TCSS 562: Software Engineering for Cloud 9/27/2018
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

TCSS 562:
SOFTWARE ENGINEERING ,
FOR CLOUD COMPUTING = Parallel threads accessing the same data

FEEDBACK FROM 10/1

Cloud Comutin: - = Threads and how they affect the running time of a
How did we get here? - cont’d . program

=When 2 threads run, don’t they have to take turns?
Introduction to Cloud Computing = How is runtime cut in half with 2 threads if they have to

take turns?

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

School of Engineering and Technology, University of Washington - Tacoma

October 3, 2018 TCSS562: ineering for Cloud C¢ i 2018] | 152 |

FEEDBACK - 2 ARITHMETIC INTENSITY
= Roofline model - relates to “arithmetic intensity” = Arithmetic intensity: Ratio of work (W) to =¥
- i o memory traffic r/w (Q) Q
Arlthmetlc Intensity:) I W Example: # of floating point ops per byte of data read
RatioloweriqeEmenotia il (RIV) - Q = Characterizes application scalability with SIMD support

= SIMD can perform many fast matrix operations in parallel

" High arithmetic Intensity:
= Roofline model: Programs with dense matrix operations scale up nicely

When performance bottleneck changes from (many calcs vs memory RW, supports lots of parallelism)
memory to GPU/CPU

I=Arithmetic intensity; W=Work; Q=memory traffic

= Low arithmetic intensity:

Threshold: when arithmetic intensity of code is high Programs with sparse matrix operations do not scale well
Number of operations outweighs memory traffic with problem size
(memory RW becomes bottleneck, not enough ops!)
TCSS562: Softy Engi ing for Cloud C iting [Fall 2018] TCSS562: i i loud C¢ i 2018]
(i e 20T School of Engineeri ngmer::ﬁno:og\:u 'Dm"u: of Washh Tacoma | B3 ‘ (i E SchoolofEngineeringandTechr:‘;'l:g;uuniversiwofWashingloanacuma | 134 |

= When program reaches a given arithmetic intensity
performance of code running on CPU hits a “roof”

= CPU performance bottleneck changes from:

= Recommended material to refresh and prep for class
= Textbooks, read chapters listed on Schedule Page

memory bandwidth (left) > floating point performance (right) " B°°k. #1: Cloud Computing: Concepts, Technology, and
Architecture
Paak performance
omoaance K€Y take-aways: = Book #2: Cloud Computing: Theory and Practice

8 When a program’s has low 1st Edition is online as a PDF

g Arithmetic Intensity, memory

3 ez bandwidth limits performance..
With high Arithmetic intensity,
the system has peak parallel
performance...

Arithmetic intensity
ocobersaois | (ST etre uneen o Cout e s EN ocabers, s | IS e o vt enmna ol IEN

Slides by Wes J. Lloyd L3.1

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

CLOUD COMPUTING - HOW DID WE GET HERE?

SUMMARY OF KEY POINTS

= Summary of the key points from 10/1:
= Multi-core CPU technology and hyper-threading
= What is a
Heterogeneous system?
Homogeneous system?
Autonomous or self-organizing system?
= Fine grained vs. coarse grained parallelism
= Parallel message passing code is easier to debug than shared
memory (e.g. p-threads)
= Know your application’s max/avg Thread Level Parallelism
(TLP)

= Data-level parallellsm: Map-Reduce, (SIMD) Single Instruction
Multiple Data, Vector processing & GPUs

e TCS5562: Software Engineering for Cloud Computing [Fall 2018] | r ‘

School of Engineering and Technology, University of Washington - Tacoma

9/27/2018

CLOUD COMPUTING - HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 2

= Bit-level parallelism
= Instruction-level parallelism (CPU pipelining)
= Flynn’s taxonomy: computer system architecture classification
= SISD - Single Instruction, Single Data (modern core of a CPU)
= SIMD - Single Instruction, Multiple Data (Data parallelism)
= MIMD - Multiple Instruction, Multiple Data
= MISD is RARE; application for fault tolerance...
= Arithmetlc Intensity: ratio of calculations vs memory RW
= Roofline model:
Memory bottleneck with low arithmetic intensity
= GPUs: ideal for programs with high arithmetic intensity
= SIMD and Vector processing supported by many large registers

