
TCSS 562: Software Engineering School of Engineering and Technology
for Cloud Computing University of Washington – Tacoma
Fall 2018
http://faculty.washington.edu/wlloyd/courses/tcss 562

Tutorial 8 – Introduction to Lambda IV:
AWS Step Functions, AWS SQS

Disclaimer: Subject to updates as corrections are found
Version 0.10

The purpose of this tutorial is to introduce the use of AWS Step Functions to instrument
flow control for a multi-function serverless application. The tutorial also provides a brief
introduction to the Simple Queue Service (SQS).

AWS step functions allows state machines to be defined to define the flow control for a
serverless application. Using AWS step functions, the flow control is implemented on the
cloud-provider’s side. The client need only call the state machine to execute a workflow
of functions. For this tutorial we will connects the Encode and Decode Lambda functions
from Tutorial #4 so that a message is passed into the Encode function, shifted, and then
unshifted automatically by calling Decode. The step function eliminates two network
round-trips between the client and cloud server providing a speed-up.

1. Update Caesar Cipher Lambda Functions For Use With AWS Step Functions

When working with AWS Step Functions, data output from one Lambda function is passed
to the next Lambda function as input. To prepare the Encode and Decode Caesar cipher
functions for use in an AWS Step Functions state machine, it is necessary to change the
output of the encode function to generate the key/value pairs needed by the decode
function.

Modify the Response.java object so that the Encode function produces the follow JSON
output:

Encode INPUT:

{
 "msg": "ServerlessComputingWithFaaS",
 "shift": 22,
}

Invoking Lambda function:ENCODE using AWS CLI

real 0m1.004s
user 0m0.312s
sys 0m0

1

http://faculty.washington.edu/wlloyd/courses/tcss360

Encode OUTPUT:

{
 "msg": "OanranhaooYkilqpejcSepdBwwO",
 "shift": 22,
 "decodeTime": 0,
 "encodeTime": 1,
 "uuid": "501064cc1b1e4f919ed3d2d04b599db7",
 "error": "",
 "vmuptime": 1543554220,
 "newcontainer": 0
}

Here, the response of the encoding is returned using the “msg” key/value pair to match
the input of Decode. The “shift” is also returned so this can be passed directly to decode.
This JSON can now be passed directly to the decode Lambda function.

Lines to add to bottom of Encode class handleRequest method:

 // Set return result in Response class, class is marshalled into JSON
 r.setMsg(msg);
 r.setShift(shift);

Lines to add to Response class:
Here we assume that Encode and Decode are combined into a single Java project to build
a single deployment JAR file for both the Encode and Decode functions:

 String msg;
 public String getMsg()
 {
 return msg;
 }
 public void setMsg(String msg)
 {
 this.msg = msg;
 }

 private int shift;
 public int getShift()
 {
 return shift;
 }
 public void setShift(int shift)
 {
 this.shift = shift;
 }

 long decodeTime;
 public long getDecodeTime()
 {
 return decodeTime;
 }

2

 public void setDecodeTime(long decodeTime)
 {
 this.decodeTime = decodeTime;
 }

 long encodeTime;
 public long getEncodeTime()
 {
 return encodeTime;
 }
 public void setEncodeTime(long encodeTime)
 {
 this.encodeTime = encodeTime;
 }

In addition to including message and shift, let’s also report the processing time for both
the Encode and Decode Lambda functions. This way when the two functions are
composed together we can measure execution time of the individual Lambda functions.

The Java System.currentTimeMillis() can be used to capture the system time before and
after execution of code in the handleRequest() method.

Add to the following code to the top of the handleRequest() method for both Encode and
Decode:

long tStart = System.currentTimeMillis();

And then update the code at the bottom of the handleRequest() method to:

 long tEnd = System.currentTimeMillis();
 r.setDecodeTime(tEnd tStart);
 return r;
 }

After making these code changes, redeploy your Encode and Decode Lambda functions.
Test that changes are applied by running callservice.sh as in Tutorial #4.

2. Create AWS Step Functions State Machine

Search for the “Step Functions” cloud service in the AWS Management Console.
On your first visit, a “splash” screen is shown. Click on the “Get started” button:

3

The “Create state machine” wizard apperas.
Select “Author from scratch”:

Next, replace the state machine definition code with the following JSON:

{
 "Comment": "Ceasar Cipher using AWS Lambda functions",
 "StartAt": "Encode",
 "States": {
 "Encode": {
 "Type": "Task",
 "Resource": "<replace with your aws lambda encode arn>",
 "Next": "Decode"
 },
 "Decode": {
 "Type": "Task",
 "Resource": "<replace with your aws lambda encode arn>",
 "End": true
 }
 }
}

4

Each Lambda function has an Amazon Resource Name (ARN). An ARN is similar to a URI
(uniform resource identifier). It is a unique identity for the AWS object.

