TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TCSS 562:
SOFTWARE ENGINEERING ,
FOR CLOUD COMPUTING

Cloud Computing: Fundamental
Concepts and Models

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

[Fall 2019]

FEEDBACK FROM 10/14

= Perspective on material: 6.667 (= mostly new to me)
= Pace: 5.333 (~ just right)
= 18 respondents

= What Is a bllling model?

= |n tutorial 3, along with CSV output, we need to upload
even the graphs. What exactly are the graphs we should
upload/attach?
= See bottom of page 10 for explanation.
= Looking for HTML output pasted into DOC/PDF ideally

October 16, 2019

TCSS562: ineering for Cloud Computi 2019) 2
School of Engineeri Technology, University i Tacoma

FEEDBACK - 2

= What Is the format of questions on the midterm exam? Are
questlons objective or subjective?
= A practice midterm will be given as an in class activity prior to the
midterm to practice question format
= There are objective questions
= There are also questions that ask about trade-offs of alternatives
i.e. weigh and compare differences

= What Is the time duration of the mldterm?
= Full 2 hours is permitted,

= What does m-bound and d-bound mean?
= M-bound: performance bottleneck is the soil erosion model
= D-bound: performance bottleneck is the relational database (pgsql)

CHAPTER 4: FUNDAMENTAL
CONCEPTS AND MODELS

TCSS562: Software Engineering for Cloud Computing [Fall 2019]

(R i 21 School of Engineering and Technology, University of Washington -

e ;crs‘zif‘z,;Soﬂ_ware_EngineeTrei:ﬁrf;:;:;‘:ud gom;_u:(ing[ran 2019] racoms | 3 ‘
OBJECTIVES

= From: Cloud Computing Concepts, Technology & Architecture:
= Cloud Computing Concepts and Models

= Roles and boundaries

= Cloud characteristics
L=Clouddellvervmodels |

= Cloud deployment models

TC55562: Software Engineering for Cloud Computing [Fall 2019] | s ‘
 Software I ¢

October 16, 2019 i Technology, 5 Tacoma

CLOUD DELIVERY MODELS

= What is the appropriate level of abstraction?

" How should applications be deployed?
=laaS, PaaS, SaaS, DbaaS, FaaS

=How do we ensure Quality-of-Service?

=Performance, Availability, Responsiveness,
Fault Tolerance

= How is scalability provided?
= How do we minimize hosting costs?
=How do we estimate hosting costs?

TCSS562: ineering for Cloud C¢ i 2019]

(e 20 5ehodl of Engincerng andTechnology/University/of Tacoma

Slides by Wes J. Lloyd

L7.1

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CLASSIC CLOUD DELIVERY MODELS

Platform

Infrastructure

October 16, 2019 | TCSS562: Software Engineering for Cloud Computing [Fall 2019]

school of Technology, y Tacoma

CLASSIC CLOUD DELIVERY MODELS

User manages:
Application Services,
Application Infrastructure,
Virtual Servers

laaS

TCSS562: i ing for Cloud C i 2019]
(i 2000 3 T S o e A P T = | s

CLASSIC CLOUD DELIVERY MODELS

User manages:
Application Services

Paa$S

laaS

October 16, 2019 TCSS562: Soft‘ware.Engineering for Cloud Fom?u(ing [Fall 2019]
school of Technology, y Tacoma

CLASSIC CLOUD DELIVERY MODELS

PaaS

laaS

TCSS562: i ing for Cloud C i 2019]
‘ (i 2000 Sehosl o Enineerng andTech nolosyjUnivers ty/ot Washi Tecoma

17.10

10

EXAMPLE CLOUD SERVICES

¥

1
SaaS

Software Platform Infrastructure
as a Service as a Service as a Service
Email Application Development Caching
CRM Decision Support Legacy File
Collaborative Web Networking Technical
ERP Streaming Security System Mgmt
CONSUME BUILD ONIT MIGRATETO IT
Tessse2: ineering for Cloud Computi 2019]
| October 16, 2019 e e Technology, University : P [RE%

