
Page 1 of 8 
 

TCSS 562: Software Engineering for Cloud Computing – Fall 2019 
School of Engineering and Technology 
University of Washington – Tacoma 
http://faculty.washington.edu/wlloyd/courses/tcss562          Instructor: Wes Lloyd 
 

Term Project – Serverless Cloud Native Application 
Version 0.1 

 
Project Proposal Due Date: Friday October 18th, 2019 @ 11:59 pm 
Project Presentation Date:  Monday December 9, 5:50pm – 7:50pm (tentative) 
Project Final Due Date:  Saturday December 14 @ 12:00 pm (tentative) 
 
Teams 
TCSS 562 Term Projects will typically be conducted in 3-person teams.  The team should submit 
a single proposal. 
 
Objective  
To goal for the TCSS562 term project is to implement a serverless cloud native application using the 
AWS Lambda serverless computing platform.  A predefined project has been provided as an example.  
Groups are free to adopt the predefined project, or are welcome to propose their own serverless 
Lambda project that meets the project criteria below.  In addition, groups may propose a Term Project 
that is not related to building a serverless application.  Projects that compare and contrast design and 
architectural decisions for cloud native software development are encouraged, but all cloud computing 
research-oriented projects are encouraged.  Project proposals are ultimately approved by the instructor.  
Groups not planning to implement the predefined project are encouraged to meet and discuss project 
ideas with the instructor prior to submitting the proposal. 
 
Project Criteria: 
 
Projects should implement a cloud application built using one or more Function-as-a-Service (FaaS) 
platforms.  The course will specifically introduce the use of AWS Lambda, but use of other FaaS 
platforms (e.g. Google Cloud Functions, Azure Functions, IBM Cloud Functions) is encouraged.  The 
application should support a case study to compare and contrast application performance and cost 
implications for one or more of the following:  Service Composition/Architecture (e.g. “Switchboard” 
Architecture vs. service isolation, vs. full consolidate), Application Flow Control, Language, Platform (e.g. 
alternate FaaS platforms), or Data Provisioning.   The goal of the case study is to implement the same 
application at least two ways to enable a comparison of performance and cost backed by performance 
experiments driven with identical input data as examples.  Groups may implement Lambda applications 
in Java, Node.JS, Python, or any language desired that is supported by the platform. 
   
Types of applications may include: 
*  Data transformation (as in the predefined project) 
*  Statistics / Data Aggregation / Graph Generation 
*  Image Processing / Transformation / Filtering 
*  Machine Learning: For example, build an application using: 
 https://cs.stanford.edu/people/karpathy/convnetjs/  
 



Page 2 of 8 
 

Service Composition: For projects that investigate service composition, the application should have at 
least three separate services that perform a series of operations on input data.  Individual Lambda 
functions serve to split operations into separate stages.  At least one stage (service) of the computation 
must take a significant amount of time to compute for at least one example input (~60-seconds).  
Ideally, the runtime of all services combined would exceed five minutes, though this may be difficult to 
achieve.  It should be possible to compose the application in alternate ways: 
 
Composition #1:  Service-A     Service-B     Service-C 
Composition #2:  Service-A+Service-B-combo     Service-C 
Composition #3:  Service-A     Service-B+Service-C-combo 
Composition #4:  Service-A+Service-B+Service-C-combo 
 
Service-A probably can’t be composed directly with Service-C because of the expected sequence of 
operations...Service-C would typically only operate on the output of Service-B… 
 
“Switchboard” Architecture: In addition to combining service code, the notion of a “switchboard” 
architecture as in Composition #4 can be explored.  For a “Switchboard” architecture, all service code is 
combined into a single deployment package.  However, individual calls are made to perform function A, 
function B, and function C.  The switchboard architecture minimizes the number of service deployment 
packages by bundling all source code together into a single Lambda function.  “Switchboard” code at the 
front of the service then map the inputs to perform the requested processing using internal 
classes/methods.  Minimizing the number of deployment packages is likely to alter the overall cost and 
performance because of the serverless infrastructure freeze/thaw cycle. 
 
Serverless Infrastructure Freeze/Thaw: 
We will talk about this later, but see this paper, section I. B. for a discussion: 
http://faculty.washington.edu/wlloyd/papers/KeepAlive_submitted.pdf 
 
Application Flow Control: A case study on application flow control will compare alternate methods to 
implement a sequence of service calls and their subsequent data exchange for composition #1 above. 
 
With a laptop-client:  The laptop calls all services synchronously and is responsible for moving data to 
and from each of them:  A, then B, then C 
 
Within Lambda:  A client makes an asynchronous call to Lambda Service A. Service A then either calls 
Service B (1) directly, via the (2) Simple Notification Service (SNS) or using the (3) Simple Queueing 
Service (SQS) to trigger then next call.  At the end of the calling sequence final results are retrieved by 
the original client from the Simple Storage Service (S3) or an alternate location such as the Simple 
Queuing Service (SQS).   
 
