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Cloud Computing:
How did we get here? – cont’d

Introduction to Cloud Computing

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 562: 
SOFTWARE ENGINEERING 
FOR CLOUD COMPUTING

 What is High Availability?

 Gustafson’s Law 
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Parallel hardware and software systems allow: 
 Solve problems demanding resources not available on 

single system.
 Reduce time required to obtain solution

 The speed-up (S) measures effectiveness of 
parallelization:

S(N) = T(1) / T(N) 

T(1)  execution time of total sequential computation
T(N)  execution time for performing N parallel 

computations in parallel 

October 8, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.3

SPEED-UP

 Consider embarrassingly parallel image processing
 Eight images (multiple data)
 Apply image transformation (greyscale) in parallel
 8-core CPU, 16 hyperthreads

 Sequential processing: perform transformations one at a time 
using a single program thread
 8 images, 3 seconds each: T(1) = 24 seconds

 Parallel processing
 8 images, 3 seconds each: T(N) = 3 seconds

 Speedup: S(N) = 24 / 3 = 8x speedup
 Called “perfect scaling”

 Must consider data transfer and computation setup time
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 Portion of computation which cannot be parallelized 
determines the overall speedup 

 For an embarrassingly parallel job of fixed size
 Assuming no overhead for distributing the work, and a 

perfectly even work distr ibution

α: fraction of program run time which can’t be parallelized
(e.g. must run sequentially)

 Maximum speedup is:

S = 1/ α

 Example:
Consider a program where 25% cannot be parallelized
Q: What is the maximum possible speedup of the program?
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AMDAHL’S LAW

 Calculates the scaled speed-up using “N” processors

S(N)  = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized 
(e.g. must run sequentially)

 Example:
Consider a program that is embarrassingly parallel except 
for 25% that cannot be parallelized.  α=.25
QUESTION: If  deploying the job on a 2-core CPU, what 
scaled speedup is possible assuming the use of two 
processes that run in parallel?
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GUSTAFSON'S LAW
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 QUESTION:
What is the maximum theoretical speed-up on a 2-core CPU ?
S(N)  = N + (1 - N) α
N=2, α=.25
S(N)  = 2 + (1 - 2) .25
S(N) = ?

 What is the maximum theoretical speed-up on a 4-core CPU?
S(N)  = N + (1 - N) α
N=4, α=.25
S(N)  = 4 + (1 - 4) .25
S(N) = ?
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GUSTAFSON’S EXAMPLE

Cloud Computing: How did we get here?
 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

Modularity 

 Term Project Description
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 Collection of autonomous computers, connected through a 
network with distribution software called “middleware” that 
enables coordination of activities and sharing of resources

 Key characteristics:

 Users perceive system as a single, integrated computing 
facil ity. 

 Compute nodes are autonomous

 Scheduling, resource management, and security implemented 
by every node 

 Multiple points of control and failure

 Nodes may not be accessible at all  times 

 System can be scaled by adding additional nodes

 Availability at low levels of HW/software/network reliability
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DISTRIBUTED SYSTEMS

 Key non-functional attributes

 Known as “ilities” in software engineering

 Availability – 24/7 access?

 Reliability - Fault tolerance 

 Accessibil ity – reachable?

 Usability – user friendly

 Understandabil ity – can under

 Scalability – responds to variable demand

 Extensibility – can be easily modified, extended

 Maintainability – can be easily fixed

 Consistency – data is replicated correctly in timely manner
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DISTRIBUTED SYSTEMS - 2
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 Access transparency: local and remote objects accessed using 
identical operations

 Location transparency: objects accessed w/o knowledge of 
their location.

 Concurrency transparency: several processes run concurrently 
using shared objects w/o inter ference among them

 Replication transparency: multiple instances of objects are 
used to increase reliability
- users are unaware if and how the system is replicated

 Failure transparency: concealment of faults
 Migration transparency: objects are moved w/o affecting 

operations performed on them
 Performance transparency: system can be reconfigured based 

on load and quality of service requirements
 Scaling transparency: system and applications can scale w/o 

change in system structure and w/o affecting applications
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TRANSPARENCY PROPERTIES OF 
DISTRIBUTED SYSTEMS

 Soft modularity: TRADITIONAL 

 Divide a program into modules (classes) that call  each other 
and communicate with shared-memory

 A procedure call ing convention is used (or method invocation)

 Enforced modularity: CLOUD COMPUTING

 Program is divided into modules that communicate only 
through message passing 

 The ubiquitous cl ient-server paradigm 

 Clients and servers are independent decoupled modules

 System is more robust if servers are stateless

 May be scaled and deployed separately

 May also FAIL separately!
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TYPES OF MODULARITY
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 Speed-up (S)
S(N) = T(1) / T(N)

 Amdahl’s law:
S = 1/ α
α = percent of program that must be sequential

 Scaled speedup with N processes:
S(N)  = N + (1-N) α

 Moore’s Law
 Symmetric core, Asymmetric core, Dynamic core CPU
 Distributed Systems Non-function quality attributes 
 Distributed Systems – Types of Transparency
 Types of modularity - Soft, Enforced
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CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS - 3

 Term project introduction – via Canvas
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TCSS 562 TERM PROJECT
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QUESTIONS
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