
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L10.1

AWS Demo

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 562:
SOFTWARE ENGINEERING
FOR CLOUD COMPUTING  Practice midterm:

 In class, Wednesday November 6th (for 1 hour)

 1-week to study

 Holiday:

 Veteran’s Day - Monday November 11th

 Midterm:

 Wednesday November 13th

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.2

MIDTERM EXAM SCHEDULING

 Perspective on material: 6.65 ( mostly new to me)

 Pace: 5.41 (~ just right)

 17 respondents

 Many tutorial #3 questions in last day or so…

 Shared postings via Canvas

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.3

FEEDBACK FROM 10/23

 “I t would be nice if you give us time to follow the demo along
with you. I t’s hard to fol low what you’re doing without getting
a hand on it”…

 Demo on Wednesday 10/23 was part of tutorial #4

 Will review again

 Please start tutorial #4, and bring questions to class this
Wednesday.

 Tutorial #4 is due Sunday November 3rd

(clocks fall back 1 hour)

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.4

TUTORIAL 4

AWS DEMO

October 28, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington -
Tacoma

L10.5

 From the eScience Institute @ UW Seattle:

 https://escience.washington.edu/

 Offers 1-day cloud workshops

 Introduction to AWS, Azure, and Google Cloud

 Task: Deploying a Python DJANGO web application

 Workshop materials available online:

https://cloudmaven.github.io/documentation/r
c_cloud101_immersion.html

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.6

CLOUD 101 WORKSHOP

1 2

3 4

5 6

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L10.2

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.7

AWS MANAGEMENT CONSOLE

 Elastic Compute Cloud

 Instance types: https://ec2instances.info
 On demand instance – full price

 Reserved instance – contract based

 Spot instance – auction based, terminates with 2 minute warning

 Dedicated/reserved host – reserved HW

 Reserved host

 Instance families:
General, compute-optimized, memory-optimized, GPU, etc.

 Storage types
 Instance storage - ephemeral storage

 EBS - Elastic block store

 EFS - Elastic file system

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.8

AWS EC2

 Also called ephemeral storage

 Persisted using images saved to S3 (simple storage service)
 ~2.3₡ per GB/month on S3

 5GB of free tier (1st year only) storage space on S3

 Requires “burning” an image or transferring individual fi les

 Burning an image (Amazon Machine Image) is multi -step process:
 Create image files

 Upload chunks to S3

 Register image

 Launching a VM
 Requires downloading image components from S3, reassembling them…

is potentially slow

 VMs with instance store backed root volumes not pause-able

 Historically root volume limited to 10-GB max– faster imaging…

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.9

INSTANCE STORAGE

 EBS cost model is different than instance storage (uses S3)
 ~10₡ per GB/month

 30GB of free tier storage space

 EBS provides “live” mountable volumes
 Listed under volumes

 Data volumes: can be mounted/unmounted to any VM, dynamically
at any time

 Root volumes: hosts OS files and acts as a boot device for VM

 In Linux drives are linked to a mount point “directory”

 Snapshots back up EBS volume data to S3
 Enables replication (required for horizontal scaling)

 EBS volumes not actively used should be snapshotted, and deleted to
save EBS costs…

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.10

ELASTIC BLOCK STORE

 Metric: I/O Operations per Second (IOPS)
 General Purpose 2 (GP2)
 3 IOPS per GB, Max 10,000 IOPS, 160MB/sec per volume

 Provisioned IOPS (IO1)
 32,000 IOPS, and 500 MB/sec throughput per volume

 Throughput Optimized HDD (ST1)
 Up to 500 MB/sec throughput
 4.5 ₡ per GB/month

 Cold HDD (SC1)
 Up to 250 MB/sec throughput
 2.5 ₡ per GB/month

 Magnetic
 Up to 800 MB/sec throughput
 5 ₡ per GB/month

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.11

EBS VOLUME TYPES - 2

 Network file system (based on NFSv4 protocol)
 Shared file system for EC2 instances
 Enables mounting (sharing) the same disk “volume” for R/W

access across multiple instances at the same time
 Different performance and limitations vs. EBS/Instance store

 Implementation uses abstracted EC2 instances
 ~ 30 ₡ per GB/month storage – default burstable throughput
 Throughput modes:
 Can modify modes only once every 24 hours