11

Slides by Wes J. Lloyd

END USER APPLICATIONS
m :
<

tical

Many different .
“cloud” providers Sl

Harketfools

EPICOR

.|
Recail & E-Commerce

srey G shopify

) oracie i g

Bl paoncon ™y e TPV 5 (o mar ;- 7 IR

[e gy o e e mm o
TCSS562: i ing for Cloud C i 2019]

‘ (e 20 5ehodl of Engincerng andTechnology/University/of Tacoma

12

[Fall 2019]

L7.2

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

INFRASTRUCTURE-AS-A-SERVICE

= Compute resources, on demand, as-a-service
= Generally raw “IT” resources
= Hardware, network, containers, operating systems

= Typically provided through virtualization

= Generally not-preconfigured

= Administrative burden is owned by cloud consumer

= Best when high-level control over environment is needed

= Scaling is generally not automatic...

= Resources can be managed in bundles

= AWS CloudFormation: Allows specification in JSON/YAML of
cloud infrastructures

October 16, 2019 TCSS562: Soft‘ware.Engineering for Cloud Fom?u(ing [Fall 2019]
school of chnology, y Tacoma

: Tomcat ApplicationServer
: Postgresql DB

nginx file server

Log server (Codebeamer)

rmos=

13

14

Bell’'s Number: 4 15
5 52
k: number of ways
n components can be 6 203
distributed across containers 7 877
8 4,140
9 21,47

&_ 0 | oao /

BB M: Tomcat ApplicationServer
MD F D: Postgresql DB
L F: nginxfile server
L: Log server (Codebeamer) ©

Component Composition Example

* An application with 4 components has 15 compositions
* One or more component(s) deployed to each VM
* Each VM launched to separate physical machine

SC14

15

0% +——|

0% +——|

0%

aon —|

Resource footprint

30% O sc3

20% —|

CPUtime disk rea‘ds diskwrites networkreads network writes

17

Slides by Wes J. Lloyd

M: Tomcat ApplicationServer
MD D: Postgresql DB
L F: nginxfile server
L: Log server (Codebeamer)
16
Resource utilization profile changes
from component composition
M-bound RUSLE2 Soil Erosion Model
* Box size shows absolute deviation (+/-) from mean
» Shows relative magnitude of performance variance s
_E 0% i - lsg:.;
g msc12
8 msc11
bl || @sc10
8 ! m SCo
5 o sc8
D . | msc7
3 n o sce
14 H SC5
- ‘ - | mscs
O sc3
B sc2
20% | msca
* CPU time disk reahs disk writes networkreads networkwrites
18

L7.3

TCSS 562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, UW-Tacoma

[PERFORMANCE IMPLICATIONS OF
e T i APPLICATION DEPLOYMENTS
A Resource Utilization
Change . : e e] e
£ Min to Max Utilization E g
‘g m-bound d-bound C:E; q g 3
§ CPU time: 6.5% 5.5% Slower deployments £
§ Disk sector reads: 148% 819.6% [= - g " 1 I] | I]
Disk sector writes: 21.8% 111.1% [F deol 5
Network bytes received: 144.9% 145% [aster deployments £
Network bytes sent: 143.7% 143.9% *
- CPUtime diskreads diskwrites networkreads networkwrites o) S(e'"i;c";"g:at:"s o
19 20

PERFORMANCE IMPLICATIONS OF

APPLICATION DEPLOYMENTS PLATFORM-AS-A-SERVICE

= Predefined, ready-to-use, hosting environment

A Performance Change: = Infrastructure is further obscured from end user

Min to max performance = Scaling and load balancing may be automatically
provided and automatic

