TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TCSS 562:
SOFTWARE ENGINEERING
FOR CLOUD COMPUTING

Containerization

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

[Fall 2019]

OVERVIEW

= Tutorial 7 is posted
= Tutorial 8 & 9 to be posted next
= Only 7 tutorials are required
= Additional tutorials beyond 7 provide extra credit

= Group presentation topics are assigned
= All papers posted online
= Nov 25t presenters - submit slides by ~ Sat Nov 23
= Non-presenters: submit 2-questions/talk to Canvas after class

= Term project checkin - due Sunday 11/24

= Grading: tutorial 4 this week, tutorial 5 next

November 20, 2019 TCSS562: ing for Cloud C i 2019] | s |

School of Engineering and Technology, University of Washington - Tacoma

GROUP PRESENTATION SCHEDULE

Monday November 25

1. Group 6 - Amazon Dynamo DB

2. Group 8 - Paper: Serverless computation with Open Lambda

3. Group 2 - Paper: A Programming Model and Middleware for High
Throughput Serverless Computing Applications

Monday December 2
1. Group 9 - Paper: Performance comparison of container-based technologies
for the Cloud

2. Group 10 - Paper: An Investigation of the Impact of Language Runtime on the
Performance and Cost of Serverless Functions

3. Group 4 - Paper: Exploring Serverless Computing for Neural Network Training
Wednesday December 4

1. Group 1 - Paper: Performance evaluation of heterogeneous cloud functions
2. Group 7 - Amazon Cognito

3. Group 3 - Paper: Serverless computing - economics and architecture impact

us3

November 20, 2019 TCSS562: Software Engineering for Cloud Compu(lng [Fall 2019]
School of chnology, Tacoma

TERM PROJECT DELIVERABLES

= Nine project teams

= Term project lightning presentations
= Monday December 9t" (5:50-7:50pm)
= Takes place of final exam
= Presentation length: 5 minutes + questions, total 8 minutes
= Format and rubric coming soon

= Term project final paper and source code repository
= Friday December 13 @ 11:59pm
= Paper template to be provided

‘ November 20, 2019 TCSS562: ing for Cloud C i 2019] | s |

School of Engineering and Technology, University of Washington - Tacoma

GROUP PRESENTATION

= Cloud technology presentation

= Cloud research paper presentation

= Submit topics and desired dates of presentation via Canvas by
Monday November 18" @ 11:59pm

= Presentation dates:
= Monday November 25 (3 groups)
= Monday December 2 (3 groups)
= Wednesday December 4 (3 groups)

| November 20, 2019 Tcrs‘ssfz'smware Engineering for Cloud Compu(lng [Fall 2019] s

chnology, Tacoma

Slides by Wes J. Lloyd

FEEDBACK FROM 11/18

= Perspective on material: 6.42 (- more new)
= Pace of class: 5.0 (just right)
= 12 respondents

= What is the differences between an OS container and a VM?

Continrd Appcatiors

€ What type of
hypervisor Is this?

Type 1 or Type 2?7

Host Operating System
m Inhamucture

‘ November 20, 2019

TCSS562: ing for Cloud C i 2019] s
School of Engineering and Technology, University of Washington - Tacoma

L15.1



TCSS 562: Software Engineering for Cloud Computing

School of Engineering and Technology, UW-Tacoma

FEEDBACK - 2

= What Is the differences between an OS contalner and a VM?

Containers vs. VMs

What type of >
hypervisor Is this?

Type 1 or Type 22?

&

cocter

[Fall 2019]

November 20, 2019 1s7

TCS5562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineeri Technology, University i

coma

FEEDBACK - 3

= What Is the difference between Platform-as-a-Service and
Contalner-as-a-Service?

