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Cloud Computing: 
How did we get here?

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 562: 
SOFTWARE ENGINEERING 
FOR CLOUD COMPUTING

 Perspective on material: 6.8 ( mostly new to me)  

 Pace: 5.3 ( slightly fast)

 24 respondents

 SIMD Vector arithmetic example
 Comment: “SIMD faster than MIMD in some cases, I can 

understand, but cannot logically explain it”

 SIMS vs. MIMD

 SIMD instruction relationships with CPU development
 First introduced with the Intel Pentium III in 1999
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 Flynn’s machine (Flynn’s taxonomy):
 Ideal is to classify HW architectures as either:

SISD, SIMD, or MIMD

 Example question could describe a computer or computing 
scenario as ask if it is SISD, SIMD, or MIMD…

 What are some advantages of using heterogeneous HW 
vs. homogeneous HW?

 Roofline explanation
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FEEDBACK - 2

 Arithmetic intensity: Ratio of work (W) to 
memory traffic r/w (Q) 

Example: # of floating point ops per byte of data read
 Characterizes application scalability with SIMD support
 SIMD can perform many fast matrix operations in parallel 

 High arithmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

 Low arithmetic intensity:
Programs with sparse matrix operations do not scale well 
with problem size
(memory RW becomes bottleneck, not enough ops!)
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ARITHMETIC INTENSITY
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 When program reaches a given arithmetic intensity 
performance of code running on CPU hits a “roof” 

 CPU performance bottleneck changes from:
memory bandwidth (left)  floating point performance (r ight)
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ROOFLINE MODEL

Key take-aways:
When a program’s has low
Arithmetic Intensity, memory 
bandwidth limits performance..

With high Arithmetic intensity, 
the system has peak parallel 
performance…
 performance is limited by??

 Is a GPU considered a super CPU based on the 
structure?
 Differences between CPUs and GPUs

 CPU: composed of just a few cores with lots of cache memory 
that can handle a few software threads at a time. 

 GPU: composed of hundreds of cores that can handle 
thousands of threads simultaneously. Ability of a GPU with 
100+ cores to process thousands of threads can accelerate 
some software by 100x over a CPU alone. GPU achieves 
acceleration while being more power- and cost-efficient than a 
CPU.

 CPU: emphasis is low latency
 GPU: emphasis is high throughput
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 Are class activities included in grading?

 Panopto recordings
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FEEDBACK - 3

Cloud Computing: How did we get here?
Parallel and distributed systems 

(Marinescu Ch. 2: 1st edition, or Ch. 4: 2nd edition)
 Data, thread-level, task-level parallelism
 Parallel architectures
 SIMD architectures, vector processing, multimedia 

extensions
 Graphics processing units
 Speed-up, Amdahl's Law, Scaled Speedup
 Properties of distributed systems 
Modularity 
 Functional vs. Non-functional requirements
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 Collection of autonomous computers, connected through a 
network with distribution software called “middleware” that 
enables coordination of activities and sharing of resources

 Key characteristics:
 Users perceive system as a single, integrated computing 

facil ity. 
 Compute nodes are autonomous
 Scheduling, resource management, and security implemented 

by every node 
 Multiple points of control and failure
 Nodes may not be accessible at all  times 
 System can be scaled by adding additional nodes
 Availability is realized at dif ferent levels: HW, software, 

network providing different reliability
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DISTRIBUTED SYSTEMS

 Key non-functional attributes

 Known as “ilities” in software engineering

 Availability – 24/7 access?

 Reliability - Fault tolerance 

 Accessibil ity – reachable?

 Usability – user friendly

 Understandabil ity – can under

 Scalability – responds to variable demand

 Extensibility – can be easily modified, extended

 Maintainability – can be easily fixed

 Consistency – data is replicated correctly in timely manner
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 Access transparency: local and remote objects accessed using 
identical operations

 Location transparency: objects accessed w/o knowledge of 
their location.

