
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L3.1

Cloud Computing:
How did we get here?

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 562:
SOFTWARE ENGINEERING
FOR CLOUD COMPUTING  Perspective on material: 6.8 ( mostly new to me)

 Pace: 5.3 ( slightly fast)

 24 respondents

 SIMD Vector arithmetic example
 Comment: “SIMD faster than MIMD in some cases, I can

understand, but cannot logically explain it”

 SIMS vs. MIMD

 SIMD instruction relationships with CPU development
 First introduced with the Intel Pentium III in 1999

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.2

FEEDBACK FROM 9/30

 Flynn’s machine (Flynn’s taxonomy):
 Ideal is to classify HW architectures as either:

SISD, SIMD, or MIMD

 Example question could describe a computer or computing
scenario as ask if it is SISD, SIMD, or MIMD…

 What are some advantages of using heterogeneous HW
vs. homogeneous HW?

 Roofline explanation

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.3

FEEDBACK - 2

 Arithmetic intensity: Ratio of work (W) to
memory traffic r/w (Q)

Example: # of floating point ops per byte of data read
 Characterizes application scalability with SIMD support
 SIMD can perform many fast matrix operations in parallel

 High arithmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

 Low arithmetic intensity:
Programs with sparse matrix operations do not scale well
with problem size
(memory RW becomes bottleneck, not enough ops!)

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.4

ARITHMETIC INTENSITY

 When program reaches a given arithmetic intensity
performance of code running on CPU hits a “roof”

 CPU performance bottleneck changes from:
memory bandwidth (left)  floating point performance (right)

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.5

ROOFLINE MODEL

Key take-aways:
When a program’s has low
Arithmetic Intensity, memory
bandwidth limits performance..

With high Arithmetic intensity,
the system has peak parallel
performance…
 performance is limited by??

 Is a GPU considered a super CPU based on the
structure?
 Differences between CPUs and GPUs

 CPU: composed of just a few cores with lots of cache memory
that can handle a few software threads at a time.

 GPU: composed of hundreds of cores that can handle
thousands of threads simultaneously. Ability of a GPU with
100+ cores to process thousands of threads can accelerate
some software by 100x over a CPU alone. GPU achieves
acceleration while being more power- and cost-efficient than a
CPU.

 CPU: emphasis is low latency
 GPU: emphasis is high throughput

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.6

FEEDBACK - 3

1 2

3 4

5 6

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L3.2

 Are class activities included in grading?

 Panopto recordings

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.7

FEEDBACK - 3

Cloud Computing: How did we get here?
Parallel and distributed systems

(Marinescu Ch. 2: 1st edition, or Ch. 4: 2nd edition)
 Data, thread-level, task-level parallelism
 Parallel architectures
 SIMD architectures, vector processing, multimedia

extensions
 Graphics processing units
 Speed-up, Amdahl's Law, Scaled Speedup
 Properties of distributed systems
Modularity
 Functional vs. Non-functional requirements

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.8

OBJECTIVES

 Collection of autonomous computers, connected through a
network with distribution software called “middleware” that
enables coordination of activities and sharing of resources

 Key characteristics:
 Users perceive system as a single, integrated computing

facility.
 Compute nodes are autonomous
 Scheduling, resource management, and security implemented

by every node
 Multiple points of control and failure
 Nodes may not be accessible at all times
 System can be scaled by adding additional nodes
 Availability is realized at different levels: HW, software,

network providing different reliability

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.9

DISTRIBUTED SYSTEMS

 Key non-functional attributes

 Known as “ilities” in software engineering

 Availability – 24/7 access?

 Reliability - Fault tolerance

 Accessibility – reachable?

 Usability – user friendly

 Understandability – can under

 Scalability – responds to variable demand

 Extensibility – can be easily modified, extended

 Maintainability – can be easily fixed

 Consistency – data is replicated correctly in timely manner

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.10

DISTRIBUTED SYSTEMS - 2

 Access transparency: local and remote objects accessed using
identical operations

 Location transparency: objects accessed w/o knowledge of
their location.