= Containers are similar to VMs

= Container services can be
considered as laaS

Platform
Infrastructure
November 20,2019 | 1O e e e e Tocoma [ e ]

FEEDBACK - 4

= Why do contalners have less overhead than VMs?
= Can count the # of layers of abstraction

Containers vs. VMs

November 20, 2019 ;crs“sjfz;sm_ware_sngineeﬁng for Cloud Computing [Fall 2019]

uss
Technology, y Tacoma

FEEDBACK - 5

= | read in a paper that Azure Functions allocates memory
dynamically unlike AWS Lambda starting with 128 MB

= | want to understand how does it allocate memory to a function
dynamically
= My understanding is it doesn’t, rather the code runs in an environment
(e.g. VM) with ~4 GB ram, and this environment can run multiple
function instances, billing is based on how much total RAM is used
= Azure doesn’t expose RAM used by individual functions

= Azure Issue: function memory usage of individual calls is not
reported by the platform

= No easy way to reconcile the bill based on memory use of individual
functions

= |ssue: Expose memory usage for each function execution
= Open for ~ 2 years:
= https://github.com/Azure/azure-functions-host/issues/1451

TCSS562: i ing for Cloud C i 2019]
School of Engineering and Technology, Universi i Tacoma

November 20, 2019 115.10

AZURE FUNCTIONS - ISSUE 1451

= MS Azure Developer - July 2019:

= One option we have been discussing is enabling the export of per
execution billing data to Azure Monitor logs. You could then analyze
the data using Log Analytics or take advantage of the extensibility
features of Azure Monitor to pump this data to another system. This
design is likely to be easier for us to implement than some of the
other alternatives we've considered.

= One thing to keep in mind is that this would not give you a real-
time view of execution cost. There would be at least a few minutes
of delay between a function finishing execution and the cost data
becoming available in the logs.

= If we took this approach, would this address your needs? Please let
us know. Thanks!

10

November 20, 2019 ;crs“sjfz;st’ﬁ_ware_sngineeﬁng for Cloud Computing [Fall 2019]

Technology, y Tacoma

11

Slides by Wes J. Lloyd

CONTAINERIZATION

TCSS562: Software Engineering for Cloud Computing [Fall 2019]

WS 2t 2 School of Engineering and Technology, University of Washington -

12

L15.2



TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

MOTIVATION FOR CONTAINERIZATION

= Containers provide “light-weight” alternative to full 0S
virtualization provided by a hypervisor

= Containers do not provide a full “machine”

= Instead use operating system constructs to provide “sand
boxes” for execution

= Linux cgroups, namespaces, etc.
= Containers can run on bare metal, or atop of VMs

crercererere Container "
ofofofofofofo
eI Aw‘* caiion ww‘ v S ) o
Host Oishms/llbs H\puvl or eng 1m] = " [ Hypervisor engine
Cnulmnen Containers engine [ Hardware Host O3
 HostOS Type 1 Hardware
Containers i . :
[ Hadvare | Hypervisor/VM Type2

TCS$562: Software Engineering for Cloud Computing [Fall 2019]

School of Engineering and Technology, University of Washington - Tacoma L

| November 20, 2019 |

CONTAINER PERFORMANCE

- LU FACTORIZATION PERFORMANCE

Performance data from IC2E 2015:

A Performance Comparison

30

= Solve linear equations - matrix algebra | Hypervisors vs. Lightweight Virtualization:

MPFlops (higher is better)

Kvm DOCKER Lxc NATIVE osv
Fig. 4. The value of Linpack results on each platform over 15 runs. This is
the particular case of N=1000.

TCSS562: 2019]
School of Engineering and Technology, University of Washington - Tacoma

‘ November 20, 2019 [EERTY

13

CONTAINER PERFORMANCE

- Y-CRUNCHER: Pl CALCULATOR

Performance data from IC2E 2015:
Hypervisors vs. nghtwelght Virtualization:

14

1800
GRKVM

17501 lapocker

1700 | |BLXC =
ENATIVE

1650

1600

1550

1500

Seconds (smaller is hetter)

Z 1450

1400

1350

1300

Computation Time Total Time

| R AT | TCSSSEZ'Sof(ware Engineering for Cloud Compu(lng [Fall 2019]