Controller Function:  A FaaS function may serve to instrument the flow control of a multi-function 
sequence by running synchronously and issuing various FaaS function calls. This model suffers from 
double billing as the controller function runs synchronously while essentially idle and waiting for other 
functions to respond.   
  
With AWS Step Functions:  AWS provides Step functions to define a workflow of serverless functions.  A 
state machine is defined to capture the flow of execution across a set of functions. 
 



Page 3 of 8 
 

Language:  Choice of language (e.g. interpreted vs. compiled) impacts runtime as well as initialization 
overhead.  FaaS function executions relying on the Java Virtual Machine or .NET framework have been 
shown to incur additional overhead vs. running interpreted functions in Node.JS or Python.  To perform 
a case study that investigates the implications of programming languages, teams should implement an 
identical application in 2 or more languages, and then complete identical performance experiments to 
contrast differences. 
 
See paper: 
Jackson D, Clynch G. An Investigation of the Impact of Language Runtime on the Performance and Cost 
of Serverless Functions. In Proc. Of the 2018 IEEE/ACM International Conference on Utility and Cloud 
Computing Companion (UCC Companion) 2018 Dec 17 (pp. 154-160).  
 
Online at: 
http://faculty.washington.edu/wlloyd/courses/tcss562/papers/AnInvestigationOfTheImpactOfLanguage
RuntimeOnThePerformanceAndCostOfServerlessFunctions.pdf 
 
Platform:  Many commercial and private Function-as-a-Service platforms exist for hosting application 
code.  One potential case study is to compare and contrast application performance for applications 
consisting of several FaaS functions deployed to alternate clouds.  Solutions written in Python or 
Node.JS can be deployed to AWS Lambda and Google Cloud Functions for example to enable a robust 
comparison. 
 
Data Provisioning:  Data provided to FaaS functions is limited to a maximize size.  On AWS Lambda the 
standard payload is limited to 6MB.  Alternatively, data can be uploaded to external cloud services such 
as the Simple Storage Service (S3), Dynamo DB, Amazon Aurora, or Amazon RDS, etc.  The goal of a data 
provisioning case study is to examine implications for data transfer (up and down) when operating with 
large data sizes.  What is the best way (performance and cost) to move these data sets to and from the 
FaaS functions that require them?  In the literature the poor latency of accessing services like S3 from 
AWS Lambda has been noted.  Overhead on the order of 100-300ms, for example, simply to access data 
can significantly slow data processing times.  A data provisioning case study will investigate which cloud 
services provide data fastest to FaaS platforms to minimize this latency to maximize the processing 
throughput of data processing pipelines.  Use of data transfer sizes exceeding 6MB is encouraged, but 
not necessarily required to explore this interesting topic. 
 

Predefined Project(s) -- SUBJECT TO REVISION: 
AWS Lambda TLQ (Transform, Load, Query) Data Pipeline 

 
The predefined project is to implement a multi-stage TLQ pipeline as a set of independent AWS Lambda 
services.  Those performing the predefined project will then specify which case study they will perform 
such as:  Service Composition/Architecture, “Switchboard” Architecture, Application Flow Control, or 
Data Provisioning.  Here our TLQ pipeline is similar to an ETL pipeline, except that our Transform phase 
(Service #1) additionally incorporates the extract.  Service #1 performs E and T, service #2 performs L, 
and Service #3 performs Q.  The “E” has been simplified because input data is provided in a single easy-
to-use format. 
 
 
 
 



Page 4 of 8 
 

Sales Database 
 
Sales Data is provided in CSV format.  As sample input dataset consists of up to 1.5 million rows and 179 
MB of data uncompressed.  Data columns include: 
Region   text 
Country   text 
Item Type  text 
Sales Channel   text 
Order Priority  text 
Order Date  date 
Order ID  integer 
Ship Date  data 
Units Sold  integer 
Unit Price  float 
Unit Cost  float 
Total Revenue  float 
Total Cost  float 
Total Profit  float 
 
Data files are available at: http://faculty.washington.edu/wlloyd/courses/tcss562/project/etl/  
 
Service #1 (Extract and Transform): 
 
Service #1 either receives the CSV data directly as an input parameter in the data payload (e.g. see REST 
multipart), or accesses data using a pointer to a CSV file in S3, or other cloud data service. 
 
