TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TCSS 562:
SOFTWARE ENGINEERING ,
FOR CLOUD COMPUTING

Containerization

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

[Fall 2019]

OVERVIEW

= Midterm review

= Tutorial 7 to be posted this week (Tuesday)
= Tutorial 8 & 9 to be posted soon after
= Only 7 tutorials are required
= Additional tutorials beyond 7 provide extra credit

= Group presentation topics are due tonight: 11/18

= Each groups provides quick report answering questions
submitting a PDF file on Canvas

= Term project checkin - due Sunday 11/24

= Grading: tutorial 4 this week, tutorial 5 next

TCSS562: ineering for Cloud Computi 2019)
School of Engineeri Technology, University i Tacoma

November 18, 2019

TERM PROJECT DELIVERABLES

= Nine project teams

= Term project lightning presentations
= Monday December 9t" (5:50-7:50pm)
= Takes place of final exam
= Presentation length: 5 minutes + questions, total 8 minutes
= Format and rubric coming soon

= Term project final paper and source code repository
= Friday December 13 @ 11:59pm
= Paper template to be provided

TCS5562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineeri chnology, University i Tacoma

| November 18, 2019

GROUP PRESENTATION

= Cloud technology presentation
= Cloud research paper presentation

= Submit topics and desired dates of presentation via Canvas by
Monday November 18" @ 11:59pm

= Presentation dates:
= Monday November 25 (3 groups)
= Monday December 2 (3 groups)
= Wednesday December 4 (3 groups)

TCSS562: i ing for Cloud C i 2019]
School of Engineering and Technology, University of Washil Tacoma

‘ November 18, 2019 | 144

CONTAINERIZATION

TCSS562: Software Engineering for Cloud Computing [Fall 2019]

ST T e 20K School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

MOTIVATION FOR CONTAINERIZATION

= Containers provide “light-weight” alternative to full 0S
virtualization provided by a hypervisor

= Containers do not provide a full “machine”

= Instead use operating system constructs to provide “sand
boxes” for execution

= Linux cgroups, namespaces, etc.
= Containers can run on bare metal, or atop of VMs

Qrelelcierere ‘ Container p
[
Hﬁlﬁﬂﬁﬁ—» =
vlelelelele]s. VM|[Va| VM|V M
Host OS's bins/libs — [H)pcnm\rcngmcl ypervisor engine
Containers engine Hurdware Host 08
Host OS . Type 1 Hardware
Containers :
Rexdwaze Hypervisor/VM Type2
TCsS562: ineering for Cloud Computi 2019]
‘ R T2 L 20) Sehodl of Engineenng and TechnolosyUniversity/ot Washi Tacoma | Lae

L14.1

TCSS 562:

Software Engineering for Cloud Computing

School of Engineering and Technology, UW-Tacoma

CONTAINER PERFORMANCE

- LU FACTORIZATION PERFORMANCE

Performance data from IC2E 2015:

= Solve linear equations - matrix algebra

530 A Performance Comparison

[Fall 2019]

Hypervisors vs. Lightweight Virtualization:

s

MPFlops (higher is betier)

NATIVE osv

Fig.4. The value of Linpack results on each platform over 15 runs. This is
the particular case of N=1000.

TCS$562: Software Engineering for Cloud Computing [Fall 2019]

Wil 265 20D AT T R TS S o T e T o T

CONTAINER PERFORMANCE

- Y-CRUNCHER: PI CALCULATOR

Performance data from IC2E 2015:

| A Performance Comparison

Hypervisors vs. Lightweight Virtualization:

EKVM
1750 1 lapocker
1700 | |BLXC

ENATIVE

1500

2 1450
1400

1350

1300

Computation Time Total Time

TCSS562: i 2019)
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2019

CONTAINER PERFORMANCE - BONNIE++

Performance data from IC2E 2015:
Hypervisors vs.
250000 | A Per

Lightweight Virtualization:
S :

@KVM EDOCKER ELXC BNATIVE |

200000

150000

100000

30000

Disk Throughput (Kb/s - higher i

Block Output

Black Input

Fig. 6. Disk Throughput achieved by running Bonnie++ (test file of 25 GiB).
Results for sequential writes and sequential read are shown

November 18, 2019 | ;crs‘zifz;sm_ware_sngineeﬁng for Cloud Computing [Fall 2019]

Technology, y Tacoma

WHAT IS A CONTAINER?