School o Technology, Tacoma | s

CONTAINER PERFORMANCE - BONNIE++

Performance data from IC2E 2015:

250000 | A Performance Comparison

Hypervisors vs. Lightweight Virtualization:

BKVM EDOCKER BLXC ENATIVE |

150000

30000

5
2
£
i

0

Block Output Block Input

Fig. 6. Disk Throughput achieved by running Bonnie+ (test file of 25 GiB)
Results for sequential writes and sequential read are shown,

TCSS562: ing for Cloud C 2019]
School of Engineering and Technology, University of Washington - Tacoma

‘ November 20, 2019 11516

15

WHAT IS A CONTAINER?

According to NIST (National Institute of Standards Technology)

= Virtualization: the simulation of the software and/or hardware
upon which other software runs. (800-125)

= System Virtual Machlne: A System Virtual Machine (VM) is a
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800-180 draft)

= Operating System Virtualization (aka OS Container): Provide
multiple virtualized OSes above a single shared kernel (800-
190). E.g., Solaris Zone, FreeBSD Jails, LXC

= Application Virtuallzatlon (aka Application Containers): Same
shared kernel is exposed to multiple discrete instances (800-
180 draft). E.g., Docker (containerd), rkt

16

TCSS562: Software Engineering for Cloud Compu(lng [Fall 2019]
School of Technology, Tacoma

| November 20, 2019 | 11517

OPERATING SYSTEM CONTAINERS

= Virtual environments: share the host kernel

= Provide user space isolation

= Replacement for VMs: run multiple processes, services
= Mix different Linux distros on same host

Host OS
= Examples: LXC,
Ubuntu Ubuntu Ubuntu Ubuntu
OpenVZ, 14,04 14,04 404 14.04
h Container  Container  Container
Linux Vserver,
BSD Jails,
Solaris zones
Ubuntu 14.04 image Ubuntu 14,04 image
Identical OS containers Different ilavoured OS containers
= credit: nttps://bl oper
TCSS562: ing for Cloud C

‘ November 20, 2019 11518

2019]
School of Engineering and Technology, University of Washington - Tacoma

17

Slides by Wes J. Lloyd

18

[Fall 2019]

L15.3



TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

APPLICATION CONTAINERS

= Designed to package and run a single service

= All containers share host kernel

= Subtle differences from operating system containers

= Examples: Docker, Rocket

= Docker: runs a single process on creation

= 0S containers: run many OS services, for an entire 0S

= Create application containers for each component of an app
= Supports a micro-services architecture

= DevOPS: developers can package their own components in
application containers

= Supports horizontal and vertical scaling

[Fall 2019]

| November 20, 2019 g:rs‘zifz;sm_ware_sngineeﬁng for Cloud Computing [Fall 2019]

usas
chnology, y Tacoma |

APPLICATION CONTAINERS - 2

= Container images are “layered”

= Base image: common for all components

= Add layers that are specific
for components, services teferences
as needed parent

= Layering promotes reuse image

= Reduces duplication of
data across images

TCSS562: ineering for Cloud C 2019)
School of Engineering and Technology, University of Washington - Tacoma

us.20

‘ November 20, 2019

19

OVERLAY FILE SYSTEMS

= Docker leverages overlay filesystems

= 1st: AUFS - Advanced multi-layered unification filesystem
= Now: overlay2

.