 Concurrency transparency: several processes run concurrently
using shared objects w/o interference among them

 Replication transparency: multiple instances of objects are
used to increase reliability
- users are unaware if and how the system is replicated

 Fai lure transparency: concealment of faults
 Migration transparency: objects are moved w/o affecting

operations performed on them
 Performance transparency: system can be reconfigured based

on load and quality of service requirements
 Scal ing transparency: system and applications can scale w/o

change in system structure and w/o affecting applications

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.11

TRANSPARENCY PROPERTIES OF
DISTRIBUTED SYSTEMS

 Soft modularity: TRADITIONAL

 Divide a program into modules (classes) that call each
other and communicate with shared-memory

 A procedure calling convention is used (or method
invocation)

 Object-oriented programming classic best practices:

 Minimize coupling between classes (OO) and modules

 Maximize cohesion between functions in classes (OO) and
modules
 Best practices lead to improved software reusability,

maintainability, portability

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.12

TYPES OF MODULARITY

7 8

9 10

11 12

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L3.3

 Enforced modularity: CLOUD COMPUTING

 Program is divided into modules that communicate only
through message passing

 The ubiquitous client-server paradigm

 Clients and servers are independent decoupled modules

 System is more robust if servers are stateless

 May be scaled and deployed separately

 May also FAIL separately!

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.13

TYPES OF MODULARITY - 2

 Object-oriented coupling

 Degree of interdependence between software modules

 A measure of how connected two classes or modules are

 Captures the degree of the relationships between modules

 Coupling is usually contrasted with cohesion

 Low coupling often correlates with high cohesion

 High coupling often correlates with low cohesion

 Object-oriented cohesion

 Degree to which elements inside a class or module belong together

 Do the methods and data inside of a class interoperate with each
other (High cohesion)? Or is the class a catch all bin of random
functions (Low cohesion)?
 E.g. “Util” class where random helper routines land… (low cohesion)

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.14

COUPLING AND COHESION

 Functional requirement:

 Pertains to a system supporting a specific function

 What a system is supposed to do

 Testable with unit tests, integration tests, etc.

 Non-functional requirement:

 Specifies criteria used to judge how a system operates

 How a system should be (or behave)

 Considered as “quality” attributes of systems

 Testable by applying metrics to characterize degree of
possessing a given quality

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.15

FUNCTIONAL VS. NON-FUNCTIONAL
ATTRIBUTES OF SYSTEMS

 The system should be highly available.

 The system should be 99.9% available per month
 Maximum downtime: 43m 49.7s monthly, 8hr 45min 36s yearly

 Functional attribute: system should notify users if there is an issue
affects the availability or may cause downtime.

 Availability equation:

AVAILABILITY =
MTBF

MTBF+MTTR
 MTBF: Mean time between failures

 MTTR: Mean time to Repair

 MTBF = ~1 month = 43,757 min; MTTR = 43 min

 AVAILABILITY = 43757 / 43800 = 99.9018265%

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.16

NON-FUNCTIONAL REQUIREMENT:
HIGH AVAILABILITY

 Replicate system resources in multiple data centers or cloud
computing regions

 Use redundant infrastructure components
 For load balancing, fault tolerance

 Report availability status via portal

 Allow users to immediately report outages

 Notification systems to alert system admins when system
experiences an outage

 Tradeoffs:

 Highly available cloud resources are more expensive

 Replicating app components (e.g. database) adds cost

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.17

STRATEGIES FOR HIGH AVAILABILITY

What are the “best” metrics to quantify non-
functional quality attributes?

Consider ease/effort/time/cost of assessment

Relationship to expert opinion (e.g. correlation)

Relationship to other measures

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.18

QUANTIFYING NON-FUNCTIONAL
QUALITY ATTRIBUTES

13 14

15 16

17 18

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L3.4

 Multi-core CPU technology and hyper-threading

 What is a
 Heterogeneous system?

 Homogeneous system?

 Autonomous or self-organizing system?

