
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L4.1

Intro to Cloud Computing &
Term Project

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 562:
SOFTWARE ENGINEERING
FOR CLOUD COMPUTING  Perspective on material: 6.35 ( mostly new to me)

 Pace: 5.1 (~ just right)

 20 respondents

 Parallel message passing code is easier to debug than
shared memory. How?

 OpenMP (OPEN multiprocessing)– parallelism on a multi-
core node
 Provides constructs for thread creation, workload distribution,

data-environment mgmt., thread synchronization, user-level
routines and environment variables

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.2

FEEDBACK FROM 10/2

 MPI (message passing interface)
 Provides parallelism between nodes of distributed systems
 API provides explicit message passing calls that are easy to

identify
 Message passing is explicit (clearly shown in code using MPI

methods) vs. implicit (no special methods)
 Methods: MPI_bsend, MPI_send, MPI_ssend;
 MPI_sendrecv, MPI_isend, MPI_issend;
 MPI_recv, MPI_irecv

 MPI data types – provide common mappings across different
types of systems

 MPI process communication: specify groupID and processID
 IDs used to route messages in place of IP address
 No explicit recovery for network partitions or process crashes

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.3

FEEDBACK - 2

 Why do non-functional requirements (appear to) matter more?

 In distributed systems, we’re often concerned about
determining the extent to which a system provides a non-
functional requirement.

 Requires assessing system characteristics (e.g. performance)

 Different the validating functional requirements where a
system simply possesses a feature or not

 Can evaluate degree of adherence to specific criteria

 What is the average turnaround time for requests while
processing ~10 concurrent requests in parallel?

 How does turnaround time change as the number of
concurrent requests processed in parallel increases?

 New metrics may be needed to compare/contrast systems

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.4

FEEDBACK - 3

 Are we going to have in-class time to prepare for group
presentation? (i.e. quick meeting between group members)

 Are you going to give us some topics that we should work on
for our presentations?
 Happy to provide suggestions for research papers, or cloud services

for technology presentations

 Groups should discuss together, and contact instructor before/while
submitting proposed topics

 Coupling vs. cohesion in distributed systems

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.5

FEEDBACK - 4

 Object-oriented coupling

 Degree of interdependence between software modules

 A measure of how connected two classes or modules are

 Captures the degree of the relationships between modules

 Coupling is usually contrasted with cohesion

 Low coupling often correlates with high cohesion

 High coupling often correlates with low cohesion

 Object-oriented cohesion

 Degree to which elements inside a class or module belong together

 Do the methods and data inside of a class interoperate with each
other (High cohesion)? Or is the class a catch all bin of random
functions (Low cohesion)?
 E.g. “Util” class where random helper routines land… (low cohesion)

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.6

COUPLING AND COHESION

1 2

3 4

5 6

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L4.2

INTRODUCTION TO
CLOUD COMPUTING

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L4.7

 Introduction to Cloud Computing

Why study cloud computing?

History of cloud computing

Business drivers

Cloud enabling technologies

Terminology

Benefits of cloud adoption

Risks of cloud adoption

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.8

OBJECTIVES - 2

 LINKEDIN - TOP IT Skills from job app data

 #1 Cloud and Distributed Computing

 https://learning.linkedin.com/week-of-learning/top-skills

 #2 Statistical Analysis and Data Mining

 FORBES Survey – 6 Tech Skills That’ll Help You Earn More

 #1 Data Science

 #2 Cloud and Distributed Computing

 http://www.forbes.com/sites/laurencebradford/2016/12/
19/6-tech-skills-thatll-help-you-earn-more-in-2017/

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.9

WHY STUDY CLOUD COMPUTING?

 Computerworld
Magazine

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.10

WHY STUDY CLOUD COMPUTING? - 2

 John McCarthy, 1961
 Turing award winner for contributions to AI

 “If computers of the kind I have advocated become the
computers of the future, then computing may someday be
organized as a public utility just as the telephone system is a
public utility… The computer utility could become the basis of
a new and important industry…”

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.11

A BRIEF HISTORY OF CLOUD COMPUTING

 Internet based computer utilities

 Since the mid-1990s

 Search engines: Yahoo!, Google, Bing

 Email: Hotmail, Gmail

 2000s

 Social networking platforms: MySpace, Facebook, LinkedIn

 Social media: Twitter, YouTube

 Popularized core concepts

 Formed basis of cloud computing

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.12

CLOUD HISTORY - 2

7 8

9 10

11 12

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L4.3

 Late 1990s – Early Software-as-a-Service (SaaS)
 Salesforce: Remotely provisioned services for the enterprise

