types of delivery

The techniques rely on low-level access to kernel functions

All the Faaslets need to be deployed manually and fine-tuned manually

12/7/2020

11

Critique: Evaluation

Proposes a new set of techniques for a different level of abstraction

Delivers promising results

Fails to talk about shortcomings

The graphs are sometimes peculiar without explanation (e.g. see Efficiency of Faaslets vs.
containers)

Gaps

Fails to talk about complexities of shared state (e.g. inconsistency when writing, locking
when reading)

Fails to talk about integration with commercial providers (e.g. AWS)

Fails to establish a clear benefit of this method over, say, a distributed cache

Fails to talk about costs of implementation and maintenance

Fails to talk about how this method completely ignores immutability of data which is the
main benefit of functional design

12/7/2020

12

12/7/2020

\ Questions?

13