October 3, 2018 TCSS562: ineering for Cloud C¢ i 2018] | 138 |

School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES

= Cloud Computing: How did we get here?
= Parallel and distributed systems
(Marinescu Ch. 2 - 15t edition, Ch. 4 - 29 edition)
= Data, thread-level, task-level parallelism
= Parallel architectures

= SIMD architectures, vector processing, multimedia
extensions

= Graphics processing units

= Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems

= Modularity

S A TCS5562: Software Engineering for Cloud Computing [Fall 2018] | e ‘

School of Engineering and Technology, University of Washington - Tacoma

ARITHMETIC INTENSITY

= Arithmetic intensity: Ratio of work (W) to - w
memory traffic r/w (Q) Q
Example: # of floating point ops per byte of data read
= Characterizes application scalability with SIMD support
= SIMD can perform many fast matrix operations in parallel

= High arithmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

= Low arithmetic intensity:
Programs with sparse matrix operations do not scale well
with problem size
(memory RW becomes bottleneck, not enough ops!)

TCSS562: ineering for Cloud C 2018)
School of Engineering and Technology, University of Washington - Tacoma

October 3, 2018 | 13.10

ROOFLINE MODEL

= When program reaches a given arithmetic intensity
performance of code running on CPU hits a “roof”

= CPU performance bottleneck changes from:
memory bandwidth (left) > floating point performance (right)

Paak performance
Key take-aways:

When a program’s has low
Arithmetic Intensity, memory
bandwidth limits performance..

+,X imbalance

Alg2

Performance

With high Arithmetic intensity,
the system has peak parallel
performance...

Arithmetic intensity

TCSS562: Software Engineering for Cloud Computing [Fall 2018]

(e 20T Sehoolof Engineern s andiechnolosyilnvers Y ciWes hinetonETecoms

GRAPHICAL PROCESSING UNITS (GPUs)

= GPU provides multiple SIMD processors
= Typically 7 to 15 SIMD processors each

= 32,768 total registers, divided into 16 lanes
(2048 registers each)

= GPU programming model:
single instruction, multiple thread

= Programmed using CUDA- C like programming
language by NVIDIA for GPUs

= CUDA threads - single thread associated with each
data element (e.g. vector or matrix)

=" Thousands of threads run concurrently

TCSS562: i 2018)
School of Engineering and Technology, University of Washington - Tacoma

October 3, 2018

Slides by Wes J. Lloyd

L3.2

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

PARALLEL COMPUTING

single system.
= Reduce time required to obtain solution

= The speed-up (S) measures effectiveness of
parallelization:

S(N) = T(1) / T(N)

T(N) = execution time for performing N parallel
computations in parallel

= Parallel hardware and software systems allow:
= Solve problems demanding resources not available on

T(1) 2> execution time of total sequential computation

TCS5562: Software Engineering for Cloud Computing [Fall 2018]

(i e 20T AT 1 T RS o T e T o T

SPEED-UP EXAMPLE

= Consider embarrassingly parallel image processing

= Eight images (multiple data)

= Apply image transformation (greyscale) in parallel

= 8-core CPU, 16 hyperthreads

= Sequential processing: perform transformations one at a time
using a single program thread
= 8 images, 3 secondseach: T(1) = 24 seconds

= Parallel processing

= 8 images, 3 seconds each: T(N) = 3 seconds
= Speedup: S(N) = 24 / 3 = 8x speedup
= Called “perfect scaling”

= Must consider data transfer and computation setup time

October 3, 2018

TCSS562: ineering for Cloud Computi 2018) G
School of Engineering and Technology, University of Washington - Tacoma

AMDAHL'S LAW

= Portion of computation which cannot be parallelized
determines the overall speedup

= For an embarrassingly parallel job of fixed size

= Assuming no overhead for distributing the work, and a
perfectly even work distribution

(e.g. must run sequentially)

= Maximum speedup is:
S=1/«a

= Example:
Consider a program where 25% cannot be parallelized

a: fraction of program run time which can’t be parallelized

Q: What Is the maximum possible speedup of the program?

TCS5562: Software Engineering for Cloud Computing [Fall 2018]

(i e 20T SehoololEnsineerr s endlechnolo syl nvers Y iNes hinetonETecome

GUSTAFSON'S LAW

= Calculates the scaled speed-up using “N” processors
S(N) =N+ (1-N)«

N: Number of processors

a: fraction of program run time which can’t be parallelized
(e.g. must run sequentially)

= Example:
Consider a program that is embarrassingly parallel except
for 25% that cannot be parallelized. «=.25
QUESTION: If deploying the job on a 2-core CPU, what
scaled speedup is possible assuming the use of two
processes that run In parallel?

