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Cloud Computing: 
How did we get here?

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 562: 
SOFTWARE ENGINEERING 
FOR CLOUD COMPUTING  Perspective on material: 6.8 ( mostly new to me)  

 Pace: 5.3 ( slightly fast)

 24 respondents

 SIMD Vector arithmetic example
 Comment: “SIMD faster than MIMD in some cases, I can 

understand, but cannot logically explain it”

 SIMS vs. MIMD

 SIMD instruction relationships with CPU development
 First introduced with the Intel Pentium III in 1999
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FEEDBACK FROM 9/30

 Flynn’s machine (Flynn’s taxonomy):
 Ideal is to classify HW architectures as either:

SISD, SIMD, or MIMD

 Example question could describe a computer or computing 
scenario as ask if it is SISD, SIMD, or MIMD…

 What are some advantages of using heterogeneous HW 
vs. homogeneous HW?

 Roofline explanation
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FEEDBACK - 2

 Arithmetic intensity: Ratio of work (W) to 
memory traffic r/w (Q) 

Example: # of floating point ops per byte of data read
 Characterizes application scalability with SIMD support
 SIMD can perform many fast matrix operations in parallel 

 High arithmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

 Low arithmetic intensity:
Programs with sparse matrix operations do not scale well 
with problem size
(memory RW becomes bottleneck, not enough ops!)
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ARITHMETIC INTENSITY

 When program reaches a given arithmetic intensity 
performance of code running on CPU hits a “roof” 

 CPU performance bottleneck changes from:
memory bandwidth (left)  floating point performance (right)
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ROOFLINE MODEL

Key take-aways:
When a program’s has low
Arithmetic Intensity, memory 
bandwidth limits performance..

With high Arithmetic intensity, 
the system has peak parallel 
performance…
 performance is limited by??

 Is a GPU considered a super CPU based on the 
structure?
 Differences between CPUs and GPUs

 CPU: composed of just a few cores with lots of cache memory 
that can handle a few software threads at a time. 

 GPU: composed of hundreds of cores that can handle 
thousands of threads simultaneously. Ability of a GPU with 
100+ cores to process thousands of threads can accelerate 
some software by 100x over a CPU alone. GPU achieves 
acceleration while being more power- and cost-efficient than a 
CPU.

 CPU: emphasis is low latency
 GPU: emphasis is high throughput
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FEEDBACK - 3
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 Are class activities included in grading?

 Panopto recordings
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FEEDBACK - 3

Cloud Computing: How did we get here?
Parallel and distributed systems 

(Marinescu Ch. 2: 1st edition, or Ch. 4: 2nd edition)
 Data, thread-level, task-level parallelism
 Parallel architectures
 SIMD architectures, vector processing, multimedia 

extensions
 Graphics processing units
 Speed-up, Amdahl's Law, Scaled Speedup
 Properties of distributed systems 
Modularity 
 Functional vs. Non-functional requirements
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OBJECTIVES

 Collection of autonomous computers, connected through a 
network with distribution software called “middleware” that 
enables coordination of activities and sharing of resources

 Key characteristics:
 Users perceive system as a single, integrated computing 

facility. 
 Compute nodes are autonomous
 Scheduling, resource management, and security implemented 

by every node 
 Multiple points of control and failure
 Nodes may not be accessible at all times 
 System can be scaled by adding additional nodes
 Availability is realized at different levels: HW, software, 

network providing different reliability
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DISTRIBUTED SYSTEMS

 Key non-functional attributes

 Known as “ilities” in software engineering

 Availability – 24/7 access?

 Reliability - Fault tolerance 

 Accessibility – reachable?

 Usability – user friendly

 Understandability – can under

 Scalability – responds to variable demand

 Extensibility – can be easily modified, extended

 Maintainability – can be easily fixed

 Consistency – data is replicated correctly in timely manner
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DISTRIBUTED SYSTEMS - 2

 Access transparency: local and remote objects accessed using 
identical operations

 Location transparency: objects accessed w/o knowledge of 
their location.