 Fine grained vs. coarse grained parallelism

 Parallel message passing code is easier to debug than
shared memory (e.g. p-threads)

 Know your application’s max/avg Thread Level
Parallelism (TLP)

 Data-level parallelism: Map-Reduce, (SIMD) Single
Instruction Multiple Data, Vector processing & GPUs

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.19

CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS

 Bit-level parallelism

 Instruction-level parallelism (CPU pipelining)

 Flynn’s taxonomy: computer system architecture classification
 SISD – Single Instruction, Single Data (modern core of a CPU)

 SIMD – Single Instruction, Multiple Data (Data parallelism)

 MIMD – Multiple Instruction, Multiple Data

 MISD is RARE; application for fault tolerance…

 Arithmetic intensity: ratio of calculations vs memory RW

 Roofline model:
Memory bottleneck with low arithmetic intensity

 GPUs: ideal for programs with high arithmetic intensity
 SIMD and Vector processing supported by many large registers

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.20

CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS - 2

 Speed-up (S)
S(N) = T(1) / T(N)

 Amdahl’s law:
S = 1/ α
α = percent of program that must be sequential

 Scaled speedup with N processes:
S(N) = N – α(N-1)

 Moore’s Law
 Symmetric core, Asymmetric core, Dynamic core CPU
 Distributed Systems Non-function quality attributes
 Distributed Systems – Types of Transparency
 Types of modularity- Soft, Enforced
 Functional vs. Non-functional requirements

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.21

CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS - 3

INTRODUCTION TO
CLOUD COMPUTING

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L3.22

 Introduction to Cloud Computing

Why study cloud computing?

History of cloud computing

Business drivers

Cloud enabling technologies

Terminology

Benefits of cloud adoption

Risks of cloud adoption

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.23

OBJECTIVES - 2

 LINKEDIN - TOP IT Skills from job app data

 #1 Cloud and Distributed Computing

 https://learning.linkedin.com/week-of-learning/top-skills

 #2 Statistical Analysis and Data Mining

 FORBES Survey – 6 Tech Skills That’ll Help You Earn More

 #1 Data Science

 #2 Cloud and Distributed Computing

 http://www.forbes.com/sites/laurencebradford/2016/12/
19/6-tech-skills-thatll-help-you-earn-more-in-2017/

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.24

WHY STUDY CLOUD COMPUTING?

19 20

21 22

23 24

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L3.5

 Computerworld
Magazine

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.25

WHY STUDY CLOUD COMPUTING? - 2

 John McCarthy, 1961
 Turing award winner for contributions to AI

 “If computers of the kind I have advocated become the
computers of the future, then computing may someday be
organized as a public utility just as the telephone system is a
public utility… The computer utility could become the basis of
a new and important industry…”

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.26

A BRIEF HISTORY OF CLOUD COMPUTING

 Internet based computer utilities

 Since the mid-1990s

 Search engines: Yahoo!, Google, Bing

 Email: Hotmail, Gmail

 2000s

 Social networking platforms: MySpace, Facebook, LinkedIn

 Social media: Twitter, YouTube

 Popularized core concepts

 Formed basis of cloud computing

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.27

CLOUD HISTORY - 2

 Late 1990s – Early Software-as-a-Service (SaaS)
 Salesforce: Remotely provisioned services for the enterprise

 2002 -
 Amazon Web Services (AWS) platform: Enterprise oriented services

for remotely provisioned storage, computing resources, and business
functionality

 2006 – Infrastructure-as-a-Service (IaaS)
 Amazon launches Elastic Compute Cloud (EC2) service

 Organization can “lease” computing capacity and processing power
to host enterprise applications

 Infrastructure

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.28

CLOUD HISTORY: SERVICES - 1

 2006 – Software-as-a-Service (SaaS)

 Google: Offers Google DOCS, “MS Office” like fully-web
based application for online documentation creation and
collaboration

 2009 – Platform-as-a-Service (PaaS)

 Google: Offers Google App Engine, publicly hosted
platform for hosting scalable web applications on google-
hosted datacenters

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.29

CLOUD HISTORY: SERVICES - 2
CLOUD COMPUTING

NIST GENERAL DEFINITION

“Cloud computing is a model for enabling
convenient, on-demand network access to a shared
pool of configurable computing resources
(networks, servers, storage, applications and
services) that can be rapidly provisioned and
reused with minimal management effort or service
provider interaction”…

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.30

25 26

27 28

29 30

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L3.6

“Cloud computing is a specialized form of
distributed computing that introduces utilization
models for remotely provisioning scalable and
measured resources.”

