
TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L3.1

Cloud Computing:
How did we get here? – cont’d

Introduction to Cloud Computing

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 562:
SOFTWARE ENGINEERING
FOR CLOUD COMPUTING Parallel threads accessing the same data

 Threads and how they affect the running time of a
program

When 2 threads run, don’t they have to take turns?

 How is runtime cut in half with 2 threads if they have to
take turns?

October 3, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.2

FEEDBACK FROM 10/1

Roofline model - relates to “arithmetic intensity”

 Arithmetic Intensity:
Ratio of work vs. memory traffic (RW)

I=Arithmetic intensity; W=Work; Q=memory traffic

 Roofline model:
When performance bottleneck changes from
memory to GPU/CPU

 Threshold: when arithmetic intensity of code is high

 Number of operations outweighs memory traffic

October 3, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.3

FEEDBACK - 2

 Arithmetic intensity: Ratio of work (W) to
memory traffic r/w (Q)

Example: # of floating point ops per byte of data read
 Characterizes application scalability with SIMD support
 SIMD can perform many fast matrix operations in parallel

 High arithmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

 Low arithmetic intensity:
Programs with sparse matrix operations do not scale well
with problem size
(memory RW becomes bottleneck, not enough ops!)

October 3, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.4

ARITHMETIC INTENSITY

 When program reaches a given arithmetic intensity
performance of code running on CPU hits a “roof”

 CPU performance bottleneck changes from:
memory bandwidth (left) floating point performance (right)

October 3, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.5

ROOFLINE MODEL

Key take-aways:
When a program’s has low
Arithmetic Intensity, memory
bandwidth limits performance..

With high Arithmetic intensity,
the system has peak parallel
performance…

 Recommended material to refresh and prep for class

 Textbooks, read chapters listed on Schedule Page

 Book #1: Cloud Computing: Concepts, Technology, and
Architecture

 Book #2: Cloud Computing: Theory and Practice

 1st Edition is online as a PDF

October 3, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.6

FEEDBACK - 3

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L3.2

 Summary of the key points from 10/1:
 Multi-core CPU technology and hyper-threading

 What is a
 Heterogeneous system?

 Homogeneous system?

 Autonomous or self-organizing system?

 Fine grained vs. coarse grained parallelism

 Parallel message passing code is easier to debug than shared
memory (e.g. p-threads)

 Know your application’s max/avg Thread Level Parallelism
(TLP)

 Data-level parallelism: Map-Reduce, (SIMD) Single Instruction
Multiple Data, Vector processing & GPUs

October 3, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.7

CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS

 Bit-level parallelism

 Instruction-level parallelism (CPU pipelining)

 Flynn’s taxonomy: computer system architecture classification
 SISD – Single Instruction, Single Data (modern core of a CPU)

 SIMD – Single Instruction, Multiple Data (Data parallelism)

 MIMD – Multiple Instruction, Multiple Data

 MISD is RARE; application for fault tolerance…

 Arithmetic intensity: ratio of calculations vs memory RW

 Roofline model:
Memory bottleneck with low arithmetic intensity

 GPUs: ideal for programs with high arithmetic intensity
 SIMD and Vector processing supported by many large registers

October 3, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.8

CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS - 2

Cloud Computing: How did we get here?
Parallel and distributed systems

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
 Data, thread-level, task-level parallelism

 Parallel architectures

 SIMD architectures, vector processing, multimedia
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

Modularity

October 3, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.9

OBJECTIVES

 Arithmetic intensity: Ratio of work (W) to
memory traffic r/w (Q)

Example: # of floating point ops per byte of data read
 Characterizes application scalability with SIMD support
 SIMD can perform many fast matrix operations in parallel

 High arithmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

 Low arithmetic intensity:
Programs with sparse matrix operations do not scale well
with problem size
(memory RW becomes bottleneck, not enough ops!)

October 3, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.10

ARITHMETIC INTENSITY

 When program reaches a given arithmetic intensity
performance of code running on CPU hits a “roof”

 CPU performance bottleneck changes from:
memory bandwidth (left) floating point performance (right)

October 3, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.11

ROOFLINE MODEL

Key take-aways:
When a program’s has low
Arithmetic Intensity, memory
bandwidth limits performance..