 Concurrency transparency: several processes run concurrently 
using shared objects w/o inter ference among them

 Replication transparency: multiple instances of objects are 
used to increase reliability
- users are unaware if and how the system is replicated

 Failure transparency: concealment of faults
 Migration transparency: objects are moved w/o affecting 

operations performed on them
 Performance transparency: system can be reconfigured based 

on load and quality of service requirements
 Scaling transparency: system and applications can scale w/o 

change in system structure and w/o affecting applications
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TRANSPARENCY PROPERTIES OF 
DISTRIBUTED SYSTEMS

 Sof t modularity: TRADITIONAL 

 Divide a program into modules (classes) that call each 
other and communicate with shared-memory

 A procedure calling convention is used (or method 
invocation)

 Object-oriented programming classic best practices:

 Minimize coupling between classes (OO) and modules

 Maximize cohesion between functions in classes (OO) and 
modules
 Best practices lead to improved software reusability, 

maintainability, portability
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 Enforced modularity: CLOUD COMPUTING

 Program is divided into modules that communicate only 
through message passing 

 The ubiquitous client-server paradigm 

 Clients and servers are independent decoupled modules

 System is more robust if servers are stateless

 May be scaled and deployed separately

 May also FAIL separately!

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.13

TYPES OF MODULARITY - 2

 Object-oriented coupling

 Degree of interdependence between software modules

 A measure of how connected two classes or  modules are

 Captures the degree of the relationships between modules

 Coupling is usually contrasted with cohesion

 Low coupling of ten correlates with high cohesion

 High coupling often correlates with low cohesion

 Object-oriented cohesion

 Degree to which elements inside a class or  module belong together

 Do the methods and data inside of a class interoperate with each 
other (High cohesion )?  Or is the class a catch all  bin of random 
functions (Low cohesion )?
 E.g. “Util” class where random helper routines land… (low cohesion)
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 Functional requirement:

 Pertains to a system supporting a specific function

 What a system is supposed to do

 Testable with unit tests, integration tests, etc.

 Non-functional requirement: 

 Specifies criteria used to judge how a system operates

 How a system should be (or behave)

 Considered as “quality” attributes of systems

 Testable by applying metrics to characterize degree of 
possessing a given quality
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FUNCTIONAL VS. NON-FUNCTIONAL 
ATTRIBUTES OF SYSTEMS

 The system should be highly available.

 The system should be 99.9% available per month 
 Maximum downtime: 43m 49.7s monthly, 8hr 45min 36s yearly 

 Functional attribute: system should notify users if there is an issue 
affects the availability or may cause downtime.

 Availability equation:

AVAILABILITY = 
MTBF

MTBF+MTTR
 MTBF: Mean time between failures

 MTTR: Mean time to Repair

 MTBF = ~1 month = 43,757 min; MTTR = 43 min

 AVAILABILITY = 43757 / 43800 = 99.9018265%
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NON-FUNCTIONAL REQUIREMENT:
HIGH AVAILABILITY
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 Replicate system resources in multiple data centers or cloud 
computing regions 

 Use redundant infrastructure components
 For load balancing, fault tolerance

 Report availability status via portal

 Allow users to immediately report outages

 Notification systems to alert system admins when system 
experiences an outage

 Tradeoffs:

 Highly available cloud resources are more expensive

 Replicating app components (e.g. database) adds cost
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STRATEGIES FOR HIGH AVAILABILITY

What are the “best” metrics to quantify non-
functional quality attributes?

Consider ease/effort/time/cost of assessment

Relationship to expert opinion (e.g. correlation) 

Relationship to other measures
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QUANTIFYING NON-FUNCTIONAL 
QUALITY ATTRIBUTES
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 Multi-core CPU technology and hyper-threading

 What is a 
 Heterogeneous system?

 Homogeneous system?

 Autonomous or self-organizing system?