 Burstable Throughput Model: (default)
 Baseline – 50kb/sec per GB
 Burst – 100MB/sec pet GB (for volumes sized 10GB to 1024 GB)
 Credits - .72 minutes/day per GB
October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]

School of Engineering and Technology, University of Washington - Tacoma
L10.12

ELASTIC FILE SYSTEM (EFS)

7 8

9 10

11 12

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L10.3

 Burstable Throughput Rates
 Throughput rates: baseline vs burst

 Credit model for bursting: maximum burst per day

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.13

ELASTIC FILE SYSTEM (EFS) - 2

 Throughput Models

 Provisioned Throughput Model – (pay for bandwidth)

 For applications with:
high performance requirements, but low storage requirements

 Get high levels of performance w/o overprovisioning capacity

 $6 for each 1 MB/s-Month (Virginia Region)
 Default is 50kb/sec for 1 GB, .05 MB/s = ** 30 ₡ per GB/month **

 If file system metered size has higher baseline rate based on
size, file system follows default Amazon EFS Bursting
Throughput model
 No charges for Provisioned Throughput below file system's

entitlement in Bursting Throughput mode

 Throughput entitlement = 50kb/sec per GB

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.14

ELASTIC FILE SYSTEM (EFS) - 3

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.15

ELASTIC FILE SYSTEM (EFS) - 4

 AMIs

 Unique for the operating system (root device image)

 Two types
 Instance store

 Elastic block store (EBS)

 Deleting requires multiple steps
 Deregister AMI

 Delete associated data - (files in S3)

 Forgetting to delete the snapshot leads to costly “orphaned”
data
 No way to instantiate a VM from deregistered AMIs

 Data still in S3 (snapshot) resulting in charges

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.16

AMAZON MACHINE IMAGES

 1st, 2n d, 3 rd, 4 th generation  XEN-based

 5th generation instances  AWS Nitro virtual ization

 XEN - two vir tualization modes

 XEN Paravirtualization “paravirtual”
 10GB Amazon Machine Image – base image size limit

 Addressed poor performance of old XEN HVM mode

 I/O performed using special XEN kernel with XEN paravirtual mode
optimizations for better performance

 Requires OS to have an available paravirtual kernel

 PV VMs: will use common AKI files on AWS – Amazon kernel
image(s)
 Look for common identifiers

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.17

EC2 VIRTUALIZATION - PARAVIRTUAL

 XEN HVM mode

 Full virtualization – no special OS kernel required

 Computer entirely simulated

MS Windows runs in “hvm” mode

 Allows work around: 10GB instance store root volume limit

 Kernel is on the root volume (under /boot)

 No AKIs (kernel images)

 Commonly used today (EBS-backed instances)

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.18

EC2 VIRTUALIZATION - HVM

13 14

15 16

17 18

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L10.4

 Nitro based on Kernel-based-virtual-machines

 Stripped down version of Linux KVM hypervisor

 Uses KVM core kernel module

 I/O access has a direct path to the device

 Goal: provide indistinguishable performance from bare
metal

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.19

EC2 VIRTUALIZATION - NITRO

 From: h t t p :/ /w ww. bren dan g regg .com /bl og/ 2017-11 - 29/aws -e c2-v i r tua l iz at ion -2017.htm l

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.20

EVOLUTION OF AWS VIRTUALIZATION

 Stop

 Costs of “pausing” an instance

 Terminate

 Reboot

 Image management

 Creating an image

 EBS (snapshot)

 Bundle image
 Instance-store

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.21

INSTANCE ACTIONS

 Public IP address

 Elastic IPs
 Costs: in-use FREE, not in-use ~12 ₡/day

 Not in-use (e.g. “paused” EBS-backed instances)

 Security groups
 E.g. firewall

 Identity access management (IAM)
 AWS accounts, groups

 VPC / Subnet / Internet Gateway / Router

 NAT-Gateway: appliance that provides internet connectivity to
private subnets

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.22

EC2 INSTANCE: NETWORK ACCESS

 Recommended when using Amazon EC2

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.23

SIMPLE VPC VPC SPANNING AVAILABILITY ZONES

19 20

21 22

23 24

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L10.5

 Key-value blob storage

 What is the difference vs. key-value stores (NoSQL DB)?

