
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L15.1

Containerization

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 562:
SOFTWARE ENGINEERING
FOR CLOUD COMPUTING

 Tutorial 7 is posted

 Tutorial 8 & 9 to be posted next

 Only 7 tutorials are required

 Additional tutorials beyond 7 provide extra credit

 Group presentation topics are assigned
 All papers posted online

 Nov 25th presenters – submit slides by ~ Sat Nov 23

 Non-presenters: submit 2-questions/talk to Canvas after class

 Term project checkin - due Sunday 11/24

 Grading: tutorial 4 this week, tutorial 5 next

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.2

OVERVIEW

1

2

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L15.2

Monday November 25

1. Group 6 - Amazon Dynamo DB
2. Group 8 - Paper: Serverless computation with Open Lambda
3. Group 2 - Paper: A Programming Model and Middleware for High
Throughput Serverless Computing Applications

Monday December 2

1. Group 9 - Paper: Performance comparison of container-based technologies
for the Cloud
2. Group 10 - Paper: An Investigation of the Impact of Language Runtime on the
Performance and Cost of Server less Functions
3. Group 4 - Paper: Exploring Serverless Computing for Neural Network Training

Wednesday December 4

1. Group 1 - Paper: Performance evaluation of heterogeneous cloud functions
2. Group 7 - Amazon Cognito
3. Group 3 - Paper: Serverless computing - economics and architecture impact

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.3

GROUP PRESENTATION SCHEDULE

 Nine project teams

 Term project l ightning presentations
 Monday December 9th (5:50-7:50pm)

 Takes place of final exam

 Presentation length: 5 minutes + questions, total 8 minutes

 Format and rubric coming soon

 Term project final paper and source code repository
 Friday December 13 @ 11:59pm

 Paper template to be provided

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.4

TERM PROJECT DELIVERABLES

3

4

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L15.3

 Cloud technology presentation

 Cloud research paper presentation

 Submit topics and desired dates of presentation via Canvas by
Monday November 18th @ 11:59pm

 Presentation dates:
 Monday November 25 (3 groups)

 Monday December 2 (3 groups)

 Wednesday December 4 (3 groups)

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.5

GROUP PRESENTATION

 Perspective on material: 6.42 ( more new)

 Pace of class: 5.0 (just right)

 12 respondents

 What is the differences between an OS container and a VM?

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.6

FEEDBACK FROM 11/18

 What type of
hypervisor Is this?

Type 1 or Type 2??

5

6

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L15.4

 What is the differences between an OS container and a VM?

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.7

FEEDBACK - 2

What type of 
hypervisor Is this?

Type 1 or Type 2??

 What is the dif ference between Platform-as-a-Service and
Container-as-a-Service?

 Containers are similar to VMs

 Container services can be
considered as IaaS

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.8

FEEDBACK - 3

Infrastructure

Platform

Software

7

8

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L15.5

 Why do containers have less overhead than VMs?

 Can count the # of layers of abstraction

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.9

FEEDBACK - 4

 I read in a paper that Azure Functions allocates memory
dynamically unlike AWS Lambda star ting with 128 MB

 I want to understand how does it allocate memory to a function
dynamically
 My understanding is it doesn’t, rather the code runs in an environment

(e.g. VM) with ~4 GB ram, and this environment can run multiple
function instances, billing is based on how much total RAM is used

 Azure doesn’t expose RAM used by individual functions

 Azure Issue: function memory usage of individual calls is not
reported by the platform
 No easy way to reconcile the bill based on memory use of individual

functions

 Issue: Expose memory usage for each function execution
 Open for ~ 2 years:
 https://github.com/Azure/azure-functions-host/issues/1451

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.10

FEEDBACK - 5

9

10

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L15.6

 MS Azure Developer – July 2019:
 One option we have been discussing is enabling the export of per

execution bill ing data to Azure Monitor logs. You could then analyze
the data using Log Analytics or take advantage of the extensibil ity
features of Azure Monitor to pump this data to another system. This
design is likely to be easier for us to implement than some of the
other alternatives we've considered.

 One thing to keep in mind is that this would not give you a real-
t ime view of execution cost. There would be at least a few minutes
of delay between a function finishing execution and the cost data
becoming available in the logs.

 If we took this approach, would this address your needs? Please let
us know. Thanks!

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.11

AZURE FUNCTIONS - ISSUE 1451

CONTAINERIZATION

November 20, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L15.12

11

12

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L15.7

 Containers provide “light-weight” alternative to full OS
virtualization provided by a hypervisor

 Containers do not provide a full “machine”

 Instead use operating system constructs to provide “sand
boxes” for execution

 Linux cgroups, namespaces, etc.