= Variable to no ability to influence responsiveness

S
. o o e s
M-bound: 14%
= Examples: b |
- . o) ~&
. D-bound: 25.7% = Google App Engine -
. = Heroku \.’_/E
I = AWS Elastic Beanstalk -
a5 = AWS Lambda (Faa$S) '
scl sc2 sc3 scd4 sc5 sc6 sc7 sc8 sc9 sc10scllscl2sc13scldscls
Service Configurations ‘ Octoberlbr20ny ;:hoof:l Engineering and Techna\ags,ul;‘n‘i\versity of W:slll'\iznﬂgi:]n ~Tacoma 72
= Cloud consumer
= Wants to extend on-premise environments into the cloud
for “web app” hosting
= Wants to entirely substitute an on-premise hosting
environment What iS
= Cloud consumer wants to become a cloud provider and 9 N \ A .
deploy its own cloud services to external users Serverless s q 2 0
=, &
NE
A 5 Build and run applications
= PaaS spares IT administrative burden compared to laaS without thinking about servers
amazen
[ot ams T e o b Tcome . [omaberin s e e o o Tacome was

Slides by Wes J. Lloyd L7.4

TCSS 562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, UW-Tacoma

SERVERLESS COMPUTING - 2 SERVERLESS COMPUTING
Evolving (Pay only for]
to serverless A— CPU/memory utilization
A o | High Availabilty |

— e | FaultTolerance |
=
L Infrastructure Elasticity] | No Setup |
& - -
Function-as-a-Service J
o anan (FAAS)
| October 16, 2019 ;Cszilﬁi;Soft‘ware.EngineeYreizﬁrf‘ooiocgl‘:ud Fom[:u:(ing [Fall 2019] 25 ‘
25 26

SERVERLESS COMPUTING SERVERLESS VS. FAAS

= Serverless Computing

{ .) = Refers to the avoidance of managing servers
Why Serverless Computing? = Can pertain to a number of “as-a-service” cloud offerings
. . = Function-as-a-Service (FaaS)

Many features Of.dIStI'IbUte.d systems, = Developers write small code snippets (microservices)
that are challenging to deliver, are which are deployed separately

provided automatically u Datab?se-as-a-Serw.ce (DBaaS)

o = Container-as-a-Service (Caa$)
...they are built into the platform = Others...

= Serverless is a buzzword
= This space is evolving...

TCSS562: ineering for Cloud Computi 2019) s
School of Engineering and Technology, University of Washington - Tacoma

‘ October 16, 2019

27 28

FAAS PLATFORMS GOOGLE TRENDS: FAAS PLATFORMS
AWS Lambda
[Azure Functions J .
C cia r time & ¥

[IBM Cloud Functions]
[Google Cloud Functions w

Apache OpenWhisk] I_ . B e s covbed A AN O

Open Source z v
Fn (Oracle)
| ousberioams | IS ey o e ams [o=]

29 30

Slides by Wes J. Lloyd L7.5

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OPEN SOURCE

FAAS FRAMEWORKS

Nuclio graphic
= Deployable to Docker container(s) or a Kubernetes cluster

= Fission: https://fission.io/

= Kubeless: https://kubeless.io/

= Nuclio: https://nuclio.io/

= OpenFaa$: https://www.openfaas.com

= Supports cloud native development principles

= Building a cloud application by adopting a “deploy it
yourself” framework avoids vendor lock-in

= Requires common medium of Kubernetes

TCS$562: Software Engineering for Cloud Computing [Fall 2019]

| I 203) AT T R TS S o T e T o T

1731

31

FAAS PLATFORMS - 2

= New cloud platform for hosting application code

= Every cloud vendor provides their own:

= AWS Lambda, Azure Functions, Google Cloud Functions,
IBM OpenWhisk

=Similar to platform-as-a-service
= Replace opensource web container (e.g. Apache

Tomcat) with abstracted vendor-provided
black-box environment

.33

October 16, 2019 TCSS562: Soft‘ware.Engineering for Cloud Fom?u(ing [Fall 2019]
school of Technology, y Tacoma