 2002 -
 Amazon Web Services (AWS) platform: Enterprise oriented services

for remotely provisioned storage, computing resources, and business
functionality

 2006 – Infrastructure-as-a-Service (IaaS)
 Amazon launches Elastic Compute Cloud (EC2) service

 Organization can “lease” computing capacity and processing power
to host enterprise applications

 Infrastructure

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.13

CLOUD HISTORY: SERVICES - 1

 2006 – Software-as-a-Service (SaaS)

 Google: Offers Google DOCS, “MS Office” like fully-web
based application for online documentation creation and
collaboration

 2009 – Platform-as-a-Service (PaaS)

 Google: Offers Google App Engine, publicly hosted
platform for hosting scalable web applications on google-
hosted datacenters

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.14

CLOUD HISTORY: SERVICES - 2

CLOUD COMPUTING
NIST GENERAL DEFINITION

“Cloud computing is a model for enabling
convenient, on-demand network access to a shared
pool of configurable computing resources
(networks, servers, storage, applications and
services) that can be rapidly provisioned and
reused with minimal management effort or service
provider interaction”…

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.15

“Cloud computing is a specialized form of
distributed computing that introduces utilization
models for remotely provisioning scalable and
measured resources.”

From Cloud Computing Concepts, Technology, and Architecture

Z. Mahmood, R. Puttini, Prentice Hall, 5th printing, 2015

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.16

MORE CONCISE DEFINITION

Capacity planning

Cost reduction

Operational overhead

Organizational agility

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.17

BUSINESS DRIVERS
FOR CLOUD COMPUTING

 Capacity planning
 Process of determining and fulfilling future demand for IT

resources

 Capacity vs. demand
 Discrepancy between capacity of IT resources and actual

demand

 Over-provisioning: resource capacity exceeds demand
 Under-provisioning: demand exceeds resource capacity

 Capacity planning aims to minimize the discrepancy of
available resources vs. demand

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.18

BUSINESS DRIVERS
FOR CLOUD COMPUTING

13 14

15 16

17 18

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L4.4

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L4.19

Dwight, The Office TV sitcom

 Capacity planning
 Over-provisioning: is costly due to too much infrastructure

 Under-provisioning: is costly due to potential for business loss from
poor quality of service

 Capacity planning strategies
 Lead strategy: add capacity in anticipation of demand (pre-

provisioning)

 Lag strategy: add capacity when capacity is fully leveraged

 Match strategy: add capacity in small increments as demand
increases

 Load prediction
 Capacity planning helps anticipate demand flucations

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.20

BUSINESS DRIVERS FOR CLOUD - 2

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.21

CAPACITY PLANNING

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.22

CAPACITY PLANNING - 2

 Capacity planning

 Cost reduction
 IT Infrastructure acquisition
 IT Infrastructure maintenance

 Operational overhead
 Technical personnel to maintain physical IT infrastructure
 System upgrades, patches that add testing to deployment

cycles
 Utility bills, capital investments for power and cooling
 Security and access control measures for server rooms
 Admin and accounting staff to track licenses, support

agreements, purchases

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.23

BUSINESS DRIVERS FOR CLOUD - 3

 Organizational agility

 Ability to adapt and evolve infrastructure to face change
from internal and external business factors

 Funding constraints can lead to insufficient on premise IT

 Cloud computing enables IT resources to scale with a
lower financial commitment

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.24

BUSINESS DRIVERS FOR CLOUD - 4

19 20

21 22

23 24

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L4.5

Cluster computing

Grid computing

Virtualization

Others

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.25

TECHNOLOGY INNOVATIONS
LEADING TO CLOUD

 Cluster computing (clustering)
 Cluster is a group of independent IT resources

interconnected as a single system

 Servers configured with homogeneous hardware and software

 Identical or similar RAM, CPU, HDDs

 Design emphasizes redundancy as server components are easily
interchanged to keep overall system running

 Example: if a RAID card fails on a key server, the card can be
swapped from another redundant server

 Enables warm replica servers

 Duplication of key infrastructure servers to provide
HW failover to ensure high availability (HA)

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.26

CLUSTER COMPUTING

 On going research area since early 1990s

 Distributed heterogeneous computing resources organized into
logical pools of loosely coupled resources

 For example: heterogeneous servers connected by the internet

 Resources are heterogeneous and geographically dispersed

 Grids use middleware software layer to support workload
distribution and coordination functions

 Aspects: load balancing, failover control, autonomic
configuration management

 Grids have influenced clouds contributing common features:
networked access to machines, resource pooling, scalability,
and resiliency

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.27

GRID COMPUTING

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.28

GRID COMPUTING - 2

VIRTUALIZATION

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.29

VIRTUALIZATION

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.30

25 26

27 28

29 30

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L4.6

 Simulate physical hardware resources via software

 The virtual machine (virtual computer)