 Fine grained vs. coarse grained parallelism

 Parallel message passing code is easier to debug than 
shared memory (e.g. p-threads)

 Know your application’s max/avg Thread Level 
Parallelism (TLP)

 Data-level parallelism: Map-Reduce, (SIMD) Single 
Instruction Multiple Data, Vector processing & GPUs
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CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS

 Bit-level parallelism

 Instruction-level parallelism (CPU pipelining)

 Flynn’s taxonomy: computer system architecture classification
 SISD – Single Instruction, Single Data (modern core of a CPU) 

 SIMD – Single Instruction, Multiple Data (Data parallelism)

 MIMD – Multiple Instruction, Multiple Data

 MISD is RARE; application for fault tolerance…

 Arithmetic intensity: ratio of calculations vs memory RW

 Roofline model: 
Memory bottleneck with low arithmetic intensity

 GPUs: ideal for programs with high arithmetic intensity
 SIMD and Vector processing supported by many large registers 
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CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS - 2
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 Speed-up (S)
S(N) = T(1) / T(N)

 Amdahl’s law:
S = 1/ α
α = percent of program that must be sequential

 Scaled speedup with N processes:
S(N)  = N – α( N-1)

 Moore’s Law
 Symmetric core, Asymmetric core, Dynamic core CPU
 Distributed Systems Non-function quality attributes 
 Distributed Systems – Types of Transparency
 Types of modularity - Soft, Enforced
 Functional vs. Non-functional requirements
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CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS - 3

INTRODUCTION TO 
CLOUD COMPUTING
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 Introduction to Cloud Computing

Why study cloud computing?

History of cloud computing

Business drivers

Cloud enabling technologies

Terminology

Benefits of cloud adoption

Risks of cloud adoption
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OBJECTIVES - 2

 LINKEDIN - TOP IT Skills from job app data

 #1 Cloud and Distributed Computing 

 https://learning.linkedin.com/week-of-learning/top-skills

 #2 Statistical Analysis and Data Mining

 FORBES Survey – 6 Tech Skills That’ll Help You Earn More

 #1 Data Science

 #2 Cloud and Distributed Computing

 http://www.forbes.com/sites/laurencebradford/2016/12/
19/6-tech-skills-thatll-help-you-earn-more-in-2017/
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WHY STUDY CLOUD COMPUTING?
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 Computerworld
Magazine
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WHY STUDY CLOUD COMPUTING? - 2

 John McCarthy, 1961
 Turing award winner for contributions to AI

 “If computers of the kind I have advocated become the 
computers of the future, then computing may someday be 
organized as a public uti l ity just as the telephone system is a 
public uti lity… The computer util ity could become the basis of 
a new and important industry…”
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 Internet based computer util ities

 Since the mid-1990s

 Search engines: Yahoo!, Google, Bing

 Email: Hotmail, Gmail

 2000s

 Social networking platforms: MySpace, Facebook, LinkedIn

 Social media: Twitter, YouTube

 Popularized core concepts

 Formed basis of cloud computing
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CLOUD HISTORY - 2

 Late 1990s – Early Software-as-a-Service (SaaS)
 Salesforce: Remotely provisioned services for the enterprise

 2002 -
 Amazon Web Services (AWS) platform: Enterprise oriented services 

for remotely provisioned storage, computing resources, and business 
functionality

 2006 – Infrastructure-as-a-Service (IaaS)
 Amazon launches Elastic Compute Cloud (EC2) service

 Organization can “lease” computing capacity and processing power 
to host enterprise applications

 Infrastructure
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CLOUD HISTORY: SERVICES - 1
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 2006 – Software-as-a-Service (SaaS)

 Google: Offers Google DOCS, “MS Office” like fully-web 
based application for online documentation creation and 
collaboration

 2009 – Platform-as-a-Service (PaaS)

 Google: Offers Google App Engine, publicly hosted 
platform for hosting scalable web applications on google-
hosted datacenters
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CLOUD HISTORY: SERVICES - 2

CLOUD COMPUTING
NIST GENERAL DEFINITION

“Cloud computing is a model for enabling
convenient, on-demand network access to a shared
pool of configurable computing resources
(networks, servers, storage, applications and
services) that can be rapidly provisioned and
reused with minimal management effort or service
provider interaction”…
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“Cloud computing is a specialized form of
distributed computing that introduces utilization
models for remotely provisioning scalable and
measured resources.”