 Containers can run on bare metal, or atop of VMs

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.13

MOTIVATION FOR CONTAINERIZATION

Hypervisor/VMContainers

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.14

CONTAINER PERFORMANCE
– LU FACTORIZATION PERFORMANCE

 Solve l inear equations – matr ix algebra
Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

13

14

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L15.8

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.15

CONTAINER PERFORMANCE
– Y-CRUNCHER: PI CALCULATOR

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.16

CONTAINER PERFORMANCE – BONNIE++

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

15

16

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L15.9

According to NIST (National Institute of Standards Technology)
 Virtualization: the simulation of the software and/or hardware

upon which other software runs. (800-125)

 System Virtual Machine: A System Virtual Machine (VM) is a
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800-180 draft)

 Operating System Virtualization (aka OS Container): Provide
multiple vir tualized OSes above a single shared kernel (800-
190). E.g., Solaris Zone, FreeBSD Jails, LXC

 Application Virtualization (aka Application Containers): Same
shared kernel is exposed to multiple discrete instances (800-
180 draft). E.g., Docker (containerd), rkt

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.17

WHAT IS A CONTAINER?

 Virtual environments: share the host kernel

 Provide user space isolation

 Replacement for VMs: run multiple processes, services

 Mix different Linux distros on same host

 Examples: LXC,
OpenVZ,
Linux Vserver,
BSD Jails,
Solaris zones

 C r e d i t : h t t p s : / / b l o g . r i s i n g s t a c k . c o m / o p e r a t i n g - s y s t e m - c o n t a i n e r s - v s - a p p l i c a t i o n - c o n t a i n e r s /

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.18

OPERATING SYSTEM CONTAINERS

17

18

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L15.10

 Designed to package and run a single service

 All containers share host kernel

 Subtle differences from operating system containers

 Examples: Docker, Rocket

 Docker: runs a single process on creation

 OS containers: run many OS services, for an entire OS

 Create application containers for each component of an app

 Supports a micro-services architecture

 DevOPS: developers can package their own components in
application containers

 Supports horizontal and vertical scaling

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.19

APPLICATION CONTAINERS

 Container images are “layered”

 Base image: common for all components

 Add layers that are specific
for components, services
as needed

 Layering promotes reuse

 Reduces duplication of
data across images

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.20

APPLICATION CONTAINERS - 2

19

20

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L15.11

 Docker leverages overlay fi lesystems
 1st: AUFS - Advanced multi - layered unif ication f i lesystem
 Now: overlay2
 Union mount f i le system: combine multiple directories into one that

appears to contain combined contents

 Idea: Docker uses layered fi le systems
 Only the top layer is writeable
 Other layers are read-only
 Layers are merged to present the notion of a real f i le system
 Copy -on-write- implicit sharing

 Implement duplicate copy

 https://medium.com/@nagarwal/docker-containers-fi lesystem-
demystif ied-b6ed8112a04a

 https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.21

OVERLAY FILE SYSTEMS

 Dockerfi le:

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.22

LAYERED FS: BUILDING A CONTAINER

Ubuntu base image 

Copy . /app 

Run make /app 

Python /app/app.py 

21

22

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L15.12

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.23

THREE-TIER ARCHITECTURE

 Is the host isolated from application containers?

Are application containers isolated from each
other?

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.24

CONTAINER ISOLATION

Host kernel

Container
runtime

VM kernel

Host kernel

Container
runtime

Application
containers

App

Bins/libs

App

Bins/libs

App

Bins/libs

App

Bins/libs

Application
containers

23

24

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L15.13

Operating system level virtualization

Run multiple isolated Linux systems on a host
using a single Linux kernel

Control groups(cgroups)

 Including in Linux kernels => 2.6.24

Limit and prioritize sharing of CPU, memory,
block/network I/O

 Linux namespaces

Docker initially based on LXC

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.25

LXC (LINUX CONTAINERS)

 Partitions kernel resources

 Processes see only their set of resources

 Provides isolation

 Namespaces are hierarchical

 Parent processes can see down the hierarchy

 7 namespaces in Linux (cgroups not shown)

 Each process can only see resources associated
with the namespace, and descendent namespaces

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.26

LINUX KERNEL NAMESPACES

pid mnt

ipc

user net

UTS

25

26

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L15.14

 Provides isolation of OS
entities for containers

 mnt: separate fi lesystems

 pid: independent PIDs; first process in container is PID 1

 ipc: prevents processes in different IPC
namespaces from being able to establish shared
memory. Enables processes in dif ferent containers
to reuse the same identifiers without confl ict.
… provides expected VM like isolation…

 user: user identification and privilege isolation
among separate containers

 net: network stack vir tualization. Multiple loopbacks (lo)

 UTS (UNIX t ime sharing): provides separate host and domain
names
November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]