Union mount file system: combine multiple directories into one that
appears to contain combined contents

= |dea: Docker uses layered file systems
= Only the top layer is writeable
= Other layers are read-only
= Layers are merged to present the notion of a real file system
= Copy-on-write- implicit sharing
= Implement duplicate copy

= https://medium.com/@nagarwal/docker-containers-filesystem-
demystified-b6ed8112a04a

= https://www.slideshare.net/jpetazzo/scalelix-Ixc-talk-1,

20

| November 20, 2019 ;crs‘zifz;sm_ware_sngineeﬁng for Cloud Computing [Fall 2019]

usa1
Technology, y Tacoma |

LAYERED FS: BUILDING A CONTAINER

FROM ubuntu:18.04
= Dockerfile: copy . sapp
RUN make /app
CMD python /app/app.py

Thin R/W layer {«—— Container layer

Python /app/app.py > e
Run make /app =2 [/
Image layers (R/O)

Copy . /app = [ZEEEETTE

Ubuntu base image - [ESTEEE

ubuntu:15.04

Container

TCSS562: ineering for Cloud C 2019)
School of Engineering and Technology, University of Washington - Tacoma

us.22

‘ November 20, 2019

21

THREE-TIER ARCHITECTURE

Node.js
Postgres

* Node.js Nginx

OS containers

Meant to used as an OS - run multiple
services

No layered filesystems by default

Built on cgroups, namespaces, native
process resource isolation

Examples - LXC, OpenVZ, Linux VServer,
BSD Jails, Solaris Zones

App containers

Meant to run for a single service
Layered filesystems

Built on top of OS container technologies
Examples - Docker, Rocket

November 20, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Y acoma

; uszs
Technology, |

23

Slides by Wes J. Lloyd

22

CONTAINER ISOLATION

u|s the host isolated from application containers?

= Are application containers isolated from each

other?
Application
containers
Application
App | App containers
sins/is | gins/ivs
App | App
gins/is. | Bins/tibs
runtime
TCSS562: i ing for Cloud C i 2019]
‘ s 12 A0 £ Sehosl of Engineenng andTech nology/Unrversity ot Washinaton i Tacoma Lis24

24

L15.4



TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

LXC (LINUX CONTAINERS)

= Operating system level virtualization

® Run multiple isolated Linux systems on a host
using a single Linux kernel

= Control groups(cgroups)
=Including in Linux kernels => 2.6.24

=Limit and prioritize sharing of CPU, memory,
block/network I/0

= Linux namespaces
= Docker initially based on LXC

[Fall 2019]

TCS5562: Software Engineering for Cloud Computing [Fall 2019]

| Wil el 20 AT T R TS S o T e T o T

LINUX KERNEL NAMESPACES

= Partitions kernel resources
= Processes see only their set of resources
= Provides isolation

= Namespaces are hierarchical

Parent processes can see down the hierarchy

7 namespaces in Linux (cgroups not shown)

Each process can only see resources associated
with the namespace, and descendent namespaces

TCSS562: i 2019)
School of Engineering and Technology, University of Washington - Tacoma

‘ November 20, 2019

526

25

NAMESPACES - 2

= Provides Isolatlon of 0S
entities for containers
" mnt: separate filesystems
= pld: independent PIDs; first process in container is PID 1
= jpc: prevents processes in different IPC
namespaces from being able to establish shared
memory. Enables processes in different containers
to reuse the same identifiers without conflict.
... provides expected VM like isolation...
= yser: user identification and privilege isolation
among separate containers
= net: network stack virtualization. Multiple loopbacks (lo)

= UTS (UNIX time sharing): provides separate host and domain

26

TCS5562: Software Engineering for Cloud Computing [Fall 2019]

| e e oolol Ensineerr s andlechnolosyl nvers Y liNes hinetonETecome

CONTROL GROUPS (CGROUPS)

Collection of Linux processes
Group-level resource allocation: CPU, memory, disk 1/0, network 1/0
= Resource |lImlting

= Memory, disk cache

Prlorltization

= CPU share

= Disk I/0 throughput
Accounting

= Track resource utilization

= For resource management and/or billing purposes
Control

= Pause/resume processes

= Checkpointing > Checkpoint/Restore in Userspace (CRIU)

= https://criu.org

TCSS562: ineering for Cloud C 2019)
School of Engineering and Technology, University of Washington - Tacoma

