
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L7.1

Cloud Computing: Fundamental
Concepts and Models

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 562:
SOFTWARE ENGINEERING
FOR CLOUD COMPUTING Perspective on material: 6.667 (mostly new to me)

 Pace: 5.333 (~ just right)

 18 respondents

 What is a bil ling model?

 In tutorial 3, along with CSV output, we need to upload
even the graphs. What exactly are the graphs we should
upload/attach?
 See bottom of page 10 for explanation.

 Looking for HTML output pasted into DOC/PDF ideally

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.2

FEEDBACK FROM 10/14

 What is the format of questions on the midterm exam? Are
questions objective or subjective?
 A practice midterm will be given as an in class activity prior to the

midterm to practice question format
 There are objective questions
 There are also questions that ask about trade-offs of alternatives
 i .e. weigh and compare differences

 What is the time duration of the midterm?
 Full 2 hours is permitted, ……

 What does m-bound and d-bound mean?
 M-bound: performance bottleneck is the soil erosion model
 D-bound: performance bottleneck is the relational database (pgsql)

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.3

FEEDBACK - 2

CHAPTER 4: FUNDAMENTAL
CONCEPTS AND MODELS

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L7.4

 From: Cloud Computing Concepts, Technology & Architecture:

 Cloud Computing Concepts and Models

 Roles and boundaries

 Cloud characteristics

 Cloud delivery models

 Cloud deployment models

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.5

OBJECTIVES CLOUD DELIVERY MODELS

What is the appropriate level of abstraction?

How should applications be deployed?

 IaaS, PaaS, SaaS, DbaaS, FaaS

How do we ensure Quality-of-Service?

Performance, Availability, Responsiveness,
Fault Tolerance

How is scalability provided?

How do we minimize hosting costs?

How do we estimate hosting costs?

October 16, 2019 6October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.6

1 2

3 4

5 6

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L7.2

CLASSIC CLOUD DELIVERY MODELS

Infrastructure

Platform

Software

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.7

CLASSIC CLOUD DELIVERY MODELS

IaaS

User manages:
Application Services,

Application Infrastructure,
Virtual Servers

SaaS

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.8

CLASSIC CLOUD DELIVERY MODELS

IaaS

User manages:
Application Services,

Application Infrastructure,
Virtual Servers

PaaS

User manages:
Application Services

SaaS

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.9

CLASSIC CLOUD DELIVERY MODELS

IaaS

User manages:
Application Services,

Application Infrastructure,
Virtual Servers

PaaS

SaaS

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.10

EXAMPLE CLOUD SERVICES

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.11 October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

Many different
“cloud” providers

Many cloud providers
are also cloud consumers

L7.12

7 8

9 10

11 12

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L7.3

 Compute resources, on demand, as-a-service

 Generally raw “IT” resources

 Hardware, network, containers, operating systems

 Typically provided through virtualization

 Generally not-preconfigured

 Administrative burden is owned by cloud consumer

 Best when high-level control over environment is needed

 Scaling is generally not automatic…

 Resources can be managed in bundles

 AWS CloudFormation: Allows specification in JSON/YAML of
cloud infrastructures

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.13

INFRASTRUCTURE-AS-A-SERVICE
SC2

M D
F

L

SC4

M D F L

SC7

LM D F

SC3

M D F L

SC5

M D
F L

SC6

M D F L

SC8

M D F L

SC9

M D L F

SC10

M F D L

SC11

M F D L

SC12

M L D F

SC13

M L D F

SC14

M D
L

F

SC15

M L
F

D

SC1

M D
F L

14

M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Log server (Codebeamer)

SC2

M D
F

L

SC4

M D F L

SC7

LM D F

SC3

M D F L

SC5

M D
F L

SC6

M D F L

SC8

M D F L

SC9

M D L F

SC10

M F D L

SC11

M F D L

SC12

M L D F

SC13

M L D F

SC14

M D
L

F

SC15

M L
F

D

SC1

M D
F L

15

Component Composition Example

• An application with 4 components has 15 compositions
• One or more component(s) deployed to each VM
• Each VM launched to separate physical machine

M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Log server (Codebeamer)

Bell’s Number:

k: number of ways
n components can be
distributed across containers

n k

4 15

5 52

6 203

7 877

8 4,140

9 21,147

n . . .