According to NIST (National Institute of Standards Technology)

= Virtualization: the simulation of the software and/or hardware
upon which other software runs. (800-125)

= System Virtual Machine: A System Virtual Machine (VM) is a
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800-180 draft)

= Operating System Virtualization (aka OS Container): Provide
multiple virtualized OSes above a single shared kernel (800-
190). E.g., Solaris Zone, FreeBSD Jails, LXC

= Application Virtuallzatlon (aka Application Containers): Same
shared kernel is exposed to multiple discrete instances (800-
180 draft). E.g., Docker (containerd), rkt

TCSS562: ineering for Cloud C 2019)
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2019 110

OPERATING SYSTEM CONTAINERS

= Virtual environments: share the host kernel

= Provide user space isolation

= Replacement for VMs: run multiple processes, services
= Mix different Linux distros on same host

Host Host

= Examples: LXC,

Ubuntu Ubuntu Ubuntu Ubuntu RHEL CentOS
OpenVZ, 04 14,04 14,04 7
. Container [o Container Container Container
Linux Vserver,
BSD Jails,

Solaris zones

ima

Ubuntu 14.04 image

Ubuntu 14.04

Identical OS containers Different flavoured OS containers

= Credit: https://blog.risingstack

November 18, 2019 ;crs‘zifz;sm_ware_zngvneering for Cloud Computing [Fall 2019]

feve
chnology, y Tacoma | ‘

10

APPLICATION CONTAINERS

= Designed to package and run a single service

= All containers share host kernel

= Subtle differences from operating system containers

= Examples: Docker, Rocket

= Docker: runs a single process on creation

= 0S containers: run many OS services, for an entire 0S

= Create application containers for each component of an app
= Supports a micro-services architecture

= DevOPS: developers can package their own components in
application containers

= Supports horizontal and vertical scaling

TCSS562: ineering for Cloud C 2019)
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2019

ua1

11

Slides by Wes J. Lloyd

12

L14.2

TCSS 562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, UW-Tacoma

APPLICATION CONTAINERS - 2 OVERLAY FILE SYSTEMS

= Docker leverages overlay filesystems

= 1st: AUFS - Advanced multi-layered unification filesystem
= Now: overlay2

.

Union mount file system: combine multiple directories into one that
appears to contain combined contents

= Container images are “layered”

= Base image: common for all components

= Add layers that are specific
faosr:;:;zznents, services ;%fgﬁpces

= Layering promotes reuse image

= Reduces duplication of
data across images

Idea: Docker uses layered file systems

Only the top layer is writeable

Other layers are read-only

Layers are merged to present the notion of a real file system
Copy-on-write- implicit sharing

= Implement duplicate copy

= https://medium.com/@nagarwal/docker-containers-filesystem-
demystified-b6ed8112a04a

= https://www.slideshare.net/jpetazzo/scalelix-Ixc-talk-1

TCSS562: ineering for Cloud C 2019)
School of Engineering and Technology, University of Washington - Tacoma

| November 18, 2019 g:rs‘zifz;sm_ware_sngineeﬁng for Cloud Computing [Fall 2019]

nology, y Tacoma

11413 ‘ ‘ November 18, 2019

13 14

LAYERED FS: BUILDING A CONTAINER

THREE-TIER ARCHITECTURE

FROM ubuntu:18.04
® Dockerfile: copy . /app
RUN make /app
CMD python /app/app.py Node.js
Postgres
Nginx

Thin R/W layer { «—— Container layer

[| ! | |
Python /app/app.py > BN

Run make /app =| P 1.895 KB

Image layers (R/O) OS containers App containers

Copy - fapp | B —— Meant to used as an OS - run multiple « Meant to run for a single service
services + Layered filesystems
Ubuntu base image > FEES TR 1881 MB. « No layered filesystems by default « Built on top of OS container technologies
g « Built on cgroups, namespaces, native + Examples - Docker, Rocket

process resource isolation
Examples - LXC, OpenVZ, Linux VServer,
BSD Jails, Solaris Zones

ubuntu:15.04

Container
TCSS562: Software Engineering for Cloud Computing [Fall 2019] TCSS562: i ing for Cloud C 2019]
| o | Sehoolol Ensineern s endlechnolosyUnNe s q Tacoms s R T 2 200) ISehoallof Engineenng andTech nology/Unrversity ofWashinaton i Tacoma Late

15 16

CONTAINER ISOLATION LXC (LINUX CONTAINERS)

= |s the host isolated from application containers? = QOperating system level virtualization

" Run multiple isolated Linux systems on a host

= Are application containers isolated from each using a single Linux kernel

other?
Application = Control groups(cgroups)
containers q . o
n n Application =Including in Linux kernels => 2.6.24
PP PP containers L. L ;
=Limit and prioritize sharing of CPU, memory,
App | App
plock/network /0
e = Linux namespaces
VM kernel L.
| ‘ ‘ | = Docker initially based on LXC
[novembersn am1s T e o b Tcome B3 [ovemberan 2010 T e e hion:Tacome =

