
TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L4.1

Cloud Computing:
How did we get here? – cont’d

Introduction to Cloud Computing

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 562:
SOFTWARE ENGINEERING
FOR CLOUD COMPUTING

 What is High Availability?

 Gustafson’s Law

October 8, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.2

FEEDBACK FROM 10/3

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L4.2

Parallel hardware and software systems allow:
 Solve problems demanding resources not available on

single system.
 Reduce time required to obtain solution

 The speed-up (S) measures effectiveness of
parallelization:

S(N) = T(1) / T(N)

T(1) execution time of total sequential computation
T(N) execution time for performing N parallel

computations in parallel

October 8, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.3

SPEED-UP

 Consider embarrassingly parallel image processing
 Eight images (multiple data)
 Apply image transformation (greyscale) in parallel
 8-core CPU, 16 hyperthreads

 Sequential processing: perform transformations one at a time
using a single program thread
 8 images, 3 seconds each: T(1) = 24 seconds

 Parallel processing
 8 images, 3 seconds each: T(N) = 3 seconds

 Speedup: S(N) = 24 / 3 = 8x speedup
 Called “perfect scaling”

 Must consider data transfer and computation setup time

October 8, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.4

SPEED-UP EXAMPLE

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L4.3

 Portion of computation which cannot be parallelized
determines the overall speedup

 For an embarrassingly parallel job of fixed size
 Assuming no overhead for distributing the work, and a

perfectly even work distr ibution

α: fraction of program run time which can’t be parallelized
(e.g. must run sequentially)

 Maximum speedup is:

S = 1/ α

 Example:
Consider a program where 25% cannot be parallelized
Q: What is the maximum possible speedup of the program?

October 8, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.5

AMDAHL’S LAW

 Calculates the scaled speed-up using “N” processors

S(N) = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized
(e.g. must run sequentially)

 Example:
Consider a program that is embarrassingly parallel except
for 25% that cannot be parallelized. α=.25
QUESTION: If deploying the job on a 2-core CPU, what
scaled speedup is possible assuming the use of two
processes that run in parallel?

October 8, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.6

GUSTAFSON'S LAW

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L4.4

 QUESTION:
What is the maximum theoretical speed-up on a 2-core CPU ?
S(N) = N + (1 - N) α
N=2, α=.25
S(N) = 2 + (1 - 2) .25
S(N) = ?

 What is the maximum theoretical speed-up on a 4-core CPU?
S(N) = N + (1 - N) α
N=4, α=.25
S(N) = 4 + (1 - 4) .25
S(N) = ?

October 8, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.7

GUSTAFSON’S EXAMPLE

Cloud Computing: How did we get here?
 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

Modularity

 Term Project Description

October 8, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.8

OBJECTIVES

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L4.5

 Collection of autonomous computers, connected through a
network with distribution software called “middleware” that
enables coordination of activities and sharing of resources

 Key characteristics:

 Users perceive system as a single, integrated computing
facil ity.

 Compute nodes are autonomous

 Scheduling, resource management, and security implemented
by every node

 Multiple points of control and failure

 Nodes may not be accessible at all times

 System can be scaled by adding additional nodes

 Availability at low levels of HW/software/network reliability
October 8, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma
L4.9

DISTRIBUTED SYSTEMS

 Key non-functional attributes

 Known as “ilities” in software engineering

 Availability – 24/7 access?

 Reliability - Fault tolerance

 Accessibil ity – reachable?

 Usability – user friendly

 Understandabil ity – can under

 Scalability – responds to variable demand

 Extensibility – can be easily modified, extended

 Maintainability – can be easily fixed

 Consistency – data is replicated correctly in timely manner

October 8, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.10

DISTRIBUTED SYSTEMS - 2

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L4.6

 Access transparency: local and remote objects accessed using
identical operations

 Location transparency: objects accessed w/o knowledge of
their location.

 Concurrency transparency: several processes run concurrently
using shared objects w/o inter ference among them

 Replication transparency: multiple instances of objects are
used to increase reliability
- users are unaware if and how the system is replicated

 Failure transparency: concealment of faults
 Migration transparency: objects are moved w/o affecting

operations performed on them
 Performance transparency: system can be reconfigured based

on load and quality of service requirements
 Scaling transparency: system and applications can scale w/o

change in system structure and w/o affecting applications

October 8, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.11

TRANSPARENCY PROPERTIES OF
DISTRIBUTED SYSTEMS

 Soft modularity: TRADITIONAL

 Divide a program into modules (classes) that call each other
and communicate with shared-memory

 A procedure call ing convention is used (or method invocation)

 Enforced modularity: CLOUD COMPUTING

 Program is divided into modules that communicate only
through message passing

 The ubiquitous cl ient-server paradigm

 Clients and servers are independent decoupled modules

 System is more robust if servers are stateless

 May be scaled and deployed separately

 May also FAIL separately!

October 8, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.12

TYPES OF MODULARITY

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L4.7

 Speed-up (S)
S(N) = T(1) / T(N)

 Amdahl’s law:
S = 1/ α
α = percent of program that must be sequential

 Scaled speedup with N processes:
S(N) = N + (1-N) α

 Moore’s Law
 Symmetric core, Asymmetric core, Dynamic core CPU
 Distributed Systems Non-function quality attributes
 Distributed Systems – Types of Transparency
 Types of modularity - Soft, Enforced

October 8, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.13

CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS - 3

 Term project introduction – via Canvas

October 8, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.14

TCSS 562 TERM PROJECT

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L4.8

QUESTIONS

October 8, 2018
TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L4.15