From Cloud Computing Concepts, Technology, and Architecture

Z. Mahmood, R. Puttini, Prentice Hall, 5th printing, 2015

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.31

MORE CONCISE DEFINITION

Capacity planning

Cost reduction

Operational overhead

Organizational agility

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.32

BUSINESS DRIVERS
FOR CLOUD COMPUTING

 Capacity planning
 Process of determining and fulfilling future demand for IT

resources

 Capacity vs. demand
 Discrepancy between capacity of IT resources and actual

demand

 Over-provisioning: resource capacity exceeds demand
 Under-provisioning: demand exceeds resource capacity

 Capacity planning aims to minimize the discrepancy of
available resources vs. demand

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.33

BUSINESS DRIVERS
FOR CLOUD COMPUTING

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L3.34

Dwight, The Office TV sitcom

 Capacity planning
 Over-provisioning: is costly due to too much infrastructure

 Under-provisioning: is costly due to potential for business loss from
poor quality of service

 Capacity planning strategies
 Lead strategy: add capacity in anticipation of demand (pre-

provisioning)

 Lag strategy: add capacity when capacity is fully leveraged

 Match strategy: add capacity in small increments as demand
increases

 Load prediction
 Capacity planning helps anticipate demand flucations

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.35

BUSINESS DRIVERS FOR CLOUD - 2

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.36

CAPACITY PLANNING

31 32

33 34

35 36

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L3.7

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.37

CAPACITY PLANNING - 2

 Capacity planning  Cost reduction
 IT Infrastructure acquisition
 IT Infrastructure maintenance

 Operational overhead
 Technical personnel to maintain physical IT infrastructure
 System upgrades, patches that add testing to deployment

cycles
 Utility bills, capital investments for power and cooling
 Security and access control measures for server rooms
 Admin and accounting staff to track licenses, support

agreements, purchases

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.38

BUSINESS DRIVERS FOR CLOUD - 3

 Organizational agility

 Ability to adapt and evolve infrastructure to face change
from internal and external business factors

 Funding constraints can lead to insufficient on premise IT

 Cloud computing enables IT resources to scale with a
lower financial commitment

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.39

BUSINESS DRIVERS FOR CLOUD - 4

Cluster computing

Grid computing

Virtualization

Others

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.40

TECHNOLOGY INNOVATIONS
LEADING TO CLOUD

 Cluster computing (clustering)
 Cluster is a group of independent IT resources

interconnected as a single system

 Servers configured with homogeneous hardware and software

 Identical or similar RAM, CPU, HDDs

 Design emphasizes redundancy as server components are easily
interchanged to keep overall system running

 Example: if a RAID card fails on a key server, the card can be
swapped from another redundant server

 Enables warm replica servers

 Duplication of key infrastructure servers to provide
HW failover to ensure high availability (HA)

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.41

CLUSTER COMPUTING

 On going research area since early 1990s

 Distributed heterogeneous computing resources organized into
logical pools of loosely coupled resources

 For example: heterogeneous servers connected by the internet

 Resources are heterogeneous and geographically dispersed

 Grids use middleware software layer to support workload
distribution and coordination functions

 Aspects: load balancing, failover control, autonomic
configuration management

 Grids have influenced clouds contributing common features:
networked access to machines, resource pooling, scalability,
and resiliency

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.42

GRID COMPUTING

37 38

39 40

41 42

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L3.8

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.43

GRID COMPUTING - 2 VIRTUALIZATION

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.44

VIRTUALIZATION

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.45

 Simulate physical hardware resources via software

 The virtual machine (virtual computer)

 Virtual local area network (VLAN)

 Virtual hard disk

 Virtual network attached storage array (NAS)

 Early incarnations featured significant performance,
reliability, and scalability challenges

 CPU and other HW enhancements have minimized
performance GAPs

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.46

VIRTUALIZATION

 On-Premise Infrastructure
 Local server infrastructure not configured as a cloud

 Cloud Provider
 Corporation or private organization responsible for maintaining cloud

