
TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L5.1

Cloud Computing:
Term Project

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 562:
SOFTWARE ENGINEERING
FOR CLOUD COMPUTING

 Functional requirement:

 Pertains to a system supporting a specific function

 What a system is supposed to do

 Testable with unit tests, integration tests, etc.

 Non-functional requirement:

 Specifies criteria used to judge how a system operates

 How a system should be (or behave)

 Considered as “quality” attributes of systems

 Testable by applying metrics to characterize degree of
possessing a given quality

October 10, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L5.2

FUNCTIONAL VS. NON-FUNCTIONAL
ATTRIBUTES OF SYSTEMS

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L5.2

 The system should be highly available.

 The system should be 99.9% available per month
 Maximum downtime: 43m 49.7s monthly, 8hr 45min 36s yearly

 Functional attribute: system should notify users if there is an issue
affects the availability or may cause downtime.

 Availability equation:

AVAILABILITY =
MTBF

MTBF+MTTR
 MTBF: Mean time between failures

 MTTR: Mean time to Repair

 MTBF = ~1 month = 43,757 min; MTTR = 43 min

 AVAILABILITY = 43757 / 43800 = 99.9018265%

October 10, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L5.3

NON-FUNCTIONAL REQUIREMENT:
HIGH AVAILABILITY

 Replicate system resources in multiple data centers or cloud
computing regions

 Use redundant infrastructure components
 For load balancing, fault tolerance

 Report availability status via portal

 Allow users to immediately report outages

 Notification systems to alert system admins when system
experiences an outage

 Tradeoffs:

 Highly available cloud resources are more expensive

 Replicating app components (e.g. database) adds cost

October 10, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L5.4

STRATEGIES FOR HIGH AVAILABILITY

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L5.3

What are the “best” metrics to quantify non-
functional quality attributes?

Consider ease/effort/time/cost of assessment

Relationship to expert opinion (e.g. correlation)

Relationship to other measures

October 10, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L5.5

QUANTIFYING NON-FUNCTIONAL
QUALITY ATTRIBUTES

 Cohesion in Object Oriented Design

October 10, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L5.6

FEEDBACK FROM 10/8

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L5.4

 Sof t modularity: TRADITIONAL

 Divide a program into modules (classes) that call each
other and communicate with shared-memory

 A procedure calling convention is used (or method
invocation)

 Object-oriented programming classic best practices:

 Minimize coupling between classes (OO) and modules

 Maximize cohesion between functions in classes (OO) and
modules
 Best practices lead to improved software reusability,

maintainability, portability

October 10, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L5.7

TYPES OF MODULARITY

 Enforced modularity: CLOUD COMPUTING

 Program is divided into modules that communicate only
through message passing

 The ubiquitous client-server paradigm

 Clients and servers are independent decoupled modules

 System is more robust if servers are stateless

 May be scaled and deployed separately

 May also FAIL separately!

October 10, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L5.8

TYPES OF MODULARITY - 2

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L5.5

 Object-oriented coupling

 Degree of interdependence between software modules

 A measure of how connected two classes or modules are

 Captures the degree of the relationships between modules

 Coupling is usually contrasted with cohesion

 Low coupling of ten correlates with high cohesion

 High coupling often correlates with low cohesion

 Object-oriented cohesion

 Degree to which elements inside a class or module belong together

 Do the methods and data inside of a class interoperate with each
other (High cohesion)? Or is the class a catch all bin of random
functions (Low cohesion)?
 E.g. “Util” class where random helper routines land… (low cohesion)

October 10, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L5.9

COUPLING AND COHESION

 Serverless vs. Classic Cloud –
 Is there a significant time difference between using one

or the other?

 Topics related to the term project -

 Service Composition

 Switchboard architecture

October 10, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L5.10

FEEDBACK - 2

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L5.6

 Serverless cloud native application

 Choose one area to study:

 Service composition

 Switchboard architecture

 Address COLD Starts

 Infrastructure Freeze/Thaw cycle of AWS Lambda (FaaS)

 Application flow control

 Data provisioning

October 10, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L5.11

TCSS 562 TERM PROJECT

 Service 1: TRANSFORM

 Read CSV file, per form some transformations

 Write out new CSV fi le

 Service 2: LOAD

 Read CSV file, load data into relational database

 Cloud DB (AWS Aurora), or local DB (Derby/SQLite)
 Derby DB and/or SQLite code examples to be provided in Java

October 10, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L5.12

EXTRACT TRANSFORM LOAD
DATA PIPELINE

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L5.7

 Service 3: EXTRACT

 Using relational database, apply fi lter(s) and/or functions to
aggregate data to produce sums, totals, averages

 Output aggregations as JSON

October 10, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L5.13

EXTRACT TRANSFORM LOAD
DATA PIPELINE 2

October 10, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L5.14

SERVICE COMPOSITION

A B C

A B C

B CA

A B C

3 services

2 services

2 services

1 service

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L5.8

October 10, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L5.15

SWITCH-BOARD ARCHITECTURE

1 service

Single deployment package with consolidated codebase (Java: one JAR file)

Entry method contains “switchboard” logic
Case statement that route calls to proper service

Routing is based on data payload
Check if specific parameters exist, route call accordingly

Goal: reduce # of COLD starts to improve performance

 Serverless Computing:

 AWS Lambda (FAAS: Function-as-a-Service)

 Provides HTTP/REST like web services

 Client/Server paradigm

 Synchronous web service:

 Client calls service

 Client blocks (freezes) and waits for server to complete call

 Connection is maintained in the “OPEN” state

 Problematic if service runtime is long!
 Connections are notoriously dropped

 System timeouts reached

 Client can’t do anything while waiting unless using threads
October 10, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma
L5.16

APPLICATION FLOW CONTROL

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L5.9

 Asynchronous web service

 Client calls service

 Server responds to cl ient with OK message

 Client closes connection

 Server performs the work associated with the service

 Server posts service result in an external data store
 AWS: S3, SQS (queueing service), SNS (notification service)

October 10, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L5.17

APPLICATION FLOW CONTROL - 2

October 10, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L5.18

APPLICATION FLOW CONTROL - 3

Client flow control Microservice as controller

AWS Step Function Asynchronous

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L5.10

 Consider performance and cost implications of the data-tier
design for the serverless application

 Use different tools as the relational datastore to support
service #2 (LOAD) and service #3 (EXTRACT)

 SQL / Relational:

 Amazon Aurora (serverless cloud DB), Amazon RDS (cloud DB),
DB on a VM (MySQL), DB inside Lambda function (SQLite,
Derby)

 NO SQL / Key/Value Store:

 Dynamo DB, MongoDB, S3

October 10, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L5.19

DATA PROVISIONING

QUESTIONS

October 10, 2018
TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L5.62