33

CLOUD NATIVE

SOFTWARE ARCHITECTURE

= Every service with a different pricing model

’ i Example: Weather Application l

s3 API GATEWAY

e

DYNAMODB

17.35

| October 16, 2019 Tcssssz;SDf(_ware_zngvneering for Cloud Computing [Fall 2019]

School o Technology, y Tacoma

[Fall 2019]

AWS LAMBDA

Using AWS Lambda

Simple resource model

+ Select power rating from
128MBto 3 GB

+ CPU and network
allocated proportionately

Bring your own code
% * Node.js, Java, Python,
C#

« Bring your own libraries
(even native ones)

>

. Flexible use = Flexible authorization
L] | = « Synchronous or :‘7 « Securely grant access to
asynchronous v resources and VPCs

« Integrated with other]
AWS services

« Fine-grained control for
invoking your functions

Images credit: aws. amazon.com

32

FAAS PLATFORMS - 3

® Many challenging features of distributed systems
are provided automatically

= Built into the platform:

= Highly availability (24/7)
= Scalability

= Fault tolerance

TCSS562: ineering for Cloud C 2019)
School of Engineering and Technology, University of Washington - Tacoma

October 16, 2019 | 17.34

34

IAAS BILLING MODELS

= Virtual machines as-a-service at ¢ per hour
= No premium to scale:

1000 computers @
= 1 computer Q@

1 hour
1000 hours

= |llusion of infinite scalability to cloud user
Spotnstance pcing History

= As many computers as you can afford

= Billing models are becoming
increasingly granular

= By the minute, second, 1/10th sec H |
= Auction-based instances: !

Spot instances > e

TCSS562: ineering for Cloud C 2019)
School of Engineering and Technology, University of Washington - Tacoma

October 16, 2019

35

Slides by Wes J. Lloyd

36

L7.6

TCSS 562: Software Engineering for Cloud Computing

School of Engineering and Technology, UW-Tacoma

IAAS VS. FAAS COMPUTING
BILLING MODELS

= AWS Lambda Pricing

= FREE TIER:

= Afterwards:
$0.0000002 per request

first 1,000,000 function calls/month > FREE
first 400,000 GB-sec/month > FREE

obfuscated pricing (AWS Lambda):

$0.000000208 to rent 128MB / 100-ms

October 16, 2019 TCSS562: Soft‘ware.Engineering for Cloud Fom?u(ing [Fall 2019]
school of Technology, y Tacoma

17.37

37

PRICING OBFUSCATION

llii AWS Lambda: $123.28

= Workload: 7,776,000 GB-sec
= FREE: - 400,000 GB-sec
= Ct .
i Worst-case scenario = ~1.7x

|
™ AWS EC2: $72.00

= CHo o, T T T o ns
= Calls: $.32
= Total: $123.28

=" BREAK-EVEN POINT = ~4,319,136 GB-sec-month

For

P only, not dering cost of f

calls= ~16.7 days

39

FACTORS IMPACTING PERFORMANCE

FAAS COMPUTING PLATFORMS

= Infrastructure elasticity

= Load balancing

= Provisioning variation

= Infrastructure retention: COLD vs. WARM
= Infrastructure freeze/thaw cycle

= Memory reservation

= Service composition

OF

| October 16, 2019 Tcssssz;SDf(_ware_Engineering for Cloud Computing [Fall 2019]

School o Technology, y Tacoma

1741

41

Slides by Wes J. Lloyd

[Fall 2019]

WEBSERVICE HOSTING EXAMPLE

= Workload: 1-month continuous 1-second service calls
that fully utilize 3GB of RAM and two CPU cores

= ON AWS Lambda
= Each service call: 100% of 1 CPU-core

100% of 3GB of memory

= Workload: 2 continuous client threads
= Duration: 1 month (30 days)
= ON AWS EC2:
L Amazon EC2 c4.large 2-vCPU VM@3.75GB
= Hosting cost: $72/month
c4.large: 10¢/hour, 24 hrs/day x 30 days

=How much would hosting this workload cost on
AWS Lambda?

