

	MOORE'S LAW	
 Transistors of CPUs now hat Power dissipation removal chall Transition from 	n a chip doubles approximately every 1.5 yea ve billions of transistors ation issues at faster clock rates leads to hea lenges om: increasing clock rates → to adding CPU cores	rs It
Symmetric construction of same computer states and s	pre processor - multi-core CPU, all cores have tational resources and speed	the
Asymmetric of have more re	core processor – on a multi-core CPU, some c sources and speed	ores
 Dynamic core be dynamical Observation: 	e processor - processing resources and speed lly configured among cores • asymmetric processors offer a higher spee	l can dup
October 3, 2018	TCSS562: Software Engineering for Cloud Computing [Fall 2018] School of Engineering and Technology, University of Washington - Tacoma	L3.18

- Collection of autonomous computers, connected through a network with distribution software called "middleware" that enables coordination of activities and sharing of resources
- Key characteristics:
- Users perceive system as a single, integrated computing facility.
- Compute nodes are autonomous
- Scheduling, resource management, and security implemented by every node
- Multiple points of control and failure
- Nodes may not be accessible at all times
- System can be scaled by adding additional nodes
- Availability at low levels of HW/software/network reliability

TCSS562: Software Engineering for Cloud Computing [Fall 2018] School of Engineering and Technology, University of Washington - Tacoma October 3, 2018 L3.19

TRANSPARENCY PROPERTIES OF DISTRIBUTED SYSTEMS

- Access transparency: local and remote objects accessed using identical operations
- Location transparency: objects accessed w