Example Service #1 transformations (can implement others): 

1. Add column [Order Processing Time] column that stores an integer value representing the 
number of days between the [Order Date] and [Ship Date] 

2. Transform [Order Priority] column: 
L to “Low” 
M to “Medium” 
H to “High” 
C to “Critical” 

3. Add a [Gross Margin] column.   The Gross Margin Column is a percentage calculated using the 
formula: [Total Profit] /  [Total Revenue].  It is stored as a floating point value (e.g 0.25 for 25% 
profit). 

4. Remove duplicate data identified by [Order ID].  Any record having an a duplicate [Order ID] that 
has already been processed will be ignored. 
 

Non-Switchboard Architecture:  Transformed data should be written out in CSV format and stored in 
Amazon S3 or other cloud data service for retrieval by Service #2. 
 
“Switchboard” Architecture:  Transformed data should be: (1) persisted locally as a CSV file under /tmp, 
(2) stored in memory, and (3) persisted to Amazon S3.  With the “Switchboard” Architecture all services 
share the same infrastructure.  When Service #2 is called, it may find the cached data in memory or 
under /tmp leftover from Service #1.  If the data is unavailable, it is requested from Amazon S3.  See 



Page 5 of 8 
 

article regarding data caching on AWS Lambda: https://medium.com/@tjholowaychuk/aws-lambda-
lifecycle-and-in-memory-caching-c9cd0844e072  
 
Scaling Scenario: If there is just one call to Service #1 to transform the data, but 10 calls to Service #2 to 
load the data, using the “Switchboard” Architecture one call would find the data locally, and 9 calls will 
need to request the data from Amazon S3.   
 
Service #2 (Load): 
 
Service #2 requests include a pointer to the transformed CSV data in S3.  
 
Service #2 loads the data from the CSV file into a single table relational database.  The table is keyed by 
the [Order ID] field which must be unique.  Duplicate rows should have been already filtered out by 
Service #1.  
 
Database: 
 
There are several options for a “data” tier for our serverless application.   
 
Amazon Aurora is Amazon’s serverless database service.  Both a MySQL and PostgreSQL versions are 
supported.  Our ETL pipeline will perform an initial data transformation (S1), create a relational 
representation (S2), and then allow multiple read-only queries to be performed (S3).   Since queries in 
S3 are read-only, using an external data service is not required.   
 
Use of the locally hosted database SQLite is also a possibility. The advantage is elimination of a 
dependency for an external data service for read-only queries.  This will keep everyone’s costs down.  
The disadvantage is that there are many unsynchronized copies of the database spread across Lambda 
functions.  Groups may SQLite as a comparison to a serverless backend database (Amazon RDS, etc.) 
Synchronization of individual SQLite databases deployed across Lambda functions is not required, as this 
would be non-trivial, but could be a good research project.  
 
SQLite: 
https://www.sqlite.org/index.html  
 
Groups can propose and adopt alternate backend database approaches and technologies for data 
storage and query processing here as part of their proposed case study.  Design of a serverless 
application’s data tier is likely to have a significant impact on overall performance and hosting costs. 
 
For using a local file-based database with the “Switchboard” Architecture, once Service #2 loads data 
into a database, such as SQLite, the file can be (1) persisted locally under /tmp in the serverless 
container for later use by Service #3.  For non-switchboard architectures, Service #2, exports the SQLite 
DB file to Amazon S3 for retrieval and replication by Service #3.  Groups can devise clever ways to persist 
SQLite databases to S3 and pull them down locally when queries run on cold infrastructure.   
 
For simplicity, it is okay to assume that queries will be read only, and that data is only modified during 
the load phase of the pipeline.  Groups wishing to perform “update” queries in the “Q” phase will run 
into the problem of how to synchronize data across Lambda functions. 
 



Page 6 of 8 
 

Service #3 (Query): 
 
Service #3 performs filtering and aggregation of data queries on data loaded into a relational database 
by Service #3.  Service requests will be in JSON format.   
 
Service #3 is backed by the same SQLite DB (or Amazon Aurora/RDS) and performs meaningful queries 
to produce output in JSON array format.  Each row will be represented as a single JSON object in an 
array.   
 
Filtering and aggregation is supported by generating SQL queries. 
 
Each call to Service #3 will specify 1 or more columns to aggregate data on (GROUP BY), and 0 to many 
filters which involve including a WHERE clause to an SQL query to specify column matching requests.  
Aggregation involves adding a GROUP BY clause to an SQL query and using a function such as SUM(), 
AVG(), MIN(), MAX(), and COUNT(). 
 
If using a local DB, Service #3 begins by checking if there is a local SQLite DB file saved.  If no file exists, 
the master copy produced by Service #2 can be downloaded from Amazon S3 and cached to support 
Service #3 requests. 
 