TCSS562: i ing for Cloud C 2019]
(i 2000 3 T S o e A P T =

17.38

38

FAAS PRICING

= Break-even point is the point where renting VMs or
deploying to a serverless platform (e.g. Lambda)
is exactly the same.

= Qur example is for one month

mCould also consider one day, one hour, one minute
=What factors influence the break-even point for an
application running on AWS Lambda?
=What scenarlo would result In a 1-day break-even
point where pricing for laaS=FaaS?

TCSS562: ineering for Cloud C 2019)
School of Engineering and Technology, University of Washington - Tacoma

October 16, 2019

vu |

40

FAAS CHALLENGES

= Qutline:

=Vendor architectural lock-in - how to migrate?

® Pricing obfuscation - is it cost effective?

= Memory reservation - how much to reserve?
mService composition - how to compose software?
= Infrastructure freeze/thaw cycle - how to avoid?

TCSS562: ineering for Cloud Computi 2019
School of Engineering and Technology, University of Washington - Tacoma

October 16, 2019 17.42

42

L7.7

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

VENDOR ARCHITECTURAL LOCK-IN

= Cloud native (FaaS) software architecture requires
external services/components

Example: Weather Application
s Client

s3 API GATEWAY DYNAMODB

Images credit: aws.amazon.com

= Increased dependencies - increased hosting costs

43

MEMORY RESERVATION QUES 'I

»

= Lambda memory v Basic settings
reserved for functions

Temory (MB) nfo
= Ul provides “slider bar” —
to set function’s

memory allocation 's ‘"’“mm . V)
" Resource capacity (CPU, Description 3
disk, network) coupled to
slider bar: Performance

“every doubling of memory,
doubles CPU...”

= But how much memory do model services require?

Tessse2: ineering for Cloud Computi 2019]
School of Engineeri Technology, University i Tacoma

.45

| October 16, 2019

45

INFRASTRUCTURE FREEZE/THAW CYCLE

* Unused infrastructure is deprecated &
* But after how long? ?
¢ Infrastructure: VMs, “containers” A
* Provider-COLD / VM-COLD Performance
* “Container” images - built/transferred to VMs
¢ Container-COLD
¢ Image cached on VM
¢ Container-WARM
e “Container” running on VM

FREEZE-THAW CYCLE CAl
7 VL

Image from: Denver7 — The Denver Channel News.

47

Slides by Wes J. Lloyd

[Fall 2019]

PRICING OBFUSCATION

=VM pricing: hourly rental pricing, billed to
nearest second is intuitive...

= FaaS pricing:

AWS Lambda Pricing
FREE TIER: first 1,000,000 function calls/month > FREE
first 400 GB-sec/month > FREE

= Afterwards: $0.0000002 per request
$0.000000208 to rent 128MB / 100-ms

TCSS562: i ing for Cloud C i 2019]
School of Engineering and Technology, Universi i Tacoma

‘ October 16, 2019

ou|

44

SERVICE COMPOSITION

= How should application code be composed for
deployment to serverless computing platforms?
Client flow control, server flow control,

Monolithic Deployment #unctions i 3 functions

E5-0-0-88 | —vo [-em

i§—8-0 [y
: —e-0 S —0—. - Q
—0-Q 1
-] EB-0-%
= Recommended practice: *f)
Decompose into many microservices 3

= Platform limits: code + libraries ~250MB performance

= How does composlition Impact the number of
function Invocatlons, and memory utllization?