 Can mount an S3 bucket as a volume in Linux
 Supports common file-system operations, but with some

performance limitations
 Uses s3fs (leverages FUSE- file system in user space)
 https://github.com/s3fs-fuse/s3fs-fuse

 S3 replicates data, and provides eventual consistency

 Can be used to persist data for AWS Lambda functions

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.25

SIMPLE STORAGE SERVICE (S3)

 Launch Ubuntu 18.04 VM
 Instances | Launch Instance

 Install the general AWS CLI
 sudo apt install awscli

 Create config file
[default]

aws_access_key_id = <access key id>

aws_secret_access_key = <secret access key>

region = us-east-2

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.26

AWS CLI

 Creating access keys: IAM | Users | Security Credentials |
Access Keys | Create Access Keys

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.27

AWS CLI - 2

 Export the config file
 Add to /home/ubuntu/.bashrc

export AWS_CONFIG_FILE=$HOME/.aws/config

 Try some commands:
 aws help

 aws command help

 aws ec2 help

 aws ec2 describes-instances --output text

 aws ec2 describe-instances --output json

 aws s3 ls

 aws s3 ls vmscaleruw

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.28

AWS CLI - 3

 sudo apt install ec2-api-tools
 Predates “awscli” package
 API specif ically for ec2 (not all amazon web services)
 Provides more concise output (generally no JSON)
 Addit ional funct ionality

 Define variables in .bashrc or another sourced script:
 export AWS_ACCESS_KEY={your access key}
 export AWS_SECRET_KEY={your secret key}

 ec2-describe-instances
 ec2-run-instances
 ec2-request-spot-instances

 EC2 management from Java:
 http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc
/index.html

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.29

ALTERNATIVE CLI

 Find your instance ID (from any EC2 VM):
curl http://169.254.169.254/

curl http://169.254.169.254/latest/

curl http://169.254.169.254/latest/meta-data/

curl http://169.254.169.254/latest/meta-data/instance-id
; echo

 ec2-get-info command (if available on VM??)

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.30

INSPECTING INSTANCE INFORMATION

25 26

27 28

29 30

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L10.6

 Install openssl package on VM

generate private key file

$openssl genrsa 2048 > mykey.pk

generate signing certificate file

$openssl req -new -x509 -nodes -sha256 -days 36500 -key
mykey.pk -outform PEM -out signing.cert

 Add signing.cert to IAM | Users | Security Credentials |
- - new signing certificate - -

 From: http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/set-
up-ami-tools.html?icmpid=docs_iam_console#ami-tools-create-
certificate

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.31

PRIVATE KEY AND CERTIFICATE FILE

 These files, combined with your AWS_ACCESS_KEY and
AWS_SECRET_KEY and AWS_ACCOUNT_ID enable you to
publish new images from the CLI

 Objective:

1. Configure VM with software stack

2. Burn new image for VM replication (horizontal scaling)

 Some folks may just install Docker. . .

 Create image script . . .

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.32

PRIVATE KEY, CERTIFICATE FILE

for legacy instance store images - requires ec2-ami-tools package

image=$1

echo "Burn image $image"

echo "$image" > image.id

mkdir /mnt/tmp

AWS_KEY_DIR=/home/ubuntu/.aws

export EC2_URL=http://ec2.amazonaws.com

export S3_URL=https://s3.amazonaws.com

export EC2_PRIVATE_KEY=${AWS_KEY_DIR}/mykey.pk

export EC2_CERT=${AWS_KEY_DIR}/signing.cert

export AWS_USER_ID={your account id}

export AWS_ACCESS_KEY={your aws access key}

export AWS_SECRET_KEY={your aws secret key}

ec2-bundle-vol -s 5000 -u ${AWS_USER_ID} -c ${EC2_CERT} -k ${EC2_PRIVATE_KEY}
--ec2cert /etc/ec2/amitools/cert-ec2.pem --no-inherit -r x86_64 -p $image -i
/etc/ec2/amitools/cert-ec2.pem

cd /tmp

ec2-upload-bundle -b tcss562 -m $image.manifest.xml -a ${AWS_ACCESS_KEY} -s
${AWS_SECRET_KEY} --url http://s3.amazonaws.com --location US

ec2-register tcss562/$image.manifest.xml --region us-east-1 --kernel aki-
88aa75e1

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.33

CREATE, UPLOAD, AND REGISTER NEW
INSTANCE STORE AMI SCRIPT:

CLOUD ENABLING
TECHNOLOGY

October 28, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L10.34

Broadband networks and internet architecture

Data center technology

Virtualization technology

Multitenant technology

Web/web services technology

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.35

CLOUD ENABLING TECHNOLOGY

 Clouds must be connected to a network

 Inter-networking: Users’ network must connect to cloud’s
network

 Public cloud computing relies heavily on the internet

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.36

1. BROADBAND NETWORKS
AND INTERNET ARCHITECTURE

31 32

33 34

35 36

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L10.7

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.37

PRIVATE CLOUD NETWORKING

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.38

PUBLIC CLOUD NETWORKING

 Cloud consumers and providers typically communicate via the
internet

 Decentralized provisioning and management model is not
controlled by the cloud consumers or providers

 Inter-networking (internet) relies on connectionless packet
switching and route-based interconnectivity

 Routers and switches support communication

 Network bandwidth and latency influence QoS, which is
heavily impacted by network congestion

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.39

INTERNETWORKING KEY POINTS

 Grouping servers together (clusters):

 Enables power sharing

 Higher efficiency in shared IT resource usage
(less duplication of effort)

 Improved accessibility and organization

 Key components:
 Virtualized and physical server resources

 Standardized, modular hardware

 Automation support: ease server provisioning,
configuration, patching, monitoring without
supervision… tools are desirable

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.40

2. DATA CENTER TECHNOLOGY

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.41

CLUSTER MANAGEMENT TOOLS

Hyak Cluster
UW-Seattle

 Remote operation / management

 High availabil ity support: **redundant everything**
Includes: power supplies, cabling, environmental control
systems, communication links, duplicate warm replica
hardware

 Secure design: physical and logical access control

 Servers: rackmount, etc.

 Storage: hard disk arrays (RAID), storage area network (SAN):
disk array with dedicated network, network attached storage
(NAS): disk array on network for NFS, etc.

 Network hardware: backbone routers (WAN to LAN
connectivity), firewalls, VPN gateways, managed
switches/routers

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.42

DATA CENTER TECHNOLOGY –
KEY COMPONENTS

37 38

39 40

41 42

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L10.8

 Convert a physical IT resource into a vir tual IT resource

 Servers, storage, network, power (vir tual UPSs)

 Virtualization supports:
 Hardware independence

 Server consolidation

 Resource replication

 Resource pooling

 Elastic scalability

 Virtual servers
 Operating-system based virtualization

 Hardware-based virtualization

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.43

3. VIRTUALIZATION TECHNOLOGY

 Emulation/simulation of a computer in software

 Provides a substitute for a real computer or server

 Virtualization platforms provide functionality to run an
entire operating system

 Allows running multiple different operating systems, or
operating systems with different versions simultaneously
on the same computer

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.44

VIRTUAL MACHINES

 Tradeoff space:

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.45

KEY VIRTUALIZATION TRADEOFF

Degree of
Hardware

Abstraction

Concerns:
Overhead

Performance
Isolation
Security

 Host OS and VMs run atop the hypervisor

 The boot OS is the hypervisor kernel

 Xen dom0

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.46

TYPE 1 HYPERVISOR

 Acts as a control program
 Miniature OS kernel that manages VMs
 Boots and runs on bare metal
 Also known as Virtual Machine Monitor (VMM)
 Paravirtualization: Kernel includes I/O drivers
 VM guest OSes must use special kernel to interoperate
 Paravirtualization provides hooks to the guest VMs
 Kernel traps instructions (i.e. device I/O) to implement

sharing & multiplexing
 User mode instructions run directly on the CPU
 Objective: minimize vir tualization overhead
 Classic example is XEN (dom0 kernel)

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.47

TYPE 1 HYPERVISOR

 T YPE 1

 XEN

 Citrix Xen-server (a commercial version of XEN)

 VMWare ESXi

 KVM (virtualization support in kernel)

 Paravirtual I/O drivers introduced

 XEN

 KVM

 Virtualbox

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.48

COMMON VMMS:
PARAVIRTUALIZATION

43 44

45 46

47 48

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L10.9

 Developed at Cambridge in ~ 2003

XEN

Physical Machine 

XEN kernel 

Host OS 

Guest VMs
 VMs managed as “domains”

 Domain 0 is the hypervisor domain

 Host OS is installed to run on bare-metal, but doesn’t
directly facilitate virtualization (unlike KVM)