 Concurrency transparency: several processes run concurrently 
using shared objects w/o interference among them

 Replication transparency: multiple instances of objects are 
used to increase reliability
- users are unaware if and how the system is replicated

 Fai lure transparency: concealment of faults
 Migration transparency: objects are moved w/o affecting 

operations performed on them
 Performance transparency: system can be reconfigured based 

on load and quality of service requirements
 Scal ing transparency: system and applications can scale w/o 

change in system structure and w/o affecting applications
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TRANSPARENCY PROPERTIES OF 
DISTRIBUTED SYSTEMS

 Soft modularity: TRADITIONAL 

 Divide a program into modules (classes) that call each 
other and communicate with shared-memory

 A procedure calling convention is used (or method 
invocation)

 Object-oriented programming classic best practices:

 Minimize coupling between classes (OO) and modules

 Maximize cohesion between functions in classes (OO) and 
modules
 Best practices lead to improved software reusability, 

maintainability, portability
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TYPES OF MODULARITY
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 Enforced modularity: CLOUD COMPUTING

 Program is divided into modules that communicate only 
through message passing 

 The ubiquitous client-server paradigm 

 Clients and servers are independent decoupled modules

 System is more robust if servers are stateless

 May be scaled and deployed separately

 May also FAIL separately!
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TYPES OF MODULARITY - 2

 Object-oriented coupling

 Degree of interdependence between software modules

 A measure of how connected two classes or modules are

 Captures the degree of the relationships between modules

 Coupling is usually contrasted with cohesion

 Low coupling often correlates with high cohesion

 High coupling often correlates with low cohesion

 Object-oriented cohesion

 Degree to which elements inside a class or module belong together

 Do the methods and data inside of a class interoperate with each 
other (High cohesion)?  Or is the class a catch all  bin of random 
functions (Low cohesion)?
 E.g. “Util” class where random helper routines land… ( low cohesion)
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COUPLING AND COHESION

 Functional requirement:

 Pertains to a system supporting a specific function

 What a system is supposed to do

 Testable with unit tests, integration tests, etc.

 Non-functional requirement: 

 Specifies criteria used to judge how a system operates

 How a system should be (or behave)

 Considered as “quality” attributes of systems

 Testable by applying metrics to characterize degree of 
possessing a given quality
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FUNCTIONAL VS. NON-FUNCTIONAL 
ATTRIBUTES OF SYSTEMS

 The system should be highly available.

 The system should be 99.9% available per month 
 Maximum downtime: 43m 49.7s monthly, 8hr 45min 36s yearly 

 Functional attribute: system should notify users if there is an issue 
affects the availability or may cause downtime.

 Availability equation:

AVAILABILITY = 
MTBF

MTBF+MTTR
 MTBF: Mean time between failures

 MTTR: Mean time to Repair

 MTBF = ~1 month = 43,757 min; MTTR = 43 min

 AVAILABILITY = 43757 / 43800 = 99.9018265%
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NON-FUNCTIONAL REQUIREMENT:
HIGH AVAILABILITY

 Replicate system resources in multiple data centers or cloud 
computing regions 

 Use redundant infrastructure components
 For load balancing, fault tolerance

 Report availability status via portal

 Allow users to immediately report outages

 Notification systems to alert system admins when system 
experiences an outage

 Tradeoffs:

 Highly available cloud resources are more expensive

 Replicating app components (e.g. database) adds cost
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STRATEGIES FOR HIGH AVAILABILITY

What are the “best” metrics to quantify non-
functional quality attributes?

Consider ease/effort/time/cost of assessment

Relationship to expert opinion (e.g. correlation) 

Relationship to other measures
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QUANTIFYING NON-FUNCTIONAL 
QUALITY ATTRIBUTES
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 Multi-core CPU technology and hyper-threading

 What is a 
 Heterogeneous system?

 Homogeneous system?

 Autonomous or self-organizing system?

