12/2/2019

A performance
comparison of container-
based technologies for
the cloud

» Related work

» Different types of Container-based technologies.
» Evaluation Methodology

» Performance Analysis

» Conclusion

What is container?

» Packaging of application code including all dependencies such that
applications can be run smoothly from one computing environment to
another.

Containers vs Virtual machine(VMs)

Containers VMs

» Lightweight » Heavyweight

» All containers share the same OS. » Each VM runs on its own OS.
» OS virtualization » Hardware level virtualization
» Takes less fime to start » Slow start

12/2/2019

Background and Related Work

» Previous experiments done in between
KVM, XEN and LXC.
Docker and KVM.
XEN, Microsoft Hyper-V, VMWare.

» Hypervisor based virtualization fechnologies face high performance
overheads. Avoided in HPC environments because of 1/O limitations.

» Docker acts as a base metal system.

12/2/2019

Container-Based Virtualization

» Docker
o Based on AUFS.
o Application-centric level

o namespaces — to deploy isolated containers. Types of namespaces are
pid, net, ipc, mnt, uts.

o confrol groups — executes cgroups to share available hardware resources.

o container format — acts as a wrapper.

Container-Based Virtualization

» LXC(Linux Containers)

o LXC is an operating-system-level virtualization technique for executing
several isolated Linux containers on a single LXC host.

o Utilizes cgroups and namespaces features of Linux kernel.

o Allows utilizing a virfual environment which has its own CPU, memory,
blocking I/O, network as well as the resource control mechanism.

o Flockport - tool that supports LXC.

Docker and LXC

Docker |
Container

Docker
Container

| Application | Application

LXC LXC
Container Container
Docker engine OS & App 0S & App
Host OS Host OS
DOCKER LXC

12/2/2019

Evaluation Methodology

» Performance of CPU, memory, network bandwidth and latency and
storage overheads.

» Experiments were repeated 15 times to assess the accuracy and
consistency of the various results.

» Average timing and standard deviation was recorded.

» Cloud Environment — NeCTAR (Australia-wide National eResearch
Collaboration Tools and Resources Research Cloud).

» Model: Processor: AMD Opteron é2xx class @ 2.60 GHz; Processor ID:
AuthenticAMD Family 21Model 1 Stepping 2; Memory: 3955 MB; OS:
Ubuntu 12.04 (64-bit).

12/2/2019

9
CPU Performance
Based on pbzip2 compressor.
File size — 100MB
Table 2 e sz
Block size.
Flatforms Wall clocki(s) » Flockport, average elapsed fime is
Native 13.7 . 14.9 s and standard deviation is +0.03
Docker 14.8 S.
Flockport (LXC) 14.9 » Docker, average fime is 14.8 s and
standard deviation is+0.01 s
10

CPU Performance

Table 3 » Y-Cruncher, stress-testing tool for CPUs

» Calculate Pivalue, multi-core

Multi-core efficiency results from Y-cruncher. iy o
efficiency, computation time, and

Platform Multi-core efficiency total execution time.
» Docker shows better performance.
Native 99.2%
Docker 99.3%
Flockport 99.4%

11

CPU Performance - Y-cruncher

= Total Computation Time m Total Time (with output +verification)

72

70.905
71

70
69

68

67

66
65

Seconds (smaller is better)

64

63

Native Docker Flockport

12

12/2/2019

12/2/2019

CPU Performance - Geekbench

Single-core tfesting Multi-core testing
2000 2000
‘g 1800 < 1800
o
& 1800 g 1600 -
2 1400
E 1200 = :;:;ifr;ance -; 1400 ~ Integer
£ 1000 & 12007 Performance
A ® Floating Point = | = N
—ﬁ 800 - Performance Y 1000 Floating Point
= = 800 - Performance
& 600 m Memory biet
_5 400 Performance - 600 ~ Me;nory
LY 4 Performance
< 200 £ 400
o 200 -
Native Docker Flockport 0 -

Native Docker Flockport
Fig. 4. Geekbench results for single-core testing.

Disk /O Performance

Used Bonnie++ ® BlockInput ® Block Output
350000
Data set - 4Gb £ 300000
Volumes were aftached to instances %E 250000
in the same availability zone as the 28 00000 -
associated instances. %" ; -
» For sequential reading of files, E E” 100000
Flockport performs better. a 50000
0.
Native Docker Flockport

Disk /O Performance

» Random write speed and random
seeks result set.

» Flockport has 100% better results than Tabled
Docker and is almost 6% better than

the native platform. Random write speed and random seeks.

> Sysbench fool is also used to test the Platform Random write speed (kbfs) Random seeks
input output from file performance. Native 24829 g 1741 ¥
» Found same resulfs. Docker 22494 -94% 389.2 -89.6%
Flockport 2454 -12% 3961 +59

15

Disk /O Performance

Sysbench results.

Platform Read (Gh) Written (Mb) Total transferred (Gh) Throughput (Mbfs) Elapsed time (s)

Native 122 83417 204 2085 27568
Docker 121 82938 202 073 27488
Flockport 117 796.88 19 1992 2049

12/2/2019

16

Memory Performance

» Used STREAM software tool _— ==t== Native === Docker ==#== Flockport

» Directrelation between memory
throughput and the size of CPU
cache.

6000

5000 -
4000

» STREAM assesses memory throughput
utilizing straightforward vector kernel
procedures. The outcomes of four
procedures namely Copy,Scale, Add
as well as Triad are generated.

3000

2000

Memory throughput
(MB/s — higher is better)

1000

Copy Scale Add Triad

Fig. 7. STREAM results.

17

Network |/O Performance

» Used Netperf tool

» Network connection time is not

included. Table 7

Netperf TCP_STREAM and UDP_STREAM results.
Platform TCP_STREAM (Mbps) ~ UDP_STREAM (Mbps)

Docker 1308.38 72132
Flockport ~ 1080.48 586.16
Native 145545 780.24

18

12/2/2019

Network |/O Performance

Table §

Netperf TCP_RR and UDP_RR results.

Platform

TCP_RR (Transfer rate per second)

UDP_RR (Transfer rate per second)

Docker
Flockport
Native

44363.03
39321.02
4345111

45093.28
40625.07
492117

19

Network |/O Performance

Table 9
Iperf results.
Platform TCP ubDP
Docker Interval 0.0-10.0 s 0.0-10.0s
Transfer 966 MB 11.9 MB
Bandwidth 810 Mb/s 10.0 Mb/s
Flockport Interval 0.0-10.0s 0.0-10.0s
Transfer 1.34 GB 11.9 MB
Bandwidth 1.15 Gb/s 10.0 Mb/s
Native Interval 0.0-10.0s 0.0-10.0s
Transfer 1.64 GB 1.19 MB
Bandwidth 1.41 Gb/s 1.00 Mb/s

20

12/2/2019

10

A 2 4

No overheads on memory utilization or CPU by the examined technologies.

I/O and operating system interactions incurred some overheads.

Docker capability helps to reduce some of the difficulties of docker container
utilization

|laasS utilizes virftual machine more and Paas is created to utilize containers

21

12/2/2019

11