‘ November 20, 2019 11528

27

CGROUPS - 2

= Control groups are hierarchical

= Groups inherent limits from parent groups

= Linux has multiple cgroup controllers (subsystems)
= |s /proc/cgroups

= “memory” controller limits memory use

28

= “cpuacct” controller accounts %”MMM&M
for CPU usage o
cpuace
blkio
[memory B
= cgroup filesystem: evices
l!ﬂ_veezev
= /sys/fs/cgroup itﬂcéliem E
= Can browse resource utilization L
X l__Luge
of containers... pios i 98

TCS$562: Software Engineering for Cloud Computing [Fall 2019]

| Wil efth 20 Sehoolof Engineern s andiechnolosyilnvers Y ciWes hinetonETecoms

2016 DOCKER SURVEY

= Docker application containers
= Leading containerization vehicle

80% <

ocke

tegy

(o]

plan 5 usa Docker
migrate workloads

1%
o

wanl applicotion

Py acraan

trhan

to
1o cloud

b docker

Cs5562: ineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

‘ November 20, 2019 | 11530 |

29

Slides by Wes J. Lloyd

30

L15.5



TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

DOCKER EXECUTION ENVIRONMENTS

® (1) Original default Docker execution environment: LXC
= (2) Docker v0.9: libcontainer introduced (~2014)
= (3) Now runc (2015)

&

= Provides Docker access to Linux Docker
container APIs e | | |
. . . s systemd-
= Execution drivers concept: nspawn
= Enable docker to leverage many 0OS l i l l
Linux

containers as the exec environment
cgroups  namespaces  netlink

selinux  necficer (9
capabilites pr—— \

TC55562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

= OpenVZ, system-nspawn, libvirt-Ixc,
libvirt-sandbox, gemu/kvm,
BSD Jails, Solaris Zones, and chroot

| November 20, 2019 | 1531

[Fall 2019]

DOCKER

= Docker daemon “dockerd”
= Provides docker services to Linux

= Docker 1.11+ g

= Open Container Initiative

®= June 2015: Industry standard
for container runtimes and
formats

= Ensure containers are portable
among different execution
environments (engines)

Docker Client-Server Architecture

= credit: hitps://hack

TCSS562: ineering for Cloud C 2019)
School of Engineering and Technology, University of Washington - Tacoma

November 20, 2019

[EEET)

31

DOCKER - 2

PR ey Sy S

Decker CLIU

Rune and other OC! untimes

Containerd Integration Architecture

= Docker CLI: interfaces with dockerd daemon

= Docker engine: dockerd daemon, interfaces with Containerd

= Containerd: simple daemon, interfaces with runc to manage
containers; CRUD interface for containers, images, volumes,
networks, builds; HTTP APl - Google RPC (gRPC) interface;

= runc: lightweight command-line tool for running containers;
Interfaces with Linux cgroups, namespaces; Runs an OCI
container

TCS5562: Software Engineering for Cloud Computing [Fall 2019]

| e e oolol Ensineerr s andlechnolosyl nvers Y liNes hinetonETecome

32

DOCKER - 3

= Docker architecture: Docker Engine

tat d
Other Docker tools: P

Docker Machine:
automatically provision
and manage sets of
docker hosts to

form a cluster

containerd-shim

Docker Swarm: Clusters multiple docker hosts together to
manage as a cluster.

Docker Compose: Config file (YAML) for multi-container
application; Describes how to deploy and configure multiple
containers

TCSS562: ineering for Cloud C 2019)
School of Engineering and Technology, University of Washington - Tacoma

November 20, 2019 11534

33

CONTAINER ORCHESTRATION

FRAMEWORKS

= Framework(s) to deploy multiple containers
= Provide container clusters using cloud VMs
=Similar to “private clusters”

= Reduce VM idle CPU time in public clouds

= Better leverage “sunk cost” resources

= Compact multiple apps onto shared public cloud
infrastructure

= Generate to cost savings
= Reduce vendor lock-in

TCS$562: Software Engineering for Cloud Computing [Fall 2019]

| Wil efth 20 Sehoolof Engineern s andiechnolosyilnvers Y ciWes hinetonETecoms

34

KEY ORCHESTRATION FEATURES

= Management of container hosts

Launching set of containers

Rescheduling failed containers

Linking containers to support workflows

Providing connectivity to clients outside the container cluster
Firewall: control network/port accessibility