Service #3 will accept requests to filter the full data set by column, for example: 
- [Region]=“Australia and Oceania”    
- [Item Type]=”Office Supplies”    
- [Sales Channel]=”Offline”   
- [Order Priority]=”Medium”   
- [Country]=”Fiji”   
 
Service #3 will support the following data aggregations by column.   
- Average [Order Processing Time] in days 
- Average [Gross Margin] in percent 
- Average [Units Sold] 
- Max [Units Sold] 
- Min [Units Sold] 
- Total [Units Sold] 
- Total [Total Revenue] 
- Total [Total Profit] 
- Number of Orders 
 
Service #3 outputs each row of output from a relational database query as a separate JSON object in a 
JSON array.  The JSON objects include the data aggregation(s) based on specified filters. 
 
For other project ideas, consult the TCSS 562 slides or instructor. 
 
1  Project Proposal Requirements 
 
[5% of project grade] 
 
The following are key requirements of the project proposal: 



Page 7 of 8 
 

 
Each team will submit a 1 to 2 page short project proposal description. 
 
The proposal must identify: 
 

1. The member names of the project group. 
2. The name of the group project contact person.  The group project contact person will serve as 

the group’s contact for email queries.  The group contact person may also lead scheduling and 
arranging group meetings and work sessions, creating agendas for project check-ins for TCSS 
562, ensuring that tasks are assigned to group members, and submitting deliverables on Canvas.  
Alternatively, these role assignments can be determined differently by discretion of group 
members. 

3. A description of the proposed project.  If conducting the predefined project, this can simply be: 
“Our team will complete the predefined project.”.  If an alternate serverless development 
project is proposed, a project description should be included which describes how the project 
will meet the project criteria and serve as a good project to implement one or more proposed 
case studies:  Service Composition/Architecture, Application Flow Control, Language Selection, 
FaaS Platform comparison, or Data Provisioning.   If the project is not a serverless project, the 
project description should describe the cloud systems evaluation that will be performed 
including any key benchmarks and metrics used to evaluate systems. These criteria may, or may 
not be related to performance and cost. 

4. The proposal should then list which case study is planned and a brief description of how the 
work will be done.  Groups may list more than one case study if planning to evaluate multiple 
design trade-offs.    
 
Serverless project implementations will be evaluated by the project group(s) using the following 
evaluation criteria: 

 average service turnaround (execution) time for each individual services 
 average workflow turnaround time (seconds) for the complete sequence of services: a→b→c 
 hosting cost of processing a batch of requests for individual services 
 hosting cost of processing a batch of requests for the complete sequence of services: a→b→c 
 scalability: performance with an increasing number of concurrent clients from 1 to 100 for 

example 
 cold service performance: performance of service(s) on initial call after 45-minutes of inactivity 
 warm service performance: performance of service(s) that have been actively used within the 

last 5-minutes 
 
If available, include at the end of your proposal any references to websites of interest, or research 
papers that may help or relate to your proposed project. 
 
Research paper searches can be supported using https://scholar.google.com. 
 
Projects will ultimately be evaluated by the overall quantity and quality of work performed.  This 
includes how well groups convey the results of their case study through written and oral presentation 
forms.  Groups should plan to perform a thorough evaluation and analysis that results in the generation 
of eye-catching graphs and tables.  Groups should not simply present large unanalyzed raw data sets 
with no conclusions if wanting an optimal project grade. 



Page 8 of 8 
 

2  Future Deliverables 
 
The final project will involve a short group project presentation (5-10 minutes) during the final exam 
session on Monday December 9th.  Requirements of the final project presentation will be provided later 
on. 
 
The final project will also involve a written report in the IEEE conference format.  In the project report, 
groups will describe their project and the alternate design explored for the case study.  The report will 
describe benchmark testing results for evaluation criteria listed above, and provide a cost / performance 
comparison for performing batches of service calls (e.g. 1,000, 1,000,000 etc.)  Project reports will also 
include a background and related work section to describe cloud technology used and any relevant 
comparison studies.  Additional details and requirements for the final project report will be provided 
later on.   
 
3  Project Check-ins  (10% of the TCSS 562 course grade) 
 
There will be two or three “written” project check-ins throughout the quarter roughly at two/three-
week intervals. The project-checkins are grouped in the same category as activities and quizzes for TCSS 
562.  Groups are encouraged to meet with the instructor before/after class, during office hours, or by 
scheduling an appointment to seek clarification and for assistance.   
 
4  Submission Deadline 
 
Project proposals should be submitted in PDF format on Canvas no later than 11:59pm on Friday 
October 18th.  Projects proposals will be approved or revisions requested by class on Wednesday 
October 23th.   
 
Change History 
 
Version Date Change 
0.1 10/07/2019 Original Version 
 