17 18

Slides by Wes J. Lloyd L14.3

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

LINUX KERNEL NAMESPACES

= Partitions kernel resources

= Processes see only their set of resources

= Provides isolation

= Namespaces are hierarchical

= Parent processes can see down the hierarchy
= 7 namespaces in Linux (cgroups not shown)

= Each process can only see resources associated
with the namespace, and descendent namespaces

TCS5562: Software Engineering for Cloud Computing [Fall 2019]

| Wil 265 20D AT T R TS S o T e T o T

NAMESPACES - 2 ‘ ey

PID USER PR NI VIAT _ RES _ SHA S KCPU SNEW _ TINE:

= Provides Isolatlon of 0S
entities for containers
= mnt: separate filesystems
= pild: independent PIDs; first process in container is PID 1
= jpc: prevents processes in different IPC
namespaces from being able to establish shared
memory. Enables processes in different containers
to reuse the same identifiers without conflict.
... provides expected VM like isolation...
= yser: user identification and privilege isolation
among separate containers
= net: network stack virtualization. Multiple loopbacks (lo)
= UTS (UNIX time sharlng): provides separate host and domain

TCSS562: i 2019)
School of Engineering and Technology, University of Washington - Tacoma

ua20

‘ November 18, 2019

19

20

CONTROL GROUPS (CGROUPS)

= Collection of Linux processes
= Group-level resource allocation: CPU, memory, disk I/0, network I/0
" Resource limiting
= Memory, disk cache
= Prloritizatlion
= CPU share
= Disk I/0 throughput
" Accounting
= Track resource utilization
= For resource management and/or billing purposes
= Control
= Pause/resume processes
= Checkpointing > Checkpoint/Restore in Userspace (CRIU)

= https://criu.org

TC55562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2019 | a1

CGROUPS - 2

= Control groups are hierarchical

= Groups inherent limits from parent groups

= Linux has multiple cgroup controllers (subsystems)
= |s /proc/cgroups

= “memory” controller limits memory use

= “cpuacct” controller accounts I—Y—E’fufj % Jothc | IO | oA G | Bt
for CPU usage v __
puace
blkio
memory B
= cgroup filesystem: P\cas
reezer
= /sys/fs/cgroup xﬁf:‘iem 2
= Can browse resource utilization Lot
X l__Luge
of containers... pios it 98
TCSS562: i ing for Cloud C 2019]
‘ (e, B School of Engineering and Technology, University of Washington - Tacoma naz

21

22

2016 DOCKER SURVEY

= Docker application containers
= Leading containerization vehicle

80% <

o,

plan to us Dosker
migrate workloags

oy
4%
‘want application
porahiy sctoss
o

to
o cloud

b docker

62: ineering for Cloud C ing [Fall 2019]

T
School of Engineering and Technology, University of Washington - Tacoma | e

| November 18, 2019

DOCKER EXECUTION ENVIRONMENTS

= (1) Original default Docker execution enviornment: LXC
= (2) Docker v0.9: libcontainer introduced (~2014)

= Provides Docker access to Linux Docker
container APIs B | | |
f f bvire e systemd-
= Execution drivers concept: l l mTwn

= Enable docker to leverage many 0S
containers as the exec environment
= OpenVZ, system-nspawn, libvirt-Ixc,

libvirt-sandbox, gemu/kvm,

selinux netfiker (8
capabilities —
BSD Jails, Solaris Zones, and chroot i

L2

Linux

cgroups namespaces netlink

TCSS562: ineering for Cloud C 2019)
School of Engineering and Technology, University of Washington - Tacoma

‘ November 18, 2019

= (3) Now runc (2015) .

23

Slides by Wes J. Lloyd

24

L14.4

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

DOCKER

= Docker daemon “dockerd”
= Provides docker services to Linux

= Docker 1.11+ g

= Open Container Initiative

® June 2015: Industry standard
for container runtimes and
formats

= Ensure containers are portable
among different execution
environments (engines)

Docker Crens Docker Contaiers
Docker Client-Server Architecture
= Credit: hitps://hack 55426

TC55562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

| November 18, 2019 11425

DOCKER - 2

R e T

Docker CLIUI

Runc and other OCI runtimes

Containerd Integration Architecture

= Docker CLI: interfaces with dockerd daemon

= Docker engine: dockerd daemon, interfaces with Containerd

= Containerd: simple daemon, interfaces with runc to manage
containers; CRUD interface for containers, images, volumes,
networks, builds; HTTP APl > Google RPC (gRPC) interface;

= runc: lightweight command-line tool for running containers;
Interfaces with Linux cgroups, namespaces; Runs an OCI
container

TCSS562: i 2019)
School of Engineering and Technology, University of Washington - Tacoma

L42s

November 18, 2019

25

26

DOCKER - 3

= Docker architecture:

tat d
= Other Docker tools:
= Docker Machine: o . ™
" L containerd-shim [l containerd-shim
automatically provision
sockernoseto - (HEEEED WD NN
runC runC

docker hosts to
form a cluster

= Docker Swarm: Clusters multiple docker hosts together to
manage as a cluster.