Dynamic scaling of containers: horizontal scaling

= Scale in/out, add/remove containers

Load balancing over groups of containers

Rolling upgrades of containers for application

TCSS562: ineering for Cloud C 2019)
School of Engineering and Technology, University of Washington - Tacoma

November 20, 2019

[EEES

35

Slides by Wes J. Lloyd

36

L15.6



TCSS 562: Software Engineering for Cloud Computing

School of Engineering and Technology, UW-Tacoma

[Fall 2019]

CONTAINER ORCHESTRATION

FRAMEWORKS - 2

= Docker swarm
= Apache mesos/marathon
= Kubernetes

= Many public cloud provides moving to offer Kubernetes-as-
a-service

= Amazon elastic container service (ECS)
= Apache aurora

= Container-as-a-Service
= Serverles containers without managing clusters
= Azure Container Instances, AWS Fargate...

TCS5562: Software Engineering for Cloud Computing [Fall 2019]

Wil el 20 AT T R TS S o T e T o T

DOCKER, CGROUPS
RESOURCE ISOLATION

TCSS562: Software Engineering for Cloud Computing [Fal
School of Engineering and Technology, University of Was
Tacoma

November 20, 2019

37

DOCKER CLI

= Docker CLI > Docker Englner (dockerd) > contalnerd 2> runc

= Docker installation
= Docker file

= Docker run

= Docker ps

= Docker exec -it

= Docker stop

TCS5562: Software Engineering for Cloud Computing [Fall 2019]

e e oolol Ensineerr s andlechnolosyl nvers Y liNes hinetonETecome

39

TUTORIAL 7

= Linux performance benchmarks

= stress-ng
= 100s of CPU, memory, disk, network stress tests

= Sysbench
= Used in tutorial for memory stress test

TCS$562: Software Engineering for Cloud Computing [Fall 2019]

Wil efth 20 Sehoolof Engineern s andiechnolosyilnvers Y ciWes hinetonETecoms

41

Slides by Wes J. Lloyd

attach Attach local standard input, output, and error streams to a running container
build Build an image from a Dockerfile

commit Create a new

age from a container's changes
Copy files/folders between a container and the local filesystem
Create a new container
Deploy a new stack or update an existing stack
Inspect changes to files or directories on a container's filesystem
Get real time events from the server
Run a command in a running container
Export a container's filesystem as a tar archive
how the history of an image
List imag:
Import the contents from a tarball to create a filesystem image
Display system-wide information
Return low-level information on Docker objects
Kill one or more running containers
Load an image from a tar archive or STDIN
Log in to a Docker registry
Log out from a Docker registry
Fetch the logs of a container
Pause all processes within one or more containers
List port mappings or a specific mapping for the container
List containers
Pull an image or a repository from a registry
Push an image or a repository to a registry
Rename a container
Restart one or more containers
Remove one or more containers
Remove one or more images
Run a command in a new container
Save one or more ima to a tar archive (streamed to STDOUT by default)
earch the Docker Hub for images
Start one or more stopped containel
Display a live strean of container
Stop one or more running container
Create a tag TARGET_IMAGE that refers to SOURCE_IMAGE
Display the running processes of a container
Unpause all processes within one or more containers
Update configuration of one or more containers
show the Docker version information
Block until one or more containers stop, then print their exit codes

QUESTIONS

TCSS562: Software Engineering for Cloud Computing [Fall 2019]

WS 2t 2 School of Engineering and Technology, University of Washington -

42

L15.7



TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

November 20, 2019

EXTRA SLIDES

]

ing [Fall 2019]
Washingtor bma

43

Slides by Wes J. Lloyd

[Fall 2019]

L15.8



