
TCSS 562: Software Engineering School of Engineering and Technology
for Cloud Computing University of Washington – Tacoma
Fall 2018
http://faculty.washington.edu/wlloyd/courses/tcss 562

Tutorial 5 – Introduction to Lambda II:
Working with Files in S3 and CloudWatch Events

Disclaimer: Subject to updates as corrections are found
Version 0.11

Scoring: 20 pts maximum

The purpose of this tutorial is to introduce the use of Amazon Simple Storage Service (S3)
on the AWS Lambda FaaS platform to support receiving, processing, and/or creating files.
Additionally, this tutorial introduces combining multiple Lambdas into a single Java
project, and describes how to configure a CloudWatch event rule to trigger a Lambda
function as a target to fire in response to an S3 Write Data event that is tracked by
setting up a CloudTrail log “trail”.

Goals of this tutorial include:
1. Create a new CreateCSV Lambda function to write a file to S3.
2. Create a new ProcessCSV Lambda function to read a file from S3.
3. Combine these two Lambda functions into a single Java project to produce a composite
jar file. The concept of a composite JAR provides the basis for setting up a “Switchboard”
architecture by simply adding additional flow-control code.
4. Create a CloudWatch event rule to trigger the ProcessCSV Lambda function as a
“target”. The event rule is triggered when a file is uploaded to an S3 bucket by the
CreateCSV Lambda function. This event is provided by setting up a CloudTrail log trail to
track S3 Write Data events. CloudWatch event triggers provide one possible way to
implement asynchronous application flow control as in:

See slides from lecture 5 as a reference:
http://faculty.washington.edu/wlloyd/courses/tcss562/tcss562_lecture_5_f18_2up.pdf

1. Create a new Faas_Inspector Lambda function template application

On your laptop, create a new directory for the project files and clone the git
Faas_Inspector project to start:

1

http://faculty.washington.edu/wlloyd/courses/tcss562/tcss562_lecture_5_f18_2up.pdf
http://faculty.washington.edu/wlloyd/courses/tcss360

git clone https://github.com/wlloyduw/faas_inspector.git

Refer to Tutorial #4 for information on the “FaaS inspector”.

2. CreateCSV Lambda Function

In the Faas_Inspector, rename the Hello.java class to CreateCSV.java.
In Netbeans, right click on the classname, then select “Refactor | Rename”.

In the Request.java class, configure the CreateCSV Lambda function to have 4
parameters. Define getter and setters methods accordingly:

Property Name Property Type

bucketname String

filename String

row Int

col int

These properties will allow a client to request the creation of a new CSV file.
The file is stored in the S3 Bucket described by “Bucketname”. The filename is described
by “Filename”.
The CSV file will consist of comma-separated random numbers (range 1 to 1000). Row
and Col specify the number of total rows and columns in the CSV file.

In the CreateCSV class handleRequest() method, consume the request variables into local
variables:

 int row = request.getRow();
 int col = request.getCol();
 String bucketname = request.getBucketname();
 String filename = request.getFilename();

Then, generate the random matrix of values, storing each row in a separate String:
 int val = 0;
 StringWriter sw = new StringWriter();
 Random rand = new Random();

 for (int i=0;i<row;i++)
 for (int j=0;j<col;j++)
 {
 val = rand.nextInt(1000);
 sw.append(Integer.toString(val));
 if ((j+1)!=col)
 sw.append(",");
 else
 sw.append("\n");
 }

2

https://github.com/wlloyduw/faas_inspector.git

The next step is to write Java code to generate the S3 bucket file.

Working with the S3 Java API requires adding the Java support library.
In maven, the library can be added in the pom.xml file.
The pom.xml file is under the java_template directory.

The dependencies can alternatively be added through the Netbeans GUI, by RIGHT-
clicking on dependencies, and searching for “aws-java-sdk-s3”.

Once found, select the version, such as ~ “1.11.306”…
This automatically includes all Java jar libraries required to work with Amazon S3.

Dependencies can be added in the pom.xml file as follows:

 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws­java­sdk­bom</artifactId>
 <version>1.11.327</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws­java­sdk­s3</artifactId>
 <version>1.11.306</version>
 </dependency>

Once S3 dependencies have been included in the project, acquire the StringBuilder
output as a Byte Array, and use this to create a new input stream. Then create metadata
for describing the file to be written to S3 and create the new file on Amazon S3:

byte[] bytes = sw.toString().getBytes(StandardCharsets.UTF_8);
InputStream is = new ByteArrayInputStream(bytes);
ObjectMetadata meta = new ObjectMetadata();
meta.setContentLength(bytes.length);
meta.setContentType("text/plain");

// Create new file on S3
AmazonS3 s3Client = AmazonS3ClientBuilder.standard().build();
s3Client.putObject(bucketname, filename, is, meta);

The response object of the CreateCSV service will populate the “value” attribute. The
value will be a string that describes the CSV file which is created. Modify the r.setValue()
to:

r.setValue("Bucket:" + bucketname + " filename:" + filename + " size:" +
bytes.length);

3

Once these changes are completed, compile the project.