 Fine grained vs. coarse grained parallelism

 Parallel message passing code is easier to debug than 
shared memory (e.g. p-threads)

 Know your application’s max/avg Thread Level 
Parallelism (TLP)

 Data-level parallelism: Map-Reduce, (SIMD) Single 
Instruction Multiple Data, Vector processing & GPUs
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CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS

 Bit-level parallelism

 Instruction-level parallelism (CPU pipelining)

 Flynn’s taxonomy: computer system architecture classification
 SISD – Single Instruction, Single Data (modern core of a CPU) 

 SIMD – Single Instruction, Multiple Data (Data parallelism)

 MIMD – Multiple Instruction, Multiple Data

 MISD is RARE; application for fault tolerance…

 Arithmetic intensity: ratio of calculations vs memory RW

 Roofline model: 
Memory bottleneck with low arithmetic intensity

 GPUs: ideal for programs with high arithmetic intensity
 SIMD and Vector processing supported by many large registers 
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CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS - 2

 Speed-up (S)
S(N) = T(1) / T(N)

 Amdahl’s law:
S = 1/ α
α = percent of program that must be sequential

 Scaled speedup with N processes:
S(N)  = N – α( N-1)

 Moore’s Law
 Symmetric core, Asymmetric core, Dynamic core CPU
 Distributed Systems Non-function quality attributes 
 Distributed Systems – Types of Transparency
 Types of modularity- Soft, Enforced
 Functional vs. Non-functional requirements
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CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS - 3

INTRODUCTION TO 
CLOUD COMPUTING
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 Introduction to Cloud Computing

Why study cloud computing?

History of cloud computing

Business drivers

Cloud enabling technologies

Terminology

Benefits of cloud adoption

Risks of cloud adoption
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OBJECTIVES - 2

 LINKEDIN - TOP IT Skills from job  app data

 #1 Cloud and Distributed Computing 

 https://learning.linkedin.com/week-of-learning/top-skills

 #2 Statistical Analysis and Data Mining

 FORBES Survey – 6 Tech Skills That’ll Help You Earn More

 #1 Data Science

 #2 Cloud and Distributed Computing

 http://www.forbes.com/sites/laurencebradford/2016/12/
19/6-tech-skills-thatll-help-you-earn-more-in-2017/
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WHY STUDY CLOUD COMPUTING?
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 Computerworld
Magazine
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WHY STUDY CLOUD COMPUTING? - 2

 John McCarthy, 1961
 Turing award winner for contributions to AI

 “If computers of the kind I have advocated become the 
computers of the future, then computing may someday be 
organized as a public utility just as the telephone system is a 
public utility… The computer utility could become the basis of 
a new and important industry…”
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A BRIEF HISTORY OF CLOUD COMPUTING

 Internet based computer utilities

 Since the mid-1990s

 Search engines: Yahoo!, Google, Bing

 Email: Hotmail, Gmail

 2000s

 Social networking platforms: MySpace, Facebook, LinkedIn

 Social media: Twitter, YouTube

 Popularized core concepts

 Formed basis of cloud computing
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CLOUD HISTORY - 2

 Late 1990s – Early Software-as-a-Service (SaaS)
 Salesforce: Remotely provisioned services for the enterprise

 2002 -
 Amazon Web Services (AWS) platform: Enterprise oriented services 

for remotely provisioned storage, computing resources, and business 
functionality

 2006 – Infrastructure-as-a-Service (IaaS)
 Amazon launches Elastic Compute Cloud (EC2) service

 Organization can “lease” computing capacity and processing power 
to host enterprise applications

 Infrastructure
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CLOUD HISTORY: SERVICES - 1

 2006 – Software-as-a-Service (SaaS)

 Google: Offers Google DOCS, “MS Office” like fully-web 
based application for online documentation creation and 
collaboration

 2009 – Platform-as-a-Service (PaaS)

 Google: Offers Google App Engine, publicly hosted 
platform for hosting scalable web applications on google-
hosted datacenters
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CLOUD HISTORY: SERVICES - 2
CLOUD COMPUTING

NIST GENERAL DEFINITION

“Cloud computing is a model for enabling
convenient, on-demand network access to a shared
pool of configurable computing resources
(networks, servers, storage, applications and
services) that can be rapidly provisioned and
reused with minimal management effort or service
provider interaction”…
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“Cloud computing is a specialized form of
distributed computing that introduces utilization
models for remotely provisioning scalable and
measured resources.”