Find your ARN for your encode and decode Lambda functions.

In a separate window, navigate to AWS Lambda.
At the top of the function designer, on the right-hand side the ARN is shown:

Copy the ARN for encode and decode into the state machine definition.

Above the state machine definition add a Name for this state machine.

Next, click the “REFRESH” button on the graphical pane to refresh the rendering of your
state machine:

This will update the diagram to reflect the JSON definition.

Now, click the [NEXT] button.

It is necessary to grant the state machine permission to access cloud resources
consumed. The easiest approach is to allow Step Functions to automatically create a
unique role for the state machine based on the resources required.

Select the radio button: “Create an IAM role for me”.
Then assign a role name:

5

Next, click the “Create state machine” button to create the state machine:

For more information on Step Functions, refer to the developer guide:

https://docs.aws.amazon.com/step-functions/latest/dg/welcome.html

On the left hand-side check out documentation on State, Tasks, Transitions, State Machine
Data, and Input and Output Processing.

Limited input and output processing is supported within the state machine without writing
a separate Lambda function:

https://docs.aws.amazon.com/step-functions/latest/dg/concepts-input-output-
filtering.html

3. Create a BASH client to invoke the AWS Step Function

AWS step function state machines can be invoked using the AWS CLI.

For step 3, customize the provided BASH script provided below to invoke your step
function. Call this script “callstepfunction.sh”.

The script requires installation of the awscli and jq packages.
These have been used in previous tutorials.

sudo apt install awscli jq

Add your state machine Amazon Resource Name (ARN) to the script:

6

https://docs.aws.amazon.com/step-functions/latest/dg/concepts-input-output-filtering.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-input-output-filtering.html
https://docs.aws.amazon.com/step-functions/latest/dg/welcome.html

JSON object to pass to Lambda Function
json={"\"msg\"":"\"ServerlessComputingWithFaaS\",\"shift\"":22}
smarn="<replace with state machine arn>"
exearn=$(aws stepfunctions startexecution statemachinearn $smarn
input $json | jq r ".executionArn")

poll output
output="RUNNING"
while ["$output" == "RUNNING"]
do
 echo "Status check call..."
 alloutput=$(aws stepfunctions describeexecution executionarn
$exearn)
 output=$(echo $alloutput | jq r ".status")
 echo "Status check=$output"
done

echo ""
aws stepfunctions describeexecution executionarn $exearn | jq r
".output" | jq

The “aws stepfunctions start-execution” command launches an asynchronous execution
of the state machine. The execution ARN is captured by the script.

Then, to determine when the state machine has completed, succesive calls are made to
“aws stepfunctions describe-execution” using the execution ARN to check the status.
(polling!!)

When the state machine is no longer running, a call is made to describe-execution to
capture the JSON result.

4. Create a Simple Queue Service Queue for messages

Using the AWS Management Console, navigate to the “SQS” cloud service. On the first
vist the splash screen will appear. Press the “Get Started Now” button:

FIFO Queues can be created but these are available in only select regions:

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/FIFO-
queues.html

7

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/FIFO-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/FIFO-queues.html

Assign the Queue name as “CaesarQ”, and select a “Standard Queue”:

Next, click the Configure Queue button to review Queue default settings.

When inspecting, set the “Receive Message Wait Time” to be “20” seconds:

Then click [Create Queue]:

5. Add a message to your SQS Queue from a Lambda function

Now, modify the decode Lambda function to most the decoded message to your SQS
queue.

First, in your maven build file (pom.xml) add the dependency to include the SQS API:

 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>awsjavasdksqs</artifactId>
 <version>1.11.460</version>
 </dependency>

Next, modify the tail end of the Decode Lambda function’s handleRequest() method to
submit a message to your newly created SQS queue. Post the decoded message to the
SQS queue for consumption.

Pressing control-shift-i in Netbeans automatically adds import statements.