2. Deploy CreateCSV Lambda Function

Next, using the AWS Management Console, create a new CreateCSV Lambda service.
Refer to Tutorial #4 to review this procedure.

For Tutorial #5, choose only one method for invoking your Lambda functions: either via
curl and the API Gateway (REST endpoints), or using the “aws lambda” CLI. It is not
necessary to configure both methods.

If choosing curl for function invocation, be sure to configure API Gateway URLs (POST) for
your Lambdas. Refer to tutorial #4.

Next, modify the callservice.sh to call your new CreateCSV service.

3. Prepare to call CreateCSV Lambda Function: Create S3 Bucket

In faas_inspector/lambda/java_template/test/callservice.sh, define an input JSON object as
follows:

json={"\"row\"":50,"\"col\"":10,"\"bucketname\"":\"test.bucket.562.aaa\"","\"file
name\"":\"test.csv\""}

Next, create a bucket called “testbucket” using the AWS management console.

Find S3, and then select the button:

Create the bucket as follows:

4

S3 Bucketnames must be unique.
For the bucket name use: test.bucket.562.aaa

Replace “aaa” with your initials.
If the name is still not unique, modify as needed until it is unique.
Revise the JSON accordingly.
Press the [NEXT] button.

For all remaining steps in the Create Bucket wizard, accept the default values.

Next, it is necessary to configure permissions for Lambda to access your S3 bucket.
In the AWS Management Console, navigate to Lambda, and inspect your CreateCSV
Lambda function. Scroll down, and note the name of the Execution role:

Next, in the upper right-hand corner, select your name, and drop-down the menu and
choose “My Security Credentials”.

5

(alternatively navigate to IAM in the AWS management console)

On the left-hand side select “Roles”.

Search for the name of your Lambda execution role (e.g. lambda_basic_execution).

Once found, click on the Role_name, and select the button:

Search for the policy: “AmazonS3FullAccess” and select the button:

The policy should then appear as added to the Role.
This grants any Lambda function with this Role permission to work with S3.
More fine grained security policies can be specified as needed.

4. Test your CreateCSV Lambda Function

Now, using callservice.sh, invoke your Lambda function.
Try creating different sizes of CSV files by increasing or decreasing the values for “row”
and “col”. Please note, for creating large CSV files, it may be necessary to increase
timeout values in the API-Gateway and/or Lambda as creating large CSVs is slow.

$./callservice.sh
{"row":50,"col":10,"bucketname":"test.bucket.562.aaa","filename":"test.csv"}
Invoking Lambda CreateCSV function using API Gateway

real 0m10.662s
user 0m0.092s
sys 0m0.008s

CURL RESULT:
{"value":"Bucket: test.bucket.562.aaa filename:test.csv size:1938","uuid":
"eaa34121­d5fd­43b4­a19c­ebc381db5c56","error":"","vmuptime":1540528993,
"newcontainer":1}

Next, verify that the CSV file has been created in your S3 bucket.

First try this using the AWS CLI. Try out the following commands.
Adjust bucketnames as needed:

$ aws s3 ls test.bucket.562.aaa
2018­10­25 21:44:42 1938 test.csv

6

$ aws s3 ls s3://test.bucket.562.aaa
2018­10­25 21:44:42 1938 test.csv

$ aws s3 cp s3://test.bucket.562.aaa/test.csv .
download: s3://test.bucket.562.aaa/test.csv to ./test.csv

$ cat test.csv
38,869,146,8,578,793,8,713,581,259
49,994,324,882,412,287,402,428,401,922
971,584,184,972,717,611,14,660,978,867
...

Note that “s3://test.bucket.562.aaa/test.csv” is considered a URI or a Uniform Resource
Identifier which is analogous (similar to) a URL.

The “aws s3 ls” command doesn’t require “s3://”, while “aws s3 cp” does.

Next, using the S3 GUI, inspect your bucket and verify that the test.csv file exists.

Click your bucket name in the GUI.
Then click on the filename:

It is possible to download the file here, but without allowing public access to your bucket
(not recommended) the web link at the bottom does not work:

7

5. Create ProcessCSV Lambda Function

Next, make a copy of the “CreateCSV” class called “ProcessCSV”.
If you’re using Netbeans, right click on “CreateCSV” and select “Refactor | Copy”.
Or alternatively press “ALT-C”.

A refactor popup appears:

Rename the class to “ProcessCSV”.

If not using Netbeans, copy “CreateCSV” and rename to create a new class called
“ProcessCSV”. Adapt the Lambda function to read a CSV file called “filename” from the
S3 called “bucketname”.