46

AWS

FUNCTION-AS-A-SERVICE |} tembea

Demo

48

L7.8

TCSS 562: Software Engineering for Cloud Computing

School of Engineering and Technology, UW-Tacoma

SOFTWARE-AS-A-SERVICE

= Software applications as shared cloud service

= Nearly all server infrastructure management is
abstracted away from the user

= Software is generally configurable
= SaaS can be a complete GUI/UI based environment
= Or Ul-free (database-as-a-service)

= SaaS offerings
= Google Docs
= Office 365
= Cloud9 Integrated Development Environment
= Salesforce

TCS5562: Software Engineering for Cloud Computing [Fall 2019]

| I 203) AT T R TS S o T e T o T

49

CONTAINER-AS-A-SERVICE

= Cloud service model for deploying application containers
(e.g. Docker) to the cloud

= Deploy containers without worrying about managing
infrastructure:
= Servers
= Or container orchestration platforms

= Container platform examples: Kubernetes, Docker swarm, Apache
Mesos/Marathon, Amazon Elastic Container Service

= Container platforms support creation of container clusters on the using
cloud hosted VMs
= CaaS Examples:
= AWS Fargate
= Azure Container Instances
= Google Cloud Run
= Open Source - deploy on your datacenter: Knative (led by Google)

TCS5562: Software Engineering for Cloud Computing [Fall 2019]

(I 200) e oolol Ensineerr s andlechnolosyl nvers Y liNes hinetonETecome

51

OBJECTIVES

= Cloud Computing Concepts and Models
= Roles and boundaries
= Cloud characteristics
= Cloud delivery models

| = Cloud deployment models |

TCS$562: Software Engineering for Cloud Computing [Fall 2019]

Crctelt Sehoolof Engineern s andiechnolosyilnvers Y ciWes hinetonETecoms

53

Slides by Wes J. Lloyd

[Fall 2019]

Cloud Cloud Cloud
Senvice Service Sevice
A B c
9
Ready-Made Ready-Made Ready-Made
Environment A Environment B Environment G
9
3
& - - -
Virtual Virtual
Server Server
8
@ 1
g o
Z
Q
Physical
Server
A

TCSS562: Software Engineering for Cloud Computing [Fall 2019]

R ETE School of Engineering and Technology, University of Washington - Tacoma

L7.50

50

OTHER CLOUD SERVICE MODELS

= laaS
= Storage-as-a-Service
= PaaS
= Integration-as-a-Service
= SaaS
= Database-as-a-Service
= Testing-as-a-Service
= Model-as-a-Service
u?
= Security-as-a-Service
= Integration-as-a-Service

TCSS562: ineering for Cloud C 2019)
School of Engineering and Technology, University of Washington - Tacoma

October 16, 2019

052

52

CLOUD DEPLOYMENT MODELS

= Distinguished by ownership, size, access

= Four common models
= Public cloud
= Community cloud
= Hybrid cloud
= Private cloud

TCSS562: ineering for Cloud C 2019)
School of Engineering and Technology, University of Washington - Tacoma

October 16, 2019

54

L7.9

TCSS 562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, UW-Tacoma

PUBLIC CLOUDS COMMUNITY CLOUD

AT ~ L : o -

€ e 3 ~AL = Specialized cloud built and o~ -

O) { Mo shared by a particular a2
{\;:3 \Nj\//\,\ e community a) Y
c p J ‘
O v 4 .)
wf\d \&YM C =) = Leverage economies of scale !
D] AR e within a community N)
" (o) p
- (N = Research oriented clouds _ J
= Examples: = ~ = =

= Bionimbus - bioinformatics

[e BEE E EE

organizations

commnty of oganzatons

TCSS562: ineering for Cloud C¢ i 2019] | 1756 |

TCS5562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineeri Technology, University i Tacoma

School of Engineering and Technology, Uni Tacoma

| October 16, 2019 17.55 ‘ ‘ October 16, 2019

55 56

private cloud

PRIVATE CLOUD HYBRID CLOUD

dloud

‘consumer

= Compute clusters " i i e

Coni s o E)ftend prllvate cloud ty!alcally R

laa$S cloud with public or community cloud

resources C E—Ea |
(o
= Open source frameworks:)
= Openstack: = Cloud bursting: —
jo——