With high Arithmetic intensity,
the system has peak parallel
performance…

 GPU provides multiple SIMD processors

 Typically 7 to 15 SIMD processors each

 32,768 total registers, divided into 16 lanes
(2048 registers each)

 GPU programming model:
single instruction, multiple thread

 Programmed using CUDA- C like programming
language by NVIDIA for GPUs

 CUDA threads – single thread associated with each
data element (e.g. vector or matrix)

 Thousands of threads run concurrently
October 3, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma
L3.12

GRAPHICAL PROCESSING UNITS (GPUS)

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L3.3

Parallel hardware and software systems allow:
 Solve problems demanding resources not available on

single system.
 Reduce time required to obtain solution

 The speed-up (S) measures effectiveness of
parallelization:

S(N) = T(1) / T(N)

T(1) execution time of total sequential computation
T(N) execution time for performing N parallel

computations in parallel

October 3, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.13

PARALLEL COMPUTING

 Consider embarrassingly parallel image processing
 Eight images (multiple data)
 Apply image transformation (greyscale) in parallel
 8-core CPU, 16 hyperthreads

 Sequential processing: perform transformations one at a time
using a single program thread
 8 images, 3 seconds each: T(1) = 24 seconds

 Parallel processing
 8 images, 3 seconds each: T(N) = 3 seconds

 Speedup: S(N) = 24 / 3 = 8x speedup
 Called “per fect scaling”

 Must consider data transfer and computation setup time

October 3, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.14

SPEED-UP EXAMPLE

 Portion of computation which cannot be parallelized
determines the overall speedup

 For an embarrassingly parallel job of fixed size
 Assuming no overhead for distributing the work, and a

perfectly even work distribution

α: fraction of program run time which can’t be parallelized
(e.g. must run sequentially)

 Maximum speedup is:

S = 1/ α

 Example:
Consider a program where 25% cannot be parallelized
Q: What is the maximum possible speedup of the program?

October 3, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.15

AMDAHL’S LAW

 Calculates the scaled speed-up using “N” processors

S(N) = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized
(e.g. must run sequentially)

 Example:
Consider a program that is embarrassingly parallel except
for 25% that cannot be parallelized. α=.25
QUESTION: I f deploying the job on a 2-core CPU, what
scaled speedup is possible assuming the use of two
processes that run in parallel?

October 3, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.16

GUSTAFSON'S LAW

 QUESTION:
What is the maximum theoretical speed-up on a 2-core CPU ?
S(N) = N + (1 - N) α
N=2, α=.25
S(N) = 2 + (1 - 2) .25
S(N) = ?

 What is the maximum theoretical speed-up on a 4-core CPU?
S(N) = N + (1 - N) α
N=4, α=.25
S(N) = 4 + (1 - 4) .25
S(N) = ?

October 3, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.17

GUSTAFSON’S EXAMPLE

 Transistors on a chip doubles approximately every 1.5 years

 CPUs now have billions of transistors

 Power dissipation issues at faster clock rates leads to heat
removal challenges
 Transition from: increasing clock rates to adding CPU cores

 Symmetric core processor –multi-core CPU, all cores have the
same computational resources and speed

 Asymmetric core processor – on a multi-core CPU, some cores
have more resources and speed

 Dynamic core processor – processing resources and speed can
be dynamically configured among cores

 Observation: asymmetric processors of fer a higher speedup

October 3, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.18

MOORE’S LAW

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L3.4

 Collection of autonomous computers, connected through a
network with distribution software called “middleware” that
enables coordination of activities and sharing of resources

 Key characteristics:

 Users perceive system as a single, integrated computing
facility.

 Compute nodes are autonomous

 Scheduling, resource management, and security implemented
by every node

 Multiple points of control and failure

 Nodes may not be accessible at all times

 System can be scaled by adding additional nodes

 Availability at low levels of HW/software/network reliability
October 3, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma
L3.19

DISTRIBUTED SYSTEMS

 Key non-functional attributes

 Known as “ilities” in software engineering

 Availability – 24/7 access?

 Reliability - Fault tolerance

 Accessibility – reachable?

 Usability – user friendly

 Understandability – can under

 Scalability – responds to variable demand

 Extensibility – can be easily modified, extended

 Maintainability – can be easily fixed

 Consistency – data is replicated correctly in timely manner

October 3, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.20

DISTRIBUTED SYSTEMS - 2

 Access transparency: local and remote objects accessed using
identical operations

 Location transparency: objects accessed w/o knowledge of
their location.

 Concurrency transparency: several processes run concurrently
using shared objects w/o interference among them

 Replication transparency: multiple instances of objects are
used to increase reliability
- users are unaware if and how the system is replicated

 Fai lure transparency: concealment of faults
 Migration transparency: objects are moved w/o affecting

operations performed on them
 Performance transparency: system can be reconfigured based

on load and quality of service requirements
 Scal ing transparency: system and applications can scale w/o

change in system structure and w/o affecting applications

October 3, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.21

TRANSPARENCY PROPERTIES OF
DISTRIBUTED SYSTEMS

 Sof t modularity: TRADITIONAL

 Divide a program into modules (classes) that call each other
and communicate with shared-memory

 A procedure calling convention is used (or method invocation)

 Enforced modularity: CLOUD COMPUTING

 Program is divided into modules that communicate only
through message passing

 The ubiquitous client-server paradigm

 Clients and servers are independent decoupled modules

 System is more robust if servers are stateless

 May be scaled and deployed separately

 May also FAIL separately!
October 3, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma
L3.22

TYPES OF MODULARITY

QUESTIONS

October 3, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L3.66