From Cloud Computing Concepts, Technology, and Architecture

Z. Mahmood, R. Puttini, Prentice Hall, 5th printing, 2015
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MORE CONCISE DEFINITION

Capacity planning

Cost reduction

Operational overhead

Organizational agility
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BUSINESS DRIVERS 
FOR CLOUD COMPUTING

 Capacity planning
 Process of determining and fulfilling future demand for IT 

resources

 Capacity vs. demand
 Discrepancy between capacity of IT resources and actual 

demand

 Over-provisioning: resource capacity exceeds demand
 Under-provisioning: demand exceeds resource capacity

 Capacity planning aims to minimize the discrepancy of 
available resources vs. demand
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BUSINESS DRIVERS 
FOR CLOUD COMPUTING
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Dwight, The Office TV sitcom

 Capacity planning
 Over-provisioning: is costly due to too much infrastructure

 Under-provisioning: is costly due to potential for business loss from 
poor quality of service

 Capacity planning strategies
 Lead strategy: add capacity in anticipation of demand (pre-

provisioning)

 Lag strategy: add capacity when capacity is fully leveraged

 Match strategy: add capacity in small increments as demand 
increases

 Load prediction
 Capacity planning helps anticipate demand flucations
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BUSINESS DRIVERS FOR CLOUD - 2
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CAPACITY PLANNING
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CAPACITY PLANNING - 2

 Capacity planning  Cost reduction
 IT Infrastructure acquisition
 IT Infrastructure maintenance

 Operational overhead
 Technical personnel to maintain physical IT infrastructure
 System upgrades, patches that add testing to deployment 

cycles
 Utility bills, capital investments for power and cooling
 Security and access control measures for server rooms
 Admin and accounting staff to track licenses, support 

agreements, purchases

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.38

BUSINESS DRIVERS FOR CLOUD - 3

 Organizational agility

 Ability to adapt and evolve infrastructure to face change 
from internal and external business factors

 Funding constraints can lead to insufficient on premise IT

 Cloud computing enables IT resources to scale with a 
lower financial commitment
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BUSINESS DRIVERS FOR CLOUD - 4

Cluster computing

Grid computing

Virtualization

Others
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TECHNOLOGY INNOVATIONS 
LEADING TO CLOUD

 Cluster computing (clustering)
 Cluster is a group of independent IT resources 

interconnected as a single system

 Servers configured with homogeneous hardware and software

 Identical or similar RAM, CPU, HDDs

 Design emphasizes redundancy as server components are easily 
interchanged to keep overall system running

 Example: if a RAID card fails on a key server, the card can be 
swapped from another redundant server

 Enables warm replica servers

 Duplication of key infrastructure servers to provide 
HW failover to ensure high availability (HA)
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CLUSTER COMPUTING

 On going research area since early 1990s

 Distributed heterogeneous computing resources organized into 
logical pools of loosely coupled resources

 For example: heterogeneous servers connected by the internet

 Resources are heterogeneous and geographically dispersed

 Grids use middleware software layer to support workload 
distribution and coordination functions

 Aspects: load balancing, failover control, autonomic 
configuration management

 Grids have influenced clouds contributing common features: 
networked access to machines, resource pooling, scalability, 
and resiliency
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GRID COMPUTING 
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GRID COMPUTING - 2 VIRTUALIZATION
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VIRTUALIZATION

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.45

 Simulate physical hardware resources via software

 The virtual machine (virtual computer)

 Virtual local area network (VLAN)

 Virtual hard disk

 Virtual network attached storage array (NAS)

 Early incarnations featured significant performance, 
reliability, and scalability challenges

 CPU and other HW enhancements have minimized 
performance GAPs
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VIRTUALIZATION

 On-Premise Infrastructure
 Local server infrastructure not configured as a cloud

 Cloud Provider
 Corporation or private organization responsible for maintaining cloud