= https://www.openstack.or. sz Scale beyond one cloud when ~ N~
= Eucalyptus: resource requirements exceed _)
= https://www.eucalyptus.cloud local limitations e — <
= Apache Cloudstack:) § 'S

https://cloudstack.apache.or, _
= Nimbus: _ _ = Some resources can remain -
* http://www.nimbusproject.or local for security reasons
= Various virtualization hypervisors:

Opensource: XEN, KYM Commercial: VMWare, etc.

p——ry
TCSS562: Software Engineering for Cloud Computing [Fall 2019] TCSS562: i i loud C¢ i 2019]
| (I 200) Sehoolol Ensineern s endlechnolosyUnNe s q Tacoms w7 ‘ ‘ (i 2000 School of Engineering and Technology, University ; Tecoma | 178 |

57 58

OTHER CLOUDS

" Federated cloud
= Simply means to aggregate two or more clouds together
= Hybrid is typically private-public
= Federated can be public-public, private-private, etc.

= Also called inter-cloud TCSS 562

= Virtual private cloud
= Google and Microsoft simply call these virtual networks TER M PROJ ECT
= Ability to interconnect multiple independent subnets of cloud
resources together
= Resources allocated private IPs from individual network subnets can
communicate with each other (10.0.1.0/24) and (10.0.2.0/24)
= Subnets can span multiple availability zones within an AWS region

TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington -

TCS5562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineeri Technology, University i Tacoma

| October 16, 2019 1759 ‘ October 16, 2019

59 60

Slides by Wes J. Lloyd L7.10

TCSS 562: Software Engineering for Cloud Computing [Fall 2019]

School of Engineering and Technology, UW-Tacoma

TCSS 562 TERM PROJECT

= Build a serverless cloud native application

= Application provides a case study to design trade-offs:

= Projects will compare and contrast one or more trade-offs:
= Service composltion

= Switchboard archltecture

Address COLD Starts

Infrastructure Freeze/Thaw cycle of AWS Lambda (FaaS)
= Full service isolation, full service aggregation

= Application flow control
" Programming Languages
= Alternate Faa$S Platforms

= Data provisioning

TC55562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

| October 16, 2019 1761 ‘

EXTRACT TRANSFORM LOAD

DATA PIPELINE

= Service 1: TRANSFORM

= Read CSV file, perform some transformations
= Write out new CSV file

= Service 2: LOAD
= Read CSV file, load data into relational database

= Cloud DB (AWS Aurora), or local DB (Derby/SQLite)
= Derby DB and/or SQLite code examples to be provided in Java

October 16, 2019

TCSS562: ineering for Cloud Computi 2019) e
School of Engineering and Technology, University of Washington - Tacoma

61

EXTRACT TRANSFORM LOAD

DATA PIPELINE 2
= Service 3: EXTRACT

= Using relational database, apply filter(s) and/or functions to
aggregate data to produce sums, totals, averages

= Qutput aggregations as JSON

TC55562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

| October 16, 2019 17.63 ‘

63

SWITCH-BOARD ARCHITECTURE

APl Gat:
ateway @
QH% @ g g 1 service
Remote @ @ @
Client Switchboard
Single deploy ' with lidated codet (Java: one JAR file)
Entry method i i logic

Case statement that route calls to proper service

Routing is based on data payload
Check if specific parameters exist, route call accordingly

Goal: reduce # of COLD starts to improve performance

TCS5562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

| October 16, 2019 17.65 ‘

65

Slides by Wes J. Lloyd

62

SERVICE COMPOSITION

API Gateway g .
services

Full Service
Isolation

EH

Remote

Client C 2 services

Fine grained c 2 services

services

==
i

B C 1 service

Full Service
Aggregation

Other possible compositions: group by library, functional cohesion, etc.