SC2

M D
F

L

SC4

M D F L

SC7

LM D F

SC3

M D F L

SC5

M D
F L

SC6

M D F L

SC8

M D F L

SC9

M D L F

SC10

M F D L

SC11

M F D L

SC12

M L D F

SC13

M L D F

SC14

M D
L

F

SC15

M L
F

D

SC1

M D
F L

16

Component Composition Example

• An application with 4 components has 15 compositions
• One or more component(s) deployed to each VM
• Each VM launched to separate physical machine

M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Log server (Codebeamer)

SC15
SC14
SC13
SC12
SC11
SC10
SC9
SC8
SC7
SC6
SC5
SC4
SC3
SC2
SC1

CPU time disk reads disk writes network reads network writes

SC15
SC14
SC13
SC12
SC11
SC10
SC9
SC8
SC7
SC6
SC5
SC4
SC3
SC2
SC1

CPU time disk reads disk writes network reads network writes

Resource utilization profile changes
from component composition

M-bound RUSLE2 Soil Erosion Model
• Box size shows absolute deviation (+/-) from mean
• Shows relative magnitude of performance variance

13 14

15 16

17 18

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L7.4

SC15
SC14
SC13
SC12
SC11
SC10
SC9
SC8
SC7
SC6
SC5
SC4
SC3
SC2
SC1

CPU time disk reads disk writes network reads network writes

∆ Resource Utilization
Change

Min to Max Utilization
m-bound d-bound

CPU time: 6.5% 5.5%
Disk sector reads: 14.8% 819.6%
Disk sector writes: 21.8% 111.1%
Network bytes received: 144.9% 145%
Network bytes sent: 143.7% 143.9%

PERFORMANCE IMPLICATIONS OF
APPLICATION DEPLOYMENTS

Slower deployments

Faster deployments

PERFORMANCE IMPLICATIONS OF
APPLICATION DEPLOYMENTS

Slower deployments

Faster deployments

∆ Performance Change:
Min to max performance

M-bound: 14%
D-bound: 25.7%

 Predefined, ready-to-use, hosting environment

 Infrastructure is further obscured from end user

 Scaling and load balancing may be automatically
provided and automatic

 Variable to no ability to influence responsiveness

 Examples:

 Google App Engine

 Heroku

 AWS Elastic Beanstalk

 AWS Lambda (FaaS)

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.22

PLATFORM-AS-A-SERVICE

 Cloud consumer

Wants to extend on-premise environments into the cloud
for “web app” hosting

Wants to entirely substitute an on-premise hosting
environment

 Cloud consumer wants to become a cloud provider and
deploy its own cloud services to external users

 PaaS spares IT administrative burden compared to IaaS

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.23

USES FOR PAAS SERVERLESS COMPUTING

October 16, 2019 24TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.24

19 20

21 22

23 24

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L7.5

SERVERLESS COMPUTING - 2

October 16, 2019 25TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.25

SERVERLESS COMPUTING

Pay only for
CPU/memory utilization

High Availability

Fault Tolerance

Infrastructure Elasticity

Function-as-a-Service
(FAAS)

No Setup

SERVERLESS COMPUTING

Why Serverless Computing?

Many features of distributed systems,
that are challenging to deliver, are
provided automatically

…they are built into the platform

 Serverless Computing
 Refers to the avoidance of managing servers
 Can pertain to a number of “as-a-service” cloud offerings
 Function-as-a-Service (FaaS)
 Developers write small code snippets (microservices)

which are deployed separately
 Database-as-a-Service (DBaaS)
 Container-as-a-Service (CaaS)
 Others…

 Serverless is a buzzword
 This space is evolving…

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.28

SERVERLESS VS. FAAS

FAAS PLATFORMS

AWS Lambda

Azure Functions

IBM Cloud Functions

Google Cloud Functions

Fn (Oracle)

Apache OpenWhisk
Open Source

Commercial

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.30

GOOGLE TRENDS: FAAS PLATFORMS

25 26

27 28

29 30

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L7.6

 Deployable to Docker container(s) or a Kubernetes cluster

 Fission: https://fission.io/

 Kubeless: https://kubeless.io/

 Nuclio: https://nuclio.io/

 OpenFaaS: https://www.openfaas.com/

 Supports cloud native development principles

 Building a cloud application by adopting a “deploy it
yourself” framework avoids vendor lock-in

 Requires common medium of Kubernetes

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.31

OPEN SOURCE
FAAS FRAMEWORKS

Nuclio graphic

AWS LAMBDA

3

Images credit: aws.amazon.com

FAAS PLATFORMS - 2

New cloud platform for hosting application code

Every cloud vendor provides their own:
 AWS Lambda, Azure Functions, Google Cloud Functions,