 Domains 1..n are guests (VMs) – not bare-metal

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.50

XEN - 2

 Physical machine boots special XEN kernel

 Kernel provides paravirtual API to manage CPU & device
multiplexing

 Guests require modified XEN-aware kernels

 Xen supports full-virtualization for unmodified OS guests
in hvm mode

 Amazon EC2 largely based on modified version of XEN
hypervisor (EC2 gens 1-4)

 XEN provides its own CPU schedulers, I/O scheduling

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.51

XEN - 3

 Adds additional layer

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.52

TYPE 2 HYPERVISOR

 Problem: Original x86 CPUs could not trap special
instructions

 Instructions not specially marked

 Solution: Use Full Virtualization

 Trap ALL instructions

 “Fully” simulate entire computer

 Tradeoff: Higher Overhead

 Benefit: Can virtualize any operating system without
modification

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.53

TYPE 2 HYPERVISOR
KERNEL BASED VIRTUAL

MACHINES (KVM)
 x86 HW notoriously difficult to virtualize

Extensions added to 64-bit Intel/AMD CPUs

Provides hardware assisted virtualization

New “guest” operating mode

Hardware state switch

Exit reason reporting

 Intel/AMD implementations different

Linux uses vendor specific kernel modules

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.54

49 50

51 52

53 54

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L10.10

KVM – 2 KVM – 3

KVM has /dev/kvm device file node

Linux character device, with operations:
 Create new VM

 Allocate memory to VM

 Read/write virtual CPU registers

 Inject interrupts into vCPUs

 Running vCPUs

VMs run as Linux processes

Scheduled by host Linux OS

Can be pinned to specific cores with “taskset”

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.56

KVM PARAVIRTUALIZED I/O

 KVM – Virtio

 Custom Linux based paravirtual device drivers

 Supersedes QEMU hardware emulation (full virt.)

 Based on XEN paravirtualized I/O

 Custom block device driver provides paravirtual device
emulation

 Virtual bus (memory ring buffer)

 Requires hypercall facility

 Direct access to memory

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.57

KVM DIFFERENCES FROM XEN

 KVM requires CPU VMX support
 Virtualization management extensions

 KVM can virtualize any OS without special kernels
 Less invasive

 KVM was originally separate from the Linux kernel,
but then integrated

 KVM is type 1 hypervisor because the machine boots
Linux which has integrated support for virtualization

 Different than XEN because XEN kernel alone is not a
full-fledged OS

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.58

KVM ENHANCEMENTS

Paravirtualized device drivers
Virtio

Guest Symmetric Multiprocessor (SMP) support
Leverages multiple on-board CPUs
Supported as of Linux 2.6.23

VM Live Migration

 Linux scheduler integration
Optimize scheduler with knowledge that KVM

processes are virtual machines

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.59

 Virtual infrastructure management (VIM) tools

 Tools that manage pools of virtual machines, resources, etc.

 Private cloud software systems can be considered as a VIM

 Considerations:

 Performance overhead
 Paravirtualization: custom OS kernels, I/O passed directly to HW w/

special drivers

 Hardware compatibility for vir tualization

 Portability: vir tual resources tend to be difficult to migrate
cross-clouds

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.60

VIRTUALIZATION MANAGEMENT

55 56

57 58

59 60

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L10.11

VIRTUAL INFRASTRUCTURE
MANAGEMENT (VIM)

Middleware to manage virtual machines and
infrastructure of IaaS “clouds”

Examples

OpenNebula

Nimbus

Eucalyptus

OpenStack

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.61

VIM FEATURES

Create/destroy VM Instances

 Image repository

Create/Destroy/Update images

Image persistence

Contextualization of VMs

Networking address assignment

DHCP / Static IPs

Manage SSH keys

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.62

VIM FEATURES - 2

Virtual network configuration/management

Public/Private IP address assignment

Virtual firewall management

 Configure/support isolated VLANs (private
clusters)

Support common virtual machine managers
(VMMs)

XEN, KVM, VMware

Support via libvirt library
October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]

School of Engineering and Technology, University of Washington - Tacoma
L10.63

VIM FEATURES - 3

Shared “Elastic” block storage

Facility to create/update/delete VM disk volumes

Amazon EBS

Eucalyptus SC

OpenStack Volume Controller

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.64

 Middleware to manage Docker application container
deployments across virtual clusters of Docker hosts (VMs)