 Virtual local area network (VLAN)

 Virtual hard disk

 Virtual network attached storage array (NAS)

 Early incarnations featured significant performance,
reliability, and scalability challenges

 CPU and other HW enhancements have minimized
performance GAPs

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.31

VIRTUALIZATION

 On-Premise Infrastructure
 Local server infrastructure not configured as a cloud

 Cloud Provider
 Corporation or private organization responsible for maintaining cloud

 Cloud Consumer
 User of cloud services

 Scal ing
 Vertical scaling

 Scale up: increase resources of a single virtual server

 Scale down: decrease resources of a single virtual server

 Horizontal scaling

 Scale out: increase number of virtual servers

 Scale in: decrease number of virtual servers

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.32

KEY TERMINOLOGY

 Reconfigure vir tual machine to have different resources:
 CPU cores

 RAM

 HDD/SDD capacity

 May require VM migration if
physical host machine
resources are exceeded

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.33

VERTICAL SCALING

 Increase (scale-out) or decrease (scale-in) number of vir tual
servers based on demand

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.34

HORIZONTAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.35

HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

IT resources instantly available IT resources typically instantly available

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.36

HORIZONTAL VS VERTICAL SCALING

31 32

33 34

35 36

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L4.7

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication
and automated scaling

Additional setup is normally needed

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.37

HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication
and automated scaling

Additional setup is normally needed

Additional servers required No additional servers required

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.38

HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication
and automated scaling

Additional setup is normally needed

Additional servers required No additional servers required

Not limited by individual server capacity Limited by individual server capacity

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.39

HORIZONTAL VS VERTICAL SCALING

 Cloud services

 Broad array of resources accessible “as-a-service”

 Categorized as Infrastructure (IaaS), Platform (PaaS),
Software (SaaS)

 Service-level-agreements (SLAs):

 Establish expectations for: uptime, security, availability,
reliability, and performance

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.40

KEY TERMINOLOGY - 2

 Cloud providers
 Leverage economies of scale through mass-acquisition and

management of large-scale IT resources

 Locate datacenters to optimize costs where electricity is low

 Cloud consumers
 Key business/accounting difference:

 Cloud computing enables anticipated capital expenditures to be
replaced with operational expenditures

 Operational expenditures always scale with the business

 Eliminates need to invest in server infrastructure based on
anticipated business needs

 Businesses become more agile and lower their financial risks by
eliminating large capital investments in physical infrastructure

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.41

GOALS AND BENEFITS

 On demand access to pay-as-you-go resources on a short-term
basis (less commitment)

 Ability to acquire “unlimited” computing
resources on demand when required for
business needs

 Ability to add/remove IT resources at
a fine-grained level

 Abstraction of server infrastructure so
applications deployments are not dependent
on specific locations, hardware, etc.

 The cloud has made our software deployments
more agile…

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.42

CLOUD BENEFITS - 2

37 38

39 40

41 42

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L4.8

 Example: Using 100 servers for 1 hour costs the same as
using 1 server for 100 hours

 Rosetta Protein Folding: Working with a UW-Tacoma graduate
student, we recently deployed this science model across 5,900
compute cores on Amazon for 2-days…

 What is the cost to purchase 5,900 compute cores?

 Recent Dell Server purchase example:
20 cores on 2 servers for $4,478…

 Using this ratio 5,900 cores costs $1.3 million (purchase only)

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.43

CLOUD BENEFITS - 3

Gene Wilder, Charlie and the Chocolate Factory

 Increased scalability
 Example demand over a

24-hour day 

 Increased availability

 Increased reliability

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.45

CLOUD BENEFITS

 Increased security vulnerabilities
 Expansion of trust boundaries now include the external

cloud
 Security responsibility shared with cloud provider

 Reduced operational governance / control
 Users have less control of physical hardware
 Cloud user does not directly control resources to ensure

quality-of-service
 Infrastructure management is abstracted
 Quality and stability of resources can vary
 Network latency costs and variability

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.46

CLOUD ADOPTION RISKS

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.47

NETWORK LATENCY COSTS

 Performance monitoring of cloud applications
 Cloud metrics (AWS cloudwatch) support monitoring cloud

infrastructure (network load, CPU utilization, I/O)
 Performance of cloud applications depends on the health of

aggregated cloud resources working together
 User must monitor this aggregate performance