IBM OpenWhisk

Similar to platform-as-a-service

Replace opensource web container (e.g. Apache
Tomcat) with abstracted vendor-provided
black-box environment

October 16, 2019 33TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.33

FAAS PLATFORMS - 3

Many challenging features of distributed systems
are provided automatically

Built into the platform:

Highly availability (24/7)

Scalability

 Fault tolerance

October 16, 2019 34TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.34

CLOUD NATIVE
SOFTWARE ARCHITECTURE

 Every service with a different pricing model

 Price obfuscation deployment confusion

October 16, 2019 35TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.35

 Virtual machines as-a-service at ¢ per hour

 No premium to scale:

1000 computers @ 1 hour
= 1 computer @ 1000 hours

 Illusion of infinite scalability to cloud user

 As many computers as you can afford

 Billing models are becoming
increasingly granular

 By the minute, second, 1/10th sec

 Auction-based instances:
Spot instances

October 16, 2019

IAAS BILLING MODELS

TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.36

31 32

33 34

35 36

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L7.7

 AWS Lambda Pricing

 FREE TIER:
first 1,000,000 function calls/month FREE

first 400,000 GB-sec/month FREE

 Afterwards: obfuscated pricing (AWS Lambda):

$0.0000002 per request

$0.000000208 to rent 128MB / 100-ms

October 16, 2019

IAAS VS. FAAS COMPUTING
BILLING MODELS

TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.37

WEBSERVICE HOSTING EXAMPLE

 Workload: 1-month continuous 1-second service calls
that fully utilize 3GB of RAM and two CPU cores

 ON AWS Lambda
 Each service call : 100% of 1 CPU-core

100% of 3GB of memory
 Workload: 2 continuous client threads
 Duration: 1 month (30 days)

 ON AWS EC2:
 Amazon EC2 c4.large 2-vCPU VM@3.75GB
 Hosting cost: $72/month

c4.large: 10¢/hour, 24 hrs/day x 30 days

How much would hosting this workload cost on
AWS Lambda?
October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]

School of Engineering and Technology, University of Washington - Tacoma
L7.38

PRICING OBFUSCATION

Workload: 7,776,000 GB-sec

FREE: - 400,000 GB-sec

Charge: 7,376,000 GB-sec

Memory: $122.96

 Invocations: 2,592,000 calls

FREE: - 1,000,000 calls

Charge: 1,592,000 calls

Calls: $.32

 Total: $123.28

BREAK-EVEN POINT = ~4,319,136 GB-sec-month
Fo r c o mpute o n ly, no t c o nsidering c o st o f f u nct ion c a l ls= ~16 .7 d ay s

Worst-case scenario = ~1.7x

AWS EC2: $72.00

AWS Lambda: $123.28

Break-even point is the point where renting VMs or
deploying to a serverless platform (e.g. Lambda)
is exactly the same.

Our example is for one month

Could also consider one day, one hour, one minute
What factors influence the break-even point for an

application running on AWS Lambda?
What scenario would result in a 1-day break-even

point where pricing for IaaS=FaaS?

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.40

FAAS PRICING

FACTORS IMPACTING PERFORMANCE OF
FAAS COMPUTING PLATFORMS

 Infrastructure elasticity

 Load balancing

 Provisioning variation

 Infrastructure retention: COLD vs. WARM

 Infrastructure freeze/thaw cycle

 Memory reservation

 Service composition

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.41

FAAS CHALLENGES

Outline:

Vendor architectural lock-in – how to migrate?

Pricing obfuscation – is it cost effective?

Memory reservation – how much to reserve?

Service composition – how to compose software?

 Infrastructure freeze/thaw cycle – how to avoid?

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.42

37 38

39 40

41 42

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L7.8

VENDOR ARCHITECTURAL LOCK-IN

 Cloud native (FaaS) software architecture requires
external services/components

 Increased dependencies increased hosting costs

Client

Images credit: aws.amazon.com

VM pricing: hourly rental pricing, billed to
nearest second is intuitive…

 FaaS pricing:

AWS Lambda Pricing
FREE TIER: first 1,000,000 function calls/month FREE

first 400 GB-sec/month FREE

 Afterwards: $0.0000002 per request

$0.000000208 to rent 128MB / 100-ms

PRICING OBFUSCATION

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.44

MEMORY RESERVATION QUESTION…

 Lambda memory
reserved for functions

 UI provides “slider bar”
to set function’s
memory allocation

 Resource capacity (CPU,
disk, network) coupled to
slider bar:
“every doubling of memory,
doubles CPU…”

 But how much memory do model services require?