8

The following import statements should be added:

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.SendMessageRequest;

Then the code to add a message to an SQS queue is as follows:

 AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
 SendMessageRequest send_msg_request = new SendMessageRequest()
 .withQueueUrl("<INSERT SQS URL here>")
 .withMessageBody(msg)
 .withDelaySeconds(0);
 sqs.sendMessage(send_msg_request);

SQS queues use public http URLs for communication.
The public SQS URL can be found for your queue by inspecting the URL property under
the details tab from the SQS GUI from the AWS Management console as below:

Next, compile, build, and redeploy your Lambda Decode function.

** IMPORTANT CHANGES to DECODE LAMBDA FUNCTION **

Two important changes are required to Decode to use SQS. First, Decode can no longer
run in a VPC to use SQS unless the VPC has a NAT Gateway configured to enable public
internet access. Because the NAT gateway is very expensive, it is easier to simply delete
the VPC, and set the Lambda function to use “No VPC”:

9

Next, modify the security role for the Decode Lambda function to have permission to
work with SQS queues:

Navigate to the Identity Access Manager (IAM).

On the left-hand side select “Roles”.

Search for your Decode Lambda function’s security role. Above it is
“lambda_basic_execution”.

Click the [Attach policies] button, and search for and attach the policy
“AmazonSQSFullAccess”.

6. Modify BASH client to retrieve AWS Step Function result from SQS queue

Previously we polled the AWS Step Function by calling “aws stepfunctions describe-
execution” repeatedly until a result was available. Now that Decode posts the message
result to a queue, the result can be fetched from the queue instead.

If programming a Java or Python client to interact with a message queue, it would be
possible to “subscribe” to the queue to receive messages as events. Note, this is the
classic publish-subscribe message queue model common for distributed systems. AT UW-
Tacoma, these queues are discussed in TCSS 558 Applied Distributed Computing.

The AWS CLI does not support a callback mechanism.

Instead, the CLI offers a blocking call that will call SQS and wait up to 20 seconds for a
message to return. If no message appears, the call exits.

Modify your AWS Step Functions BASH client (callstepfunction.sh) to receive the
Decode result back from SQS instead of from AWS Step Functions.

Directly replace all code above the “# poll output” comment in your callstepfunction.sh
script to include the following code:

10

smarn="<Your State Machine ARN>"

a filebased counter to generate unique messages for encode/decode
count=0
if [e .uniqcount]
then
 count=$(cat .uniqcount)
fi
count=$(expr $count + 1)
echo $count > .uniqcount

JSON object to pass to Lambda Function, uses the unique $count
json={"\"msg\"":"\"NEWSQS$count
ServerlessComputingWithFaaS\",\"shift\"":22}

Call the state machine
exearn=$(aws stepfunctions startexecution statemachinearn $smarn
input $json | jq r ".executionArn")
echo $exearn

get output from SQS
msgs=$(aws sqs receivemessage –queueurl <Your SQS Queue name>)

show result from SQS queue
echo $msgs | jq

delete the message from the queue using the receipt handle
receipthandle=$(echo $msgs | jq r .Messages[0].ReceiptHandle)
aws sqs deletemessage queueurl <Your SQS Queue name> receipthandle
$receipthandle

exit

Messages in SQS queues are not deleted when read. Since we only want to consume this
message once, above use the receipthandle to call the “aws sqs delete-message” CLI API
to delete the message once it is read.

If messages are not deleted they will pile up in the queue, and requests to “aws sqs
receive-message” may return a message from a previous execution of the state-machine.

Where SQS FIFO queues guarantee the order that messages will be delivered to clients,
standard SQS queues do not guarantee ordering of messages. When calling “sqs receive-
message” on a standard queue, its possible the latest message is not returned!

By deleting messages once consumed, we shouldn’t accidentally see them again.

The approach here will not scale, however! With multiple users executing the state
machine concurrently, calls to “aws sqs receive-message” are not client specific. All of

11

the results from the state machine are posted to the same queue. It is possible to tag
messages with a “GroupId” or a “DeduplicationId” for this purpose. This allows filtering of
messages. If sharing a queue with many users, it may be necessary to pull batches of
messages, filter them, and only consume and delete the client’s specific message. For
these reasons, S3 may be preferable method for returning a single state machine result
to a client as it can be tagged by the client through the workflow. Message queues are
more ideally suited for distributed systems to orchestrate multiple nodes consuming and
operating on shared data.

Now, test your callstepfunction.sh BASH client and check out how well SQS works as an
alternative to polling the aws stepfunctions describe-execution API.

Tutorial 8 is optional, and non-graded in fall 2018.

12