= Docker Compose: Config file (YAML) for multi-container
application; Describes how to deploy and configure multiple
containers

TCS5562: Software Engineering for Cloud Computing [Fall 2019]

| o e oolol Ensineerr s andlechnolosyl nvers Y liNes hinetonETecome

CONTAINER ORCHESTRATION

FRAMEWORKS

= Framework(s) to deploy multiple containers
= Provide container clusters using cloud VMs
ESimilar to “private clusters”

" Reduce VM idle CPU time in public clouds

= Better leverage “sunk cost” resources

= Compact multiple apps onto shared public cloud
infrastructure

= Generate to cost savings
" Reduce vendor lock-in

TCSS562: ineering for Cloud C 2019)
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2019

27

KEY ORCHESTRATION FEATURES

= Management of container hosts
® Launching set of containers
= Rescheduling failed containers
= Linking containers to support workflows
= Providing connectivity to clients outside the container cluster
= Firewall: control network/port accessibility
= Dynamic scaling of containers: horizontal scaling
= Scale in/out, add/remove containers
= Load balancing over groups of containers
= Rolling upgrades of containers for application

TCS$562: Software Engineering for Cloud Computing [Fall 2019]

| Wil 26 20D Sehoolof Engineern s andiechnolosyilnvers Y ciWes hinetonETecoms

29

Slides by Wes J. Lloyd

28

CONTAINER ORCHESTRATION

FRAMEWORKS - 2

= Docker swarm
= Apache mesos/marathon
= Kubernetes

= Many public cloud provides moving to offer Kubernetes-as-
a-service

= Amazon elastic container service (ECS)
= Apache aurora

= Container-as-a-Service
= Serverles containers without managing clusters
= Azure Container Instances, AWS Fargate...

TCSS562: ineering for Cloud C 2019)
School of Engineering and Technology, University of Washington - Tacoma

ua30

November 18, 2019

30

L14.5

TCSS 562:

Software Engineering for Cloud Computing

School of Engineering and Technology, UW-Tacoma

[Fall 2019]

TUTORIAL #7

DOCKER, CGROUPS,
RESOURCE ISOLATION

TCSS562: Software Engineering for Cloud Computing [Fal
November 18, 2019 School of Engineering and Technology, University of Wasl
Tacoma

DOCKER CLI

= Docker CLI > Docker Englner (dockerd) 2> contalnerd - runc

= Docker installation
= Docker file

= Docker run

= Docker ps

= Docker exec -it

= Docker stop

31

attach Attach local standard input, output, and error streams to a running container
build Build an image from a Dockerfile
commit Create a new image from a container'

Copy files/folders betw
Create a new container
Deploy a new stack or update an existing
Inspect changes to files or director
Get real ti vents from the rver
Run a command in a running container

xport a container's filesystem as a tar archive
show the history of an image

s

contents from a tarball to create a filesystem image
-wide information
evel information on Docker objects
Kill one or more running containers
Load an image from a tar archive or STDIN
Log in to a Docker registry
Log out from a Docker registry
Fetch the logs of a container
use all processes within one or more containe
List port mappings or a ific mapping for the container
List contai s
Pull an image or a repository from a registry
Push an image or a repository to a registry
Rename a container
tart one or more containers
one or more contai
ve one or more images
n a command in a new container
images to a tar archive (streamed to STDOUT by default)

Start one or more stopped containers
Display a live stream of container(s) resource usage statistics

Stop one or more running containers

Create a tag TARGET_IMAGE that r to SOURCE_IMAGE

Display the running proc of a contain

Unpause all processes within one or more containers

Update configuration of one or more containers

show the Docker version information

Block until one or more containers stop, then print their exit codes

TCSS562: i loud C¢ i 2019]
‘ R T L 202) Schoolof Engineering and Technology, Universty of Washington - Tacoma L3z
= Linux performance benchmarks
= stress-ng
= 100s of CPU, memory, disk, network stress tests
= Sysbench
= Used in tutorial for memory stress test
TCSS562: i i loud C¢ i 2019]
‘ R T 2 200) School of Engineering and Technology, University of ashi Tecoma L3

QUESTIONS

TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington -

November 18, 2019

35

Slides by Wes J. Lloyd

34

EXTRA SLIDES

TCSS562: Software Engineering for Cloud Computing [Fall 2019]

Weml e Eh 2 School of Engineering and Technology, University of Washington -

36

L14.6