School of Engineering and Technology, University of Washington - Tacoma
L15.27

NAMESPACES - 2

 Collection of Linux processes

 Group-level resource allocation: CPU, memory, disk I/O, network I/O

 Resource l imiting
 Memory, disk cache

 Priorit ization
 CPU share

 Disk I/O throughput

 Accounting
 Track resource utilization

 For resource management and/or billing purposes

 Control
 Pause/resume processes

 Checkpointing  Checkpoint/Restore in Userspace (CRIU)

 https://criu.org

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.28

CONTROL GROUPS (CGROUPS)

27

28

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L15.15

 Control groups are hierarchical

 Groups inherent l imits from parent groups

 Linux has multiple cgroup controllers (subsystems)

 ls /proc/cgroups

 “memory” controller limits memory use

 “cpuacct” controller accounts
for CPU usage

 cgroup filesystem:

 /sys/fs/cgroup

 Can browse resource uti lization
of containers…

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.29

CGROUPS - 2

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.30

2016 DOCKER SURVEY

 Docker application containers
 Leading containerization vehicle

29

30

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L15.16

 (1) Original default Docker execution environment: LXC

 (2) Docker v0.9: l ibcontainer introduced (~2014)

 (3) Now runc (2015)

 Provides Docker access to Linux
container APIs

 Execution drivers concept:

 Enable docker to leverage many OS
containers as the exec environment

 OpenVZ, system-nspawn, libvirt- lxc,
l ibvirt -sandbox, qemu/kvm,
BSD Jails, Solaris Zones, and chroot

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.31

DOCKER EXECUTION ENVIRONMENTS

 Docker daemon “dockerd”
 Provides docker services to Linux

 Docker 1.11+
 Open Container Init iative
 June 2015: Industry standard

for container runtimes and
formats

 Ensure containers are portable
among different execution
environments (engines)

 C r e d i t : h t t p s : / / h a c k e r n o o n . c o m / d o c k e r - c o n t a i n e r d - s t a n d a l o n e - r u n t i m e s - h e r e s - w h a t - y o u - s h o u l d - k n o w - b 8 3 4 e f 1 5 5 4 2 6

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.32

DOCKER

31

32

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L15.17

 Docker CLI: inter faces with dockerd daemon
 Docker engine: dockerd daemon, interfaces with Containerd
 Containerd: simple daemon, interfaces with runc to manage

containers; CRUD inter face for containers, images, volumes,
networks, builds; HTTP API  Google RPC (gRPC) interface;

 runc: l ightweight command-line tool for running containers;
Interfaces with Linux cgroups, namespaces; Runs an OCI
container

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.33

DOCKER - 2

 Docker architecture:

 Other Docker tools:

 Docker Machine:
automatically provision
and manage sets of
docker hosts to
form a cluster

 Docker Swarm: Clusters multiple docker hosts together to
manage as a cluster.

 Docker Compose: Config file (YAML) for multi -container
application; Describes how to deploy and configure multiple
containers

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.34

DOCKER - 3

33

34

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L15.18

 Framework(s) to deploy multiple containers
Provide container clusters using cloud VMs
Similar to “private clusters”
Reduce VM idle CPU time in public clouds
Better leverage “sunk cost” resources
Compact multiple apps onto shared public cloud

infrastructure
Generate to cost savings
Reduce vendor lock-in

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.35

CONTAINER ORCHESTRATION
FRAMEWORKS

 Management of container hosts

 Launching set of containers

 Rescheduling failed containers

 Linking containers to support workflows

 Providing connectivity to clients outside the container cluster

 Firewall : control network/port accessibility

 Dynamic scaling of containers: horizontal scaling

 Scale in/out, add/remove containers

 Load balancing over groups of containers

 Roll ing upgrades of containers for application

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.36

KEY ORCHESTRATION FEATURES

35

36

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L15.19

 Docker swarm

 Apache mesos/marathon

 Kubernetes

Many public cloud provides moving to offer Kubernetes-as-
a-service

 Amazon elastic container service (ECS)

 Apache aurora

 Container-as-a-Service
 Serverles containers without managing clusters

 Azure Container Instances, AWS Fargate…

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.37

CONTAINER ORCHESTRATION
FRAMEWORKS - 2

TUTORIAL #7

DOCKER, CGROUPS,
RESOURCE ISOLATION

November 20, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington -
Tacoma

L15.38

37

38

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L15.20

 Docker CLI  Docker Enginer (dockerd)  containerd  runc

 Docker installation

 Docker file

 Docker run

 Docker ps

 Docker exec -it

 Docker stop

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.39

DOCKER CLI

November 20, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L15.40

39

40

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L15.21

 Linux performance benchmarks

 stress-ng

 100s of CPU, memory, disk, network stress tests

 Sysbench

 Used in tutorial for memory stress test

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.41

TUTORIAL 7

QUESTIONS

November 20, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L15.42

41

42

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L15.22

EXTRA SLIDES

November 20, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L15.43

43