Performance

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.45

SERVICE COMPOSITION

 How should application code be composed for
deployment to serverless computing platforms?

 Recommended practice:
Decompose into many microservices

 Platform limits: code + libraries ~250MB

 How does composition impact the number of
function invocations, and memory utilization?

Monolithic Deployment

Client flow control,
4 functions

Server flow control,
3 functions

Performance

INFRASTRUCTURE FREEZE/THAW CYCLE

Image from: Denver7 – The Denver Channel News

 Unused infrastructure is deprecated
 But after how long?

 Infrastructure: VMs, “containers”

 Provider-COLD / VM-COLD
 “Container” images - built/transferred to VMs

 Container-COLD
 Image cached on VM

 Container-WARM
 “Container” running on VM

Performance
FUNCTION-AS-A-SERVICE

AWS
Lambda
Demo

48

43 44

45 46

47 48

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L7.9

 Software applications as shared cloud service
 Nearly all server infrastructure management is

abstracted away from the user
 Software is generally configurable
 SaaS can be a complete GUI/UI based environment
 Or UI-free (database-as-a-service)

 SaaS offerings
 Google Docs
 Office 365
 Cloud9 Integrated Development Environment
 Salesforce

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.49

SOFTWARE-AS-A-SERVICE

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L7.50

 Cloud service model for deploying application containers
(e.g. Docker) to the cloud

 Deploy containers without worrying about managing
infrastructure:
 Servers
 Or container orchestration platforms
 Container platform examples: Kubernetes, Docker swarm, Apache

Mesos/Marathon, Amazon Elastic Container Service
 Container platforms support creation of container clusters on the using

cloud hosted VMs

 CaaS Examples:
 AWS Fargate
 Azure Container Instances
 Google Cloud Run
 Open Source – deploy on your datacenter: Knative (led by Google)

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.51

CONTAINER-AS-A-SERVICE

 IaaS

 Storage-as-a-Service

 PaaS

 Integration-as-a-Service

 SaaS

 Database-as-a-Service

 Testing-as-a-Service

Model-as-a-Service

 ?

 Security-as-a-Service

 Integration-as-a-Service

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.52

OTHER CLOUD SERVICE MODELS

 Cloud Computing Concepts and Models

 Roles and boundaries

 Cloud characteristics

 Cloud delivery models

 Cloud deployment models

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.53

OBJECTIVES

 Distinguished by ownership, size, access

 Four common models

 Public cloud

 Community cloud

 Hybrid cloud

 Private cloud

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.54

CLOUD DEPLOYMENT MODELS

49 50

51 52

53 54

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L7.10

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.55

PUBLIC CLOUDS

 Specialized cloud built and
shared by a particular
community

 Leverage economies of scale
within a community

 Research oriented clouds

 Examples:

 Bionimbus - bioinformatics

 Chameleon

 CloudLab

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.56

COMMUNITY CLOUD

 Compute clusters
conf igured as
IaaS cloud

 Open source f rameworks:

 Openstack:
 https://www.openstack.org/
 Eucalyptus:
 https://www.eucalyptus.cloud/
 Apache Cloudstack:

https://cloudstack.apache.org/
 Nimbus:
 http://www.nimbusproject .org/

 Various vir tualization hypervisors:
Opensource: XEN, KVM Commercial: VMWare, etc.

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.57

PRIVATE CLOUD

 Extend private cloud typically
with public or community cloud
resources

 Cloud bursting:
Scale beyond one cloud when
resource requirements exceed
local limitations

 Some resources can remain
local for security reasons

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.58

HYBRID CLOUD

 Federated cloud
 Simply means to aggregate two or more clouds together

 Hybrid is typically private-public

 Federated can be public-public, private-private, etc.