 Limited portability among clouds
 Early cloud systems have significant “vendor” lock-in
 Common APIs and deployment models are slow to evolve
 Operating system containers help make applications more

portable, but containers still must be deployed

 Geographical issues
 Abstraction of cloud location leads to legal challenges with respect

to laws for data privacy and storage

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.48

CLOUD RISKS - 2

43 44

45 46

47 48

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L4.9

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.49

CLOUD: VENDOR LOCK-IN

TCSS 562
TERM PROJECT

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L4.50

 Build a serverless cloud native application
 Application provides a case study to design trade-offs:
 Projects will compare and contrast one or more trade-offs:

 Service composition

 Switchboard architecture
 Address COLD Starts
 Infrastructure Freeze/Thaw cycle of AWS Lambda (FaaS)

 Full service isolation, full service aggregation

 Application flow control

 Programming Languages

 Alternate FaaS Platforms

 Data provisioning

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.51

TCSS 562 TERM PROJECT

 Service 1: TRANSFORM

 Read CSV file, perform some transformations

 Write out new CSV file

 Service 2: LOAD

 Read CSV file, load data into relational database

 Cloud DB (AWS Aurora), or local DB (Derby/SQLite)
 Derby DB and/or SQLite code examples to be provided in Java

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.52

EXTRACT TRANSFORM LOAD
DATA PIPELINE

 Service 3: EXTRACT

 Using relational database, apply filter(s) and/or functions to
aggregate data to produce sums, totals, averages

 Output aggregations as JSON

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.53

EXTRACT TRANSFORM LOAD
DATA PIPELINE 2

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.54

SERVICE COMPOSITION

A B C

A B C

B CA

A B C

3 services

2 services

2 services

1 service

Full Service
Isolation

Full Service
Aggregation

Other possible compositions: group by library, functional cohesion, etc.

49 50

51 52

53 54

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L4.10

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.55

SWITCH-BOARD ARCHITECTURE

1 service

Single deployment package with consolidated codebase (Java: one JAR file)

Entry method contains “switchboard” logic
Case statement that route calls to proper service

Routing is based on data payload
Check if specific parameters exist, route call accordingly

Goal: reduce # of COLD starts to improve performance

 Serverless Computing:

 AWS Lambda (FAAS: Function-as-a-Service)

 Provides HTTP/REST like web services

 Client/Server paradigm

 Synchronous web service:

 Client calls service

 Client blocks (freezes) and waits for server to complete call

 Connection is maintained in the “OPEN” state

 Problematic if service runtime is long!
 Connections are notoriously dropped

 System timeouts reached

 Client can’t do anything while waiting unless using threads
October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]

School of Engineering and Technology, University of Washington - Tacoma
L4.56

APPLICATION FLOW CONTROL

 Asynchronous web service

 Client calls service

 Server responds to client with OK message

 Client closes connection

 Server performs the work associated with the service

 Server posts service result in an external data store
 AWS: S3, SQS (queueing service), SNS (notification service)

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.57

APPLICATION FLOW CONTROL - 2

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.58

APPLICATION FLOW CONTROL - 3

Client flow control Microservice as controller

AWS Step Function Asynchronous

 Function-as-a-Service platforms support hosting services code
in multiple languages

 AWS Lambda- common: Java, Node.js, Python
 Plus others: Go, PowerShell, C#, and Ruby

 Also Runtime API (“BASH”) which allows deployment of any
binary executable in any programming languages

 Jackson D, Clynch G. An Investigation of the Impact of Language
Runtime on the Performance and Cost of Serverless Functions. In
Proc. Of the 2018 IEEE/ACM International Conference on Uti lity and
Cloud Computing Companion (UCC Companion) 2018 Dec 17 (pp.
154-160).

 http://faculty.washington.edu/wlloyd/courses/tcss562/papers/
AnInvestigationOfTheImpactOfLanguageRuntimeOnThePerformance
AndCostOfServerlessFunctions.pdf

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.59

PROGRAMMING LANGUAGE

 Many commercial and open source FaaS platforms exist

 TCSS562 projects can choose to compare performance and
cost implications of alternate platforms.

 Supported by SAAF:

 AWS Lambda

 Google Cloud Functions

 Azure Functions

 IBM Cloud Functions

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.60

FAAS PLATFORMS

55 56

57 58

59 60

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L4.11

 Consider performance and cost implications of the data-tier
design for the serverless application

 Use different tools as the relational datastore to support
service #2 (LOAD) and service #3 (EXTRACT)

 SQL / Relational:

 Amazon Aurora (serverless cloud DB), Amazon RDS (cloud DB),
DB on a VM (MySQL), DB inside Lambda function (SQLite,
Derby)

 NO SQL / Key/Value Store:

 Dynamo DB, MongoDB, S3

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.61

DATA PROVISIONING QUESTIONS

October 7, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L4.62

61 62

