
12/7/2020

1

Faasm: Lightweight
Isolation for Efficient
Stateful Serverless
Computing

Jordan Overbo
Zoe Sadeghi

Outline

● Introduction
● Explanation of Problems
● Related Works
● Overview of Faasm
● Key Contributions From Author
● Author’s Evaluation
● Author’s Conclusions
● Critiques: Strengths/Weaknesses/Evaluation
● Gaps in Research

12/7/2020

2

Introduction (FaaS)

● Function as a Service allows easy development, testing , and running of
applications

● Very popular with data-intensive applications
● Decomposing computation can exploit the inherent cloud parallelism
● Many companies provide FaaS
● Functions are isolated in ephemeral, stateless containers
● Problems:

○ Data Access Overhead
○ Container Resource Footprint

Problems

12/7/2020

3

Importance

● State must be maintained externally, incurring costs
● Has resulted in an inefficient model of bringing data to the function
● Repeatedly paying overhead penalties with each function call
● The large container memory footprint reduces scalability

○ Typically only a few thousand containers per 16GB of RAM
● Current solutions have solved problems individually

Related Work For Data Access Overhead

● PyWren introduced to reduce user overhead
● Idea is to share containers between tenants
● Pros

○ This spreads the data access overhead
● Cons

○ Results in the loss of fine-grained parallelism
○ Further increases container size

12/7/2020

4

Related Work for Container Resource Footprint

● Cloudburst: a stateful FaaS platform
● Adds extra services to containers
● Pros

○ Provides a low latency mutable state for communication
○ Also maintains autoscaling benefits of serverless computing

● Cons
○ Duplicates locally
○ Increases the isolation overhead

Overview: Faaslets

● Isolation mechanism for data-intensive applications
● Strong memory and resource isolation guarantees
● Provides sought after efficient shared in-memory
● Supports lightweight virtualization through host interface
● Maintains memory footprint below 200KB with cold starts less than

10ms

12/7/2020

5

Overview: Host Interface

● Targets minimal virtualization in order to minimize overhead
● Low-level API built to support high-performing serverless applications

and offers:
○ Chained serverless function invocation
○ Interaction with shared memory states
○ Range of POSIX-style functions

● Results, inputs, and state for functions represented as byte arrays

Overview: Shared Memory Regions

● Adds new concept of shared regions to existing WebAssembly model
● Offers functions concurrent access to disjoint sections of shared

memory
● No extra overhead as shared memory is supported with OS virtual

memory
● Maintains security guarantee offered by current WebAssembly model

12/7/2020

6

Overview: Local and Global State

● Stateful serverless applications offered through distributed data objects
● DDOs represent a single state value
● Represent state through key/value abstractions
● Local consistency ensured by local read and write locks between Faaslets
● Global consistency varies, strong provided with global read and write locks

Overview: Faasm Runtime

● Serverless runtime that operates using Faaslets to
provide stateful applications

● Distributed shared state scheduler to ensure as as many
functions as possible are executed with warm faaslets

● Proto-Faaslets included to further reduce cold start
latency

● Proto-Faaslets are Faaslets that contain a snapshot with
the function’s stack, heap, function table, stack pointer
and data

● Further reduces cold start initialization to the hundreds
of microseconds

12/7/2020

7

Key Contributions

● Lightweight Isolation of serverless functions
○ Compiled using WebAssembly
○ CPU cycles constrained using Linux cgroups

● Support of efficient local and global state access
○ Faaslets share the same address space
○ Two-tier state architecture

● Fast initialization times
○ Reducing the cold start issue of FaaS

● Flexible host interface
○ Balance between virtualization and overhead

Author Evaluation: Setup

● Match Faasm against high-end serverless platform
○ Knative, which is a container-based platform built using Kubernetes

● Tested using the same code
○ Knative-specific implementation due to inability to share between functions

● Faasm Integration
○ Replicate Faasm runtime instances with Knative through the default

autoscaler
● Faasm and Knative both ran on the same Kubernetes cluster
● Metrics include execution time, throughput, latency, as well as billable memory

12/7/2020

8

Author Evaluation: Methods

● Machine learning training
○ Text classification using the HOGWILD! Algorithm
○ Knative and Faasm both ran using an increasing number of parallel functions
○ Reduced training size to determine performance and resource overheads

● Machine learning inference
○ Tests the initialization times on cold starts
○ Inference serving application using TensorFlow Lite

● Language Runtime Performance
○ Matrix multiplication using Python and Numpy

● Efficiency of Faaslets vs. containers
○ Footprint and cold start initialization latency of containers and Faaslets

Author Evaluation: Results

● Machine learning training
○ 10% improvement in runtime with low parallelism, 60% with 15 parallel functions
○ At 38 parallel functions, improvement reaches 80%
○ Both show increasing network transfers, but Knative starts higher and increases

faster
○ Billable memory increases much slower for Faasm

12/7/2020

9

Author Evaluation: Results

● Machine learning inference
○ All cold start ratios for Knative result in increasing median latency by 100 r/sec while Faasm

maintains a latency of 120 ms through 200 r/sec
○ Faasm also maintains tail latency of under 150ms for all cold start ratios whereas Knative has a

tail latency of over 2 seconds for 35% of calls

Author Evaluation: Results

● Language Runtime Performance
○ Faasm and Knative duration increase

at almost identical rates
○ Faasm achieves 13% less network

traffic across matrix sizes
○ Polybench shows comparable

overhead in all but 2 benchmarks
○ Python sees a few benchmarks reach

50-60% extra overhead vs native

12/7/2020

10

Author Evaluation: Results

● Efficiency of Faaslets vs. containers
○ Docker begins at ~2 sec initialization and increases after 3 executions/sec
○ Faaslets begin at ~5 ms initialization and maintain that until around 600 executions/sec
○ Proto-Faaslets begin at ~0.5 ms initialization and manage that until about 4000 executions/sec

Author Evaluation: Conclusions

● Their Faasm runtime is able to provide high performance state without
compromising isolation

● Faaslets execute functions which allow memory sharing while maintaining memory
safety

● Initialization times have been addressed through Proto-Faaslet snapshots
● Faasm’s two-tier architecture givers users parallel in memory processing while still

allowing host-to-host sharing
● Faaslets also support different language runtimes

12/7/2020

11

Critique: Strengths

● Performance increased across nearly all tests
● Faasm manages to solve both problems mentioned
● Solution also maintains scalable nature of the cloud
● Would reduce costs by limiting data access overhead

Critique: Weaknesses

● The sets of techniques introduced are limited to FaaS delivery model and do not combine
well with other types of delivery

● The techniques rely on low-level access to kernel functions
● All the Faaslets need to be deployed manually and fine-tuned manually

12/7/2020

12

Critique: Evaluation

● Proposes a new set of techniques for a different level of abstraction
● Delivers promising results
● Fails to talk about shortcomings
● The graphs are sometimes peculiar without explanation (e.g. see Efficiency of Faaslets vs.

containers)

Gaps

● Fails to talk about complexities of shared state (e.g. inconsistency when writing, locking
when reading)

● Fails to talk about integration with commercial providers (e.g. AWS)
● Fails to establish a clear benefit of this method over, say, a distributed cache
● Fails to talk about costs of implementation and maintenance
● Fails to talk about how this method completely ignores immutability of data which is the

main benefit of functional design

12/7/2020

13

Questions?