 Considered Infrastructure-as-a-Service

 Opensource

 Kubernetes framework

 Docker swarm

 Apache Mesos/Marathon

 Proprietary

 Amazon Elastic Container Service

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.65

CONTAINER ORCHESTRATION
FRAMEWORKS

 Public cloud container cluster services
 Azure Kubernetes Service (AKS)

 Amazon Elastic Container Service for Kubernetes (EKS)

 Google Kubernetes Engine (GKE)

 Container-as-a-Service
 Azure Container Instances (ACI – April 2018)

 AWS Fargate (November 2017)

 Google Kubernetes Engine Serverless Add-on (alpha-July 2018)

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.66

CONTAINER SERVICES

61 62

63 64

65 66

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L10.12

 Each tenant (like in an apartment) has their own view of the
application

 Tenants are unaware of their neighbors

 Tenants can only access their data, no access to
data and configuration that is not their own

 Customizable features
 UI, business process, data model, access control

 Application architecture
 User isolation, data security, recovery/backup by tenant, scalability

for a tenant, for tenants, metered usage, data tier isolation

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.67

4. MULTITENANT APPLICATIONS

 Forms the basis for SaaS (applications)

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.68

MULTITENANT APPS - 2

 Web services technology is a key foundation of cloud
computing’s “as-a-service” cloud delivery model

 SOAP – “Simple” object access protocol

 First generation web services

WSDL – web services description language

 UDDI – universal description discovery and integration

 SOAP services have their own unique interfaces

 REST – instead of defining a custom technical interface
REST services are built on the use of HTTP protocol

 HTTP GET, PUT, POST, DELETE

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.69

WEB SERVICES/WEB

 An ASCII-based request/reply protocol for transferring
information on the web

 HTTP request includes:

 request method (GET, POST, etc.)

 Uniform Resource Identifier (URI)

 HTTP protocol version understood by the client

 headers—extra info regarding transfer request

 HTTP response from server

 Protocol version & status code 

 Response headers

 Response body

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.70

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

 Web services protocol

 Supersedes SOAP – Simple Object Access Protocol

 Access and manipulate web resources with a predefined
set of stateless operations (known as web services)

 Requests are made to a URI

 Responses are most often in JSON, but can also be HTML,
ASCII text, XML, no real limits as long as text-based

 HTTP verbs: GET, POST, PUT, DELETE, …

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.71

REST: REPRESENTATIONAL STATE TRANSFER

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L10.72

// SOAP REQUEST

POST /InStock HTTP/1.1
Host: www.bookshop.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-
encoding">
<soap:Body xmlns:m="http://www.bookshop.org/prices">
<m:GetBookPrice>
<m:BookName>The Fleamarket</m:BookName>

</m:GetBookPrice>
</soap:Body>
</soap:Envelope>

67 68

69 70

71 72

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L10.13

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L10.73

// SOAP RESPONSE
POST /InStock HTTP/1.1
Host: www.bookshop.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-
encoding">
<soap:Body xmlns:m="http://www.bookshop.org/prices">
<m:GetBookPriceResponse>
<m: Price>10.95</m: Price>

</m:GetBookPriceResponse>
</soap:Body>
</soap:Envelope>

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L10.74

// WSDL Service Definition
<?xml version="1.0" encoding="UTF-8"?>
<definitions name ="DayOfWeek"
targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<message name="DayOfWeekInput">
<part name="date" type="xsd:date"/>

</message>
<message name="DayOfWeekResponse">
<part name="dayOfWeek" type="xsd:string"/>

</message>
<portType name="DayOfWeekPortType">
<operation name="GetDayOfWeek">
<input message="tns:DayOfWeekInput"/>
<output message="tns:DayOfWeekResponse"/>

</operation>
</portType>
<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetDayOfWeek">
<soap:operation soapAction="getdayofweek"/>
<input>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>
<service name="DayOfWeekService" >
<documentation>
Returns the day-of-week name for a given date

</documentation>
<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">
<soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/>

</port>
</service>

</definitions>

USDA
Lat/Long
Climate
Service
Demo

 Just provide
a Lat/Long

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.75

REST CLIMATE SERVICES EXAMPLE

// REST/JSON
// Request climate data for Washington

{
"parameter": [
{
"name": "latitude",
"value":47.2529

},
{
"name": "longitude",
"value":-122.4443

}
]

}

 App manipulates one or more types of resources.