Adapt as needed the example code provided from the URL and copied below to read a file
from S3 line-by-line. URL: https://blog.webnersolutions.com/use-aws-lambda-function

Here is the most relevant sample code for this activity:
AmazonS3 s3Client = AmazonS3ClientBuilder.standard().build();

//get object file using source bucket and srcKey name
S3Object s3Object = s3Client.getObject(new GetObjectRequest(srcBucket, srcKey));

//get content of the file
InputStream objectData = s3Object.getObjectContent();

//scanning data line by line
String textToUpload = "";
Scanner scanner = new Scanner(objectData);
while (scanner.hasNext()) {

textToUpload += scanner.nextLine();
}
scanner.close();

The ProcessCSV Lambda function should add all numbers from the CSV file to calculate
the average value and total value of all elements.

Read each line of the CSV file to parse each individual comma-separated value.
Add the total of all values using a Java “long” primitive variable:

8

https://blog.webnersolutions.com/use-aws-lambda-function

long total;

Track the total number of elements processed.

At the end, use a Java “double” primitive, to calculate the average value for all elements
in the entire CSV file:

double avg;

Add a logging statement to print the average value to the AWS Lambda log:
logger.log("ProcessCSV bucketname:" + bucketname + " filename:" + filename + "
avg­element:" + avg + “ total:” + total);

Finally, adjust the “value” property of the response object:
r.setValue("Bucket: " + bucketname + " filename:" + filename + " processed.“);

Note:
It is necessary to add permission for AWS Lambda functions to write out the CloudWatch
logs.

If the Lambda function was created using the role AWSLambdaBasicExecutionRole,
then the logging permissions are already available. If not, it *MAY* be necessary to
manually add these permissions to your role.

The role can be edited directly in the IAM GUI to include the logging permissions as shown
below:

{
"Version": "2012­10­17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "*"
 }
]
}

Now, compile the project.
This will create a JAR file with both Lambda functions.
From this JAR file, a switchboard could be implemented by having the Handler method
call different code based on the Request.java inputs within the same package.

Deploy the new Lambda function using the jar file, and specify a new handler:

9

6. Automatically Trigger ProcessCSV when CreateCSV creates a file in S3

Next, we’ll create a CloudWatch Event rule to fire the ProcessCSV Lambda function to run
whenever a specific file is placed into the S3 bucket.

In the AWS Management Console, search for the “CloudTrail” service.
This is a Management Tool:

On the left-hand slide, select “Trails”:

And then click the button:

Create a trail as follows:

Create Trail
Trail name: s3_1
Apply trail to all regions: no

Management events
Read/Write events: None (select the radio button)

10

Data events
S3
Select:

Then find your bucket name and configure Write events. Disable Read events:

Storage Location
** Here, create a new independent bucket for logging **

Create a new S3 bucket: Yes (select radio button)
S3 bucket: tcss562.mylogs.aaa (give your bucket a name, where aaa are your initials)

Then click the Create button:

Next, navigate to CloudWatch, also a Management tool:

On the left-hand side, select “Rules”:
Click the “Create Rule” button:

Then configure a rule as follows:

(X) Event Pattern (select this)
Service Name: Simple Storage Service (S3)
Event Type: Object Level Operations

The message notifiying about the requirement to configure CloudTrail should appear:

(X) Specific Operation (select this)
PutObject (search to find “PutObject”)
Specific bucket(s) by name:
test.bucket.562.aaa (replace bucket name with your custom bucket name for Lambda)

** this is the Lambda bucket, not the logging bucket from immediately above **

Next, on the right-hand side, click the “Add Target” button:

Select: Lambda Function
Function*: ProcessCSV
Configure Input:
Constant (JSON text)

11

Provide JSON:

{"bucketname":"test.bucket.562.aaa","filename":"test.csv"}

Once everything is configured and ready, scroll down and in the lower right click:

For Step 2, provide a rule name:

Name*: processCSV_rule

Then press:

Now, run your callservice.sh script again to call createCSV.

When createCSV finishes, the creation of a file in your S3 bucket automatically triggers
the processCSV Lambda function to process the file !!

7. Submitting the tutorial

To submit the tutorial, in the AWS Management Console, navigate to AWS Lambda.

Go to your “ProcessCSV” function.

Click the “Monitoring” tab:

Then click the [View logs in CloudWatch] button.

Look through the log entries.
The top row should be your log entry where CreateCSV triggered the execution of
ProcessCSV.
Click on this entry.
Now, CAPTURE THE SCREEN:

12

Using the CTRL-PrintScreen button to capture the entire screen,
or use CTRL-SHIFT-PrintScreen to draw a box around the relevant section of the screen to
copy to the Clipboard an image of your log with the avg-element and total values for
ProcessCSV.

In OpenOffice, Microsoft Word, or Google Docs, paste this image into a document.

Create a PDF file of the document, and submit this PDF file to Canvas.

Optional:

One shortcoming of the CloudWatch Event target here was that we used a hard coded
value for the bucket name and the file name to pass to our ProcessCSV Lambda function.
Ideally, we would like ProcessCSV to know the name of any new files added to S3 so our
ProcessCSV will dynamically process the new file, and not a statically named one.

If interested in customizing your event handler, consult the instructor or research online
to develop a solution for this problem.

13