TCSS562: ineering for Cloud C¢ i 2018] | 516 |

(i E lSehoallof Engineenng andTech nology/Unrversity ofWashinaton i Tacoma

GUSTAFSON’S EXAMPLE

= QUESTION:
S(N) =N+ (1-N) «

N=2, a=.25
S(N) =2+ (1-2).25
S(N) =2

S(N) =N+ (1-N)«a

N=4, a=.25
S(N) =4+ (1-4).25
S(N) = 2

What is the maximum theoretical speed-up on a 2-core CPU ?

= What is the maximum theoretical speed-up on a 4-core CPU?

TCSS562: Software Engineering for Cloud Computing [Fall 2018]

(e 20T Sehoolof Engineern s andiechnolosyilnvers Y ciWes hinetonETecoms

MOORE’S LAW

= Transistors on a chip doubles approximately every 1.5 years
= CPUs now have billions of transistors

= Power dissipation issues at faster clock rates leads to heat
removal challenges
= Transition from: increasing clock rates - to adding CPU cores

= Symmetric core processor -multi-core CPU, all cores have the
same computational resources and speed

= Asymmetric core processor - on a multi-core CPU, some cores
have more resources and speed

= Dynamlc core processor - processing resources and speed can
be dynamically configured among cores

= Observation: asymmetric processors offer a higher speedup

October 3, 2018 TCSS562: ineering for Cloud C¢ i 2018) | a8 |

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L3.3

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

DISTRIBUTED SYSTEMS

= Collection of autonomous computers, connected through a
network with distribution software called “middleware” that
enables coordination of activities and sharing of resources

= Key characterlstics:

= Users perceive system as a single, integrated computing
facility.

= Compute nodes are autonomous

= Scheduling, resource management, and security implemented
by every node

= Multiple points of control and failure

= Nodes may not be accessible at all times

= System can be scaled by adding additional nodes

= Availability at low levels of HW/software/network reliability

1319

October 3, 2018 Tcssssz; Software Engineering for Cloud Computing [Fall 2018]

School o Technology, y Tacoma

9/27/2018

DISTRIBUTED SYSTEMS - 2

= Key non-functional attributes
= Known as “ilities” in software engineering

= Availability - 24/7 access?

= Reliability - Fault tolerance

= Accessibility - reachable?

= Usability - user friendly

= Understandability - can under

= Scalability - responds to variable demand

= Extensibility - can be easily modified, extended

= Maintainability - can be easily fixed

= Consistency - data is replicated correctly in timely manner

TCSS562: ineering for Cloud Computi 2018)
School of Engineeri Technology, University i Tacoma

October 3, 2018 | 13.20

TRANSPARENCY PROPERTIES OF

DISTRIBUTED SYSTEMS

= Access transparency: local and remote objects accessed using
identical operations

= Location transparency: objects accessed w/o knowledge of
their location.

= Concurrency transparency: several processes run concurrently
using shared objects w/o interference among them

= Replicatlon transparency: multiple instances of objects are
used to increase reliability
- users are unaware if and how the system is replicated

= Fallure transparency: concealment of faults

= Migratlon transparency: objects are moved w/o affecting
operations performed on them

= Performance transparency: system can be reconfigured based
on load and quality of service requirements

= Scallng transparency: system and applications can scale w/o
change in system structure and w/o affecting applications

October 3, 2018 ;cssssz;Sof(_ware_sngineering for Cloud Computing [Fall 2018]

B2
chnology, y Tacoma

TYPES OF MODULARITY

= Soft modularity: TRADITIONAL

= Divide a program into modules (classes) that call each other
and communicate with shared-memory

= A procedure calling convention is used (or method invocation)

= Enforced modularity: CLOUD COMPUTING

= Program is divided into modules that communicate only
through message passing

= The ubiquitous client-server paradigm

= Clients and servers are independent decoupled modules
= System is more robust if servers are stateless

= May be scaled and deployed separately

= May also FAIL separately!

TCSS562: i ing for Cloud C i 2018]
School of Engineering and Technology, University of Washil Tacoma

October 3, 2018

QUESTIONS

TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington -

October 3, 2018

Slides by Wes J. Lloyd

L3.4