 Everything the app does can be characterized as some
kind of operation on one or more resources.

 Frequently services are CRUD operations
(create/read/update/delete)

 Create a new resource

 Read resource(s) matching criterion

 Update data associated with some resource

 Destroy a particular a resource

 Resources are often implemented as objects in OO
languages

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.76

REST - 2

 Per formance: component interactions can be the dominant
factor in user-perceived performance and network efficiency

 Scalability : to support large numbers of services and
interactions among them

 Simplicity: of the Uniform Interface

 Modifiabil ity : of services to meet changing needs (even while the
application is running)

 Visibility : of communication between services

 Por tabil ity : of services by redeployment

 Reliabi li ty: resists failure at the system level as redundancy of
infrastructure is easy to ensure

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.77

REST ARCHITECTURAL ADVANTAGES QUESTIONS

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L10.78

73 74

75 76

77 78

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L10.14

TCSS 562
TERM PROJECT

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L10.79

 Build a serverless cloud native application
 Application provides a case study to design trade-offs:
 Projects will compare and contrast one or more trade-offs:

 Service composition

 Switchboard architecture
 Address COLD Starts
 Infrastructure Freeze/Thaw cycle of AWS Lambda (FaaS)

 Full service isolation, full service aggregation

 Application flow control

 Programming Languages

 Alternate FaaS Platforms

 Data provisioning

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.80

TCSS 562 TERM PROJECT

 Service 1: TRANSFORM

 Read CSV file, perform some transformations

 Write out new CSV file

 Service 2: LOAD

 Read CSV file, load data into relational database

 Cloud DB (AWS Aurora), or local DB (Derby/SQLite)
 Derby DB and/or SQLite code examples to be provided in Java

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.81

EXTRACT TRANSFORM LOAD
DATA PIPELINE

 Service 3: EXTRACT

 Using relational database, apply filter(s) and/or functions to
aggregate data to produce sums, totals, averages

 Output aggregations as JSON

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.82

EXTRACT TRANSFORM LOAD
DATA PIPELINE 2

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.83

SERVICE COMPOSITION

A B C

A B C

B CA

A B C

3 services

2 services

2 services

1 service

Full Service
Isolation

Full Service
Aggregation

Other possible compositions: group by library, functional cohesion, etc.

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.84

SWITCH-BOARD ARCHITECTURE

1 service

Single deployment package with consolidated codebase (Java: one JAR file)

Entry method contains “switchboard” logic
Case statement that route calls to proper service

Routing is based on data payload
Check if specific parameters exist, route call accordingly

Goal: reduce # of COLD starts to improve performance

79 80

81 82

83 84

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L10.15

 Serverless Computing:

 AWS Lambda (FAAS: Function-as-a-Service)

 Provides HTTP/REST like web services

 Client/Server paradigm

 Synchronous web service:

 Client calls service

 Client blocks (freezes) and waits for server to complete call

 Connection is maintained in the “OPEN” state

 Problematic if service runtime is long!
 Connections are notoriously dropped

 System timeouts reached

 Client can’t do anything while waiting unless using threads
October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]

School of Engineering and Technology, University of Washington - Tacoma
L10.85

APPLICATION FLOW CONTROL

 Asynchronous web service

 Client calls service

 Server responds to client with OK message

 Client closes connection

 Server performs the work associated with the service

 Server posts service result in an external data store
 AWS: S3, SQS (queueing service), SNS (notification service)

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.86

APPLICATION FLOW CONTROL - 2

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.87

APPLICATION FLOW CONTROL - 3

Client flow control Microservice as controller

AWS Step Function Asynchronous

 Function-as-a-Service platforms support hosting services code
in multiple languages

 AWS Lambda- common: Java, Node.js, Python
 Plus others: Go, PowerShell, C#, and Ruby

 Also Runtime API (“BASH”) which allows deployment of any
binary executable in any programming languages

 Jackson D, Clynch G. An Investigation of the Impact of Language
Runtime on the Performance and Cost of Serverless Functions. In
Proc. Of the 2018 IEEE/ACM International Conference on Uti lity and
Cloud Computing Companion (UCC Companion) 2018 Dec 17 (pp.
154-160).

 http://faculty.washington.edu/wlloyd/courses/tcss562/papers/
AnInvestigationOfTheImpactOfLanguageRuntimeOnThePerformance
AndCostOfServerlessFunctions.pdf

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.88

PROGRAMMING LANGUAGE

 Many commercial and open source FaaS platforms exist

 TCSS562 projects can choose to compare performance and
cost implications of alternate platforms.