From Cloud Computing Concepts, Technology, and Architecture

Z. Mahmood, R. Puttini, Prentice Hall , 5th printing, 2015
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MORE CONCISE DEFINITION

Capacity planning

Cost reduction

Operational overhead

Organizational agility
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BUSINESS DRIVERS 
FOR CLOUD COMPUTING
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 Capacity planning
 Process of determining and fulfilling future demand for IT 

resources

 Capacity vs. demand
 Discrepancy between capacity of IT resources and actual 

demand

 Over-provisioning: resource capacity exceeds demand
 Under-provisioning: demand exceeds resource capacity

 Capacity planning aims to minimize the discrepancy of 
available resources vs. demand
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BUSINESS DRIVERS 
FOR CLOUD COMPUTING
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Dwight, The Office TV sitcom
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 Capacity planning
 Over-provisioning: is costly due to too much infrastructure

 Under-provisioning: is costly due to potential for business loss from 
poor quality of service

 Capacity planning strategies
 Lead strategy: add capacity in anticipation of demand (pre-

provisioning)

 Lag strategy: add capacity when capacity is fully leveraged

 Match strategy: add capacity in small increments as demand 
increases

 Load prediction
 Capacity planning helps anticipate demand flucations
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BUSINESS DRIVERS FOR CLOUD - 2
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CAPACITY PLANNING
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CAPACITY PLANNING - 2

 Capacity planning 

 Cost reduction
 IT Infrastructure acquisition
 IT Infrastructure maintenance

 Operational overhead
 Technical personnel to maintain physical IT infrastructure
 System upgrades, patches that add testing to deployment 

cycles
 Utility bills, capital investments for power and cooling
 Security and access control measures for server rooms
 Admin and accounting staff to track licenses, support 

agreements, purchases
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BUSINESS DRIVERS FOR CLOUD - 3
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 Organizational agility

 Ability to adapt and evolve infrastructure to face change 
from internal and external business factors

 Funding constraints can lead to insufficient on premise IT

 Cloud computing enables IT resources to scale with a 
lower financial commitment
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BUSINESS DRIVERS FOR CLOUD - 4

Cluster computing

Grid computing

Virtualization

Others
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TECHNOLOGY INNOVATIONS 
LEADING TO CLOUD
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 Cluster computing (clustering)
 Cluster is a group of independent IT resources 

interconnected as a single system

 Servers configured with homogeneous hardware and software

 Identical or similar RAM, CPU, HDDs

 Design emphasizes redundancy as server components are easily 
interchanged to keep overall system running

 Example: if a RAID card fails on a key server, the card can be 
swapped from another redundant server

 Enables warm replica servers

 Duplication of key infrastructure servers to provide 
HW failover to ensure high availability (HA)
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CLUSTER COMPUTING

 On going research area since early 1990s

 Distributed heterogeneous computing resources organized into 
logical pools of loosely coupled resources

 For example: heterogeneous servers connected by the internet

 Resources are heterogeneous and geographically dispersed

 Grids use middleware software layer to support workload 
distribution and coordination functions

 Aspects: load balancing, failover control, autonomic 
configuration management

 Grids have influenced clouds contributing common features: 
networked access to machines, resource pooling, scalability, 
and resil iency
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GRID COMPUTING 
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GRID COMPUTING - 2

VIRTUALIZATION
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VIRTUALIZATION
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 Simulate physical hardware resources via software

 The virtual machine (virtual computer)

 Virtual local area network (VLAN)

 Virtual hard disk

 Virtual network attached storage array (NAS)

 Early incarnations featured significant performance, 
reliability, and scalability challenges

 CPU and other HW enhancements have minimized 
performance GAPs
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VIRTUALIZATION
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 On-Premise Infrastructure
 Local server infrastructure not configured as a cloud

 Cloud Provider
 Corporation or private organization responsible for maintaining cloud

 Cloud Consumer
 User of cloud services

 Scaling
 Vertical scaling

 Scale up: increase resources of a single virtual server

 Scale down: decrease resources of a single virtual server

 Horizontal scaling

 Scale out: increase number of virtual servers

 Scale in: decrease number of virtual servers
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KEY TERMINOLOGY