 Cloud Consumer
 User of cloud services

 Scal ing
 Vertical scaling

 Scale up: increase resources of a single virtual server

 Scale down: decrease resources of a single virtual server

 Horizontal scaling

 Scale out: increase number of virtual servers

 Scale in: decrease number of virtual servers
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KEY TERMINOLOGY

 Reconfigure vir tual machine to have different resources:
 CPU cores

 RAM

 HDD/SDD capacity

 May require VM migration if
physical host machine 
resources are exceeded
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VERTICAL SCALING
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 Increase (scale-out) or decrease (scale-in) number of vir tual 
servers based on demand
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HORIZONTAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers
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HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers

IT resources instantly available IT resources typically instantly available
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HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication
and automated scaling

Additional setup is normally needed
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HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication
and automated scaling

Additional setup is normally needed

Additional servers required No additional servers required
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HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication
and automated scaling

Additional setup is normally needed

Additional servers required No additional servers required

Not limited by individual server capacity Limited by individual server capacity
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HORIZONTAL VS VERTICAL SCALING
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 Cloud services

 Broad array of resources accessible “as-a-service”

 Categorized as Infrastructure (IaaS), Platform (PaaS), 
Software (SaaS)

 Service-level-agreements (SLAs):

 Establish expectations for: uptime, security, availability, 
reliability, and performance
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KEY TERMINOLOGY - 2

 Cloud providers
 Leverage economies of scale through mass-acquisition and 

management of large-scale IT resources

 Locate datacenters to optimize costs where electricity is low

 Cloud consumers
 Key business/accounting difference:

 Cloud computing enables anticipated capital expenditures to be 
replaced with operational expenditures

 Operational expenditures always scale with the business

 Eliminates need to invest in server infrastructure based on 
anticipated business needs

 Businesses become more agile and lower their financial risks by 
eliminating large capital investments in physical infrastructure 
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GOALS AND BENEFITS

 On demand access to pay-as-you-go resources on a short-term 
basis (less commitment)

 Ability to acquire “unlimited” computing
resources on demand when required for 
business needs

 Ability to add/remove IT resources at 
a fine-grained level

 Abstraction of server infrastructure so 
applications deployments are not dependent
on specific locations, hardware, etc.

 The cloud has made our software deployments 
more agile…
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CLOUD BENEFITS - 2

 Example: Using 100 servers for 1 hour costs the same as 
using 1 server for 100 hours

 Rosetta Protein Folding: Working with a UW-Tacoma graduate 
student, we recently deployed this science model across 5,900 
compute cores on Amazon for 2-days…

 What is  the cost to purchase 5,900 compute cores?

 Recent Dell Server purchase example: 
20 cores on 2 servers for $4,478…

 Using this ratio 5,900 cores costs $1.3 million (purchase only)
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CLOUD BENEFITS - 3

Gene Wilder, Charlie and the Chocolate Factory

 Increased scalability
 Example demand over a

24-hour day  

 Increased availability

 Increased reliability

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.60

CLOUD BENEFITS
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 Increased security vulnerabilities
 Expansion of trust boundaries now include the external 

cloud
 Security responsibility shared with cloud provider

 Reduced operational governance / control
 Users have less control of physical hardware
 Cloud user does not directly control resources to ensure 

quality-of-service
 Infrastructure management is abstracted
 Quality and stability of resources can vary
 Network latency costs and variability 
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CLOUD ADOPTION RISKS
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NETWORK LATENCY COSTS

 Performance monitoring of  cloud applications
 Cloud metrics (AWS cloudwatch) support monitoring cloud 

infrastructure (network load, CPU utilization, I/O)
 Performance of cloud applications depends on the health of 

aggregated cloud resources working together
 User must monitor this aggregate performance 

 Limited portability among clouds
 Early cloud systems have significant “vendor” lock-in
 Common APIs and deployment models are slow to evolve
 Operating system containers help make applications more 

portable, but containers still must be deployed

 Geographical issues
 Abstraction of cloud location leads to legal challenges with respect 

to laws for data privacy and storage
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CLOUD RISKS - 2
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CLOUD: VENDOR LOCK-IN

QUESTIONS
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