 Supported by SAAF:

 AWS Lambda

 Google Cloud Functions

 Azure Functions

 IBM Cloud Functions

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.89

FAAS PLATFORMS

 Consider performance and cost implications of the data-tier
design for the serverless application

 Use different tools as the relational datastore to support
service #2 (LOAD) and service #3 (EXTRACT)

 SQL / Relational:

 Amazon Aurora (serverless cloud DB), Amazon RDS (cloud DB),
DB on a VM (MySQL), DB inside Lambda function (SQLite,
Derby)

 NO SQL / Key/Value Store:

 Dynamo DB, MongoDB, S3

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.90

DATA PROVISIONING

85 86

87 88

89 90

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2019]

Slides by Wes J. Lloyd L10.16

 Transform service
 Please perform 3 or more data transformations

 3 ensures workload is not trivial

 Groups are free to propose the actual transformation

 At least one new column should be added

 Other transformations can reformat data

 More work is generally good as the goal of the case study is to have
access to an application that performs some processing on the data
to make comparisons more interesting

 Alternate datasets to be posted
 (not the customer database)

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.91

TLQ PIPELINE: ‘T’ SERVICE

 Multiple datasets online at:
 http://faculty.washington.edu/wlloyd/courses/tcss562/project/etl/

 Sales data
 Up to 1.5 million rows

 Medical payments data
 Up to 10.8 million rows (see readme.txt file)

 Performance test:
 How long does it take to process an entire dataset in the TLQ

pipeline?

 Sequentially

 In parallel with multiple client threads processing rows (or
chunks) of data

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.92

TLQ PIPELINE DATASETS

 Medicare Open payments data in CSV fi le format

 This example represents a large health payment dataset.

 Open Payments, since 2013, is a federal program that collects
information about the payments drug and device companies make
to physicians and teaching hospitals for things like travel, research,
gifts, speaking fees, and meals.

 The key fields to process in the file include:
 - Provider ID, integer
 - Record ID, integer
 - Date, date
 - Payer, string
 - Specialty, string
 - Amount, decimal
 - Payment Nature, string

 Other fields can optionally be processed

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.93

TLQ PIPELINE:
MEDICARE PAYMENTS DATASET

 Medicare Open payments data in CSV file format

 Interesting fi lters:

- Report the count of payments greater than $1000
for different values of [Payment Nature]

- Report the count of payments greater than $500
for different values of [Payment Nature]

- Count the number of payments
for each category: [Physician_Specialty]

- Calculate the total payments
for the top 10 categories: [Physician_Specialty]

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.94

TLQ PIPELINE:
MEDICARE PAYMENTS DATASET - 2

 Approach:
 Shard (split) large CSV files into many small CSV files

 Process in parallel on AWS Lambda with separate client threads

 Each Lambda holds a small temporary SQLite local database
to store a subset of the whole dataset in relational form

 Problem:
 Medical Payments data is nearly 6 GB, will it fit directly on a single

Lambda’s 512MB file system in SQLite format???

 Shard (based on ID) into 20 x 300MB small local SQLite databases

 Can invoke 20 Lambdas in parallel to search complete DB

 Need to keep Lambdas from freezing or else data is lost

 Can backup SQLite files to S3, and retrieve them later once created

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.95

TLQ PIPELINE: LOCAL DBS

 Can load data to centralized database

 Amazon Aurora Serverless
 Provides MySQL (cheaper), and PostgreSQL (more expensive) options

 Aurora Serverless is an alternative to hosting a DB with an always-on
VM - - but is it cheaper???

 Storage is 10/GB/month

 Size of Aurora instance is scalable

 Amazon Aurora Serverless charges based on reserved or dynamic
“Aurora Capacity Units”

 1 ACU = 2GB memory, 1 vCPU, with corresponding networking

 Single database instance becomes a processing bottleneck

 How long will it take to load 10 million rows on a 1 vCPU, 2GB DB??

 How many parallel clients can this DB support?

October 28, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L10.96

TLQ PIPELINE: CENTRALIZED DB

91 92

93 94

95 96