 Also called inter-cloud

 Virtual private cloud
 Google and Microsoft simply call these virtual networks

 Ability to interconnect multiple independent subnets of cloud
resources together

 Resources allocated private IPs from individual network subnets can
communicate with each other (10.0.1.0/24) and (10.0.2.0/24)

 Subnets can span multiple availability zones within an AWS region

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.59

OTHER CLOUDS

TCSS 562
TERM PROJECT

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L7.60

55 56

57 58

59 60

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L7.11

 Build a serverless cloud native application
 Application provides a case study to design trade-offs:
 Projects will compare and contrast one or more trade-offs:

 Service composition

 Switchboard architecture
 Address COLD Starts
 Infrastructure Freeze/Thaw cycle of AWS Lambda (FaaS)

 Full service isolation, full service aggregation

 Application flow control

 Programming Languages

 Alternate FaaS Platforms

 Data provisioning

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.61

TCSS 562 TERM PROJECT

 Service 1: TRANSFORM

 Read CSV file, perform some transformations

 Write out new CSV file

 Service 2: LOAD

 Read CSV file, load data into relational database

 Cloud DB (AWS Aurora), or local DB (Derby/SQLite)
 Derby DB and/or SQLite code examples to be provided in Java

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.62

EXTRACT TRANSFORM LOAD
DATA PIPELINE

 Service 3: EXTRACT

 Using relational database, apply filter(s) and/or functions to
aggregate data to produce sums, totals, averages

 Output aggregations as JSON

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.63

EXTRACT TRANSFORM LOAD
DATA PIPELINE 2

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.64

SERVICE COMPOSITION

A B C

A B C

B CA

A B C

3 services

2 services

2 services

1 service

Full Service
Isolation

Full Service
Aggregation

Other possible compositions: group by library, functional cohesion, etc.

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.65

SWITCH-BOARD ARCHITECTURE

1 service

Single deployment package with consolidated codebase (Java: one JAR file)

Entry method contains “switchboard” logic
Case statement that route calls to proper service

Routing is based on data payload
Check if specific parameters exist, route call accordingly

Goal: reduce # of COLD starts to improve performance

 Serverless Computing:

 AWS Lambda (FAAS: Function-as-a-Service)

 Provides HTTP/REST like web services

 Client/Server paradigm

 Synchronous web service:

 Client calls service

 Client blocks (freezes) and waits for server to complete call

 Connection is maintained in the “OPEN” state

 Problematic if service runtime is long!
 Connections are notoriously dropped

 System timeouts reached

 Client can’t do anything while waiting unless using threads
October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]

School of Engineering and Technology, University of Washington - Tacoma
L7.66

APPLICATION FLOW CONTROL

61 62

63 64

65 66

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L7.12

 Asynchronous web service

 Client calls service

 Server responds to client with OK message

 Client closes connection

 Server performs the work associated with the service

 Server posts service result in an external data store
 AWS: S3, SQS (queueing service), SNS (notification service)

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.67

APPLICATION FLOW CONTROL - 2

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.68

APPLICATION FLOW CONTROL - 3

Client flow control Microservice as controller

AWS Step Function Asynchronous

 Function-as-a-Service platforms support hosting services code
in multiple languages

 AWS Lambda- common: Java, Node.js, Python
 Plus others: Go, PowerShell, C#, and Ruby

 Also Runtime API (“BASH”) which allows deployment of any
binary executable in any programming languages

 Jackson D, Clynch G. An Investigation of the Impact of Language
Runtime on the Performance and Cost of Serverless Functions. In
Proc. Of the 2018 IEEE/ACM International Conference on Uti lity and
Cloud Computing Companion (UCC Companion) 2018 Dec 17 (pp.
154-160).

 http://faculty.washington.edu/wlloyd/courses/tcss562/papers/
AnInvestigationOfTheImpactOfLanguageRuntimeOnThePerformance
AndCostOfServerlessFunctions.pdf

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.69

PROGRAMMING LANGUAGE

 Many commercial and open source FaaS platforms exist

 TCSS562 projects can choose to compare performance and
cost implications of alternate platforms.

 Supported by SAAF:

 AWS Lambda

 Google Cloud Functions

 Azure Functions

 IBM Cloud Functions

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.70

FAAS PLATFORMS

 Consider performance and cost implications of the data-tier
design for the serverless application

 Use different tools as the relational datastore to support
service #2 (LOAD) and service #3 (EXTRACT)

 SQL / Relational:

 Amazon Aurora (serverless cloud DB), Amazon RDS (cloud DB),
DB on a VM (MySQL), DB inside Lambda function (SQLite,
Derby)

 NO SQL / Key/Value Store:

 Dynamo DB, MongoDB, S3

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.71

DATA PROVISIONING QUESTIONS

October 16, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L7.72

67 68

69 70

71 72