 Cloud Consumer
 User of cloud services

 Scal ing
 Vertical scaling

 Scale up: increase resources of a single virtual server

 Scale down: decrease resources of a single virtual server

 Horizontal scaling

 Scale out: increase number of virtual servers

 Scale in: decrease number of virtual servers

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.47

KEY TERMINOLOGY

 Reconfigure vir tual machine to have different resources:
 CPU cores

 RAM

 HDD/SDD capacity

 May require VM migration if
physical host machine
resources are exceeded

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.48

VERTICAL SCALING

43 44

45 46

47 48

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L3.9

 Increase (scale-out) or decrease (scale-in) number of vir tual
servers based on demand

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.49

HORIZONTAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.50

HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

IT resources instantly available IT resources typically instantly available

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.51

HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication
and automated scaling

Additional setup is normally needed

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.52

HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication
and automated scaling

Additional setup is normally needed

Additional servers required No additional servers required

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.53

HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication
and automated scaling

Additional setup is normally needed

Additional servers required No additional servers required

Not limited by individual server capacity Limited by individual server capacity

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.54

HORIZONTAL VS VERTICAL SCALING

49 50

51 52

53 54

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L3.10

 Cloud services

 Broad array of resources accessible “as-a-service”

 Categorized as Infrastructure (IaaS), Platform (PaaS),
Software (SaaS)

 Service-level-agreements (SLAs):

 Establish expectations for: uptime, security, availability,
reliability, and performance

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.55

KEY TERMINOLOGY - 2

 Cloud providers
 Leverage economies of scale through mass-acquisition and

management of large-scale IT resources

 Locate datacenters to optimize costs where electricity is low

 Cloud consumers
 Key business/accounting difference:

 Cloud computing enables anticipated capital expenditures to be
replaced with operational expenditures

 Operational expenditures always scale with the business

 Eliminates need to invest in server infrastructure based on
anticipated business needs

 Businesses become more agile and lower their financial risks by
eliminating large capital investments in physical infrastructure

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.56

GOALS AND BENEFITS

 On demand access to pay-as-you-go resources on a short-term
basis (less commitment)

 Ability to acquire “unlimited” computing
resources on demand when required for
business needs

 Ability to add/remove IT resources at
a fine-grained level

 Abstraction of server infrastructure so
applications deployments are not dependent
on specific locations, hardware, etc.

 The cloud has made our software deployments
more agile…

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.57

CLOUD BENEFITS - 2

 Example: Using 100 servers for 1 hour costs the same as
using 1 server for 100 hours

 Rosetta Protein Folding: Working with a UW-Tacoma graduate
student, we recently deployed this science model across 5,900
compute cores on Amazon for 2-days…

 What is the cost to purchase 5,900 compute cores?

 Recent Dell Server purchase example:
20 cores on 2 servers for $4,478…

 Using this ratio 5,900 cores costs $1.3 million (purchase only)

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.58

CLOUD BENEFITS - 3

Gene Wilder, Charlie and the Chocolate Factory

 Increased scalability
 Example demand over a

24-hour day 

 Increased availability

 Increased reliability

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.60

CLOUD BENEFITS

55 56

57 58

59 60

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L3.11

 Increased security vulnerabilities
 Expansion of trust boundaries now include the external

cloud
 Security responsibility shared with cloud provider

 Reduced operational governance / control
 Users have less control of physical hardware
 Cloud user does not directly control resources to ensure

quality-of-service
 Infrastructure management is abstracted
 Quality and stability of resources can vary
 Network latency costs and variability

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.61

CLOUD ADOPTION RISKS

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.62

NETWORK LATENCY COSTS

 Performance monitoring of cloud applications
 Cloud metrics (AWS cloudwatch) support monitoring cloud

infrastructure (network load, CPU utilization, I/O)
 Performance of cloud applications depends on the health of

aggregated cloud resources working together
 User must monitor this aggregate performance

 Limited portability among clouds
 Early cloud systems have significant “vendor” lock-in
 Common APIs and deployment models are slow to evolve
 Operating system containers help make applications more

portable, but containers still must be deployed

 Geographical issues
 Abstraction of cloud location leads to legal challenges with respect

to laws for data privacy and storage

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.63

CLOUD RISKS - 2

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.64

CLOUD: VENDOR LOCK-IN

QUESTIONS

October 2, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L3.65

61 62

63 64

65