 Reconfigure virtual machine to have different resources:
 CPU cores

 RAM

 HDD/SDD capacity

 May require VM migration if
physical host machine 
resources are exceeded
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VERTICAL SCALING
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 Increase (scale-out) or decrease (scale-in) number of vir tual 
servers based on demand
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HORIZONTAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers
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HORIZONTAL VS VERTICAL SCALING
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Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers

IT resources instantly available IT resources typically instantly available
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HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication
and automated scaling

Additional setup is normally needed
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HORIZONTAL VS VERTICAL SCALING
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Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication
and automated scaling

Additional setup is normally needed

Additional servers required No additional servers required
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HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication
and automated scaling

Additional setup is normally needed

Additional servers required No additional servers required

Not limited by individual server capacity Limited by individual server capacity
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HORIZONTAL VS VERTICAL SCALING
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 Cloud services

 Broad array of resources accessible “as-a-service”

 Categorized as Infrastructure (IaaS), Platform (PaaS), 
Software (SaaS)

 Service-level-agreements (SLAs):

 Establish expectations for: uptime, security, availability, 
reliability, and performance
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KEY TERMINOLOGY - 2

 Cloud providers
 Leverage economies of scale through mass-acquisition and 

management of large-scale IT resources

 Locate datacenters to optimize costs where electricity is low

 Cloud consumers
 Key business/accounting difference:

 Cloud computing enables anticipated capital expenditures to be 
replaced with operational expenditures

 Operational expenditures always scale with the business

 Eliminates need to invest in server infrastructure based on 
anticipated business needs

 Businesses become more agile and lower their financial risks by 
eliminating large capital investments in physical infrastructure 
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 On demand access to pay -as-you-go resources on a short-term 
basis (less commitment)

 Abil ity to acquire “unlimited” computing
resources on demand when required for 
business needs

 Abil ity to add/remove IT resources at 
a fine-grained level

 Abstraction of server infrastructure so 
applications deployments are not dependent
on specific locations, hardware, etc.

 The cloud has made our software deployments 
more agile…
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CLOUD BENEFITS - 2

 Example: Using 100 servers for 1 hour costs the same as 
using 1 server for 100 hours

 Rosetta Protein Folding: Working with a UW-Tacoma graduate 
student, we recently deployed this science model across 5,900 
compute cores on Amazon for 2-days…

 What is the cost to purchase 5,900 compute cores?

 Recent Dell  Server purchase example: 
20 cores on 2 servers for $4,478…

 Using this ratio 5,900 cores costs $1.3 mill ion (purchase only)
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Gene Wilder, Charlie and the Chocolate Factory

 Increased scalability
 Example demand over a

24-hour day  

 Increased availability

 Increased reliabil ity
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 Increased security vulnerabilities
 Expansion of trust boundaries now include the external 

cloud
 Security responsibility shared with cloud provider

 Reduced operational governance / control
 Users have less control of physical hardware
 Cloud user does not directly control resources to ensure 

quality-of-service
 Infrastructure management is abstracted
 Quality and stability of resources can vary
 Network latency costs and variability 

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.61

CLOUD ADOPTION RISKS

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.62

NETWORK LATENCY COSTS

61

62



TCSS 562: Software Engineering for Cloud Computing  
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L3.32

 Performance monitoring of cloud applications
 Cloud metrics (AWS cloudwatch) support monitoring cloud 

infrastructure (network load, CPU utilization, I/O)
 Performance of cloud applications depends on the health of 

aggregated cloud resources working together
 User must monitor this aggregate performance 

 Limited portability among clouds
 Early cloud systems have significant “vendor” lock-in
 Common APIs and deployment models are slow to evolve
 Operating system containers help make applications more 

portable, but containers still must be deployed

 Geographical issues
 Abstraction of cloud location leads to legal challenges with respect 

to laws for data privacy and storage
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CLOUD RISKS - 2
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QUESTIONS
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