TCSS562: ineering for Cloud Computi 2019) | e |

@iz A School of Engineering and Technology, University of Washington - Tacoma

64

APPLICATION FLOW CONTROL

= Serverless Computing:

= AWS Lambda (FAAS: Function-as-a-Service)
= Provides HTTP/REST like web services

= Client/Server paradigm

= Synchronous web service:
= Client calls service
= Client blocks (freezes) and waits for server to complete call
= Connection is maintained in the “OPEN” state
= Problematic if service runtime is long!
= Connections are notoriously dropped
= System timeouts reached
= Client can’t do anything while waiting unless using threads

TCSS562: ineering for Cloud Computi 2019) s
School of Engineering and Technology, University of Washington - Tacoma

October 16, 2019

66

L7.11

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

APPLICATION FLOW CONTROL - 2

= Asynchronous web service
= Client calls service
= Server responds to client with OK message
= Client closes connection
= Server performs the work associated with the service
= Server posts service result in an external data store
= AWS: S3, SQS (queueing service), SNS (notification service)

.67

| October 16, 2019 TCSSSEZ;Sof(_ware_Engineering for Cloud Computing [Fall 2019]

School o Technology, y Tacoma

67

PROGRAMMING LANGUAGE

= Function-as-a-Service platforms support hosting services code
in multiple languages

= AWS Lambda- common: Java, Node.js, Python
= Plus others: Go, PowerShell, C#, and Ruby

= Also Runtime API (“BASH") which allows deployment of any
binary executable in any programming languages

= Jackson D, Clynch G. An Investigation of the Impact of Language
Runtime on the Performance and Cost of Serverless Functions. In
Proc. Of the 2018 IEEE/ACM International Conference on Utility and
Cloud Computing Companion (UCC Companion) 2018 Dec 17 (pp.
154-160).

= http://faculty.washington.edu/wlloyd/courses/tcss562/papers
AnlnvestigationOfThelmpactOfLanguageRuntimeOnThePerformance
AndCostOfServerlessFunctions.pdf

TCS5562: Software Engineering for Cloud Computing [Fall 2019]
o Pl ‘

School o Technology, y Tacoma 179

| October 16, 2019

69

DATA PROVISIONING

= Consider performance and cost implications of the data-tier
design for the serverless application

= Use different tools as the relational datastore to support
service #2 (LOAD) and service #3 (EXTRACT)

L] L / Relatlonal:

= Amazon Aurora (serverless cloud DB), Amazon RDS (cloud DB),
DB on a VM (MySQL), DB inside Lambda function (SQLite,
Derby)

= NO SQL / Key/Value Store:
= Dynamo DB, MongoDB, S3

| October 16, 2019 Tcssssz;Sof(_ware_sngineering for Cloud Computing [Fall 2019]

School o Technology, y Tacoma

[Fall 2019]

APPLICATION FLOW CONTROL - 3

Client flow control

°®

Microservice as controller

symmmg
s
- @
a
Remote APl Controller
iy Gateway

Remote |
Client
AWS Step Function

Microservices

(b)

Remote APl
Client Gateway @
@ Microservices © Microservices
AWS Step Function Asynchronous
Microservices
X APl Gateway
74

Remote ’
Client Polling Message

(d)

‘ October 16, 2019 10562

for Cloud C¢

2019]
School of Engineering and Technology, University of Washington - Tacoma

68

= AWS Lambda

= Azure Functions

= Supported by SAAF:

= |IBM Cloud Functions

FAAS PLATFORMS

= Many commercial and open source FaaS platforms exist

= TCSS562 projects can choose to compare performance and
cost implications of alternate platforms.

= Google Cloud Functions

TCSS562:

ing for Cloud C i 2019]

‘ October 16, 2019 Gt

oy w0
Technology, University of Tacoma |

70

October 16, 2019

71

Slides by Wes J. Lloyd

QUESTIONS

TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington -

72

L7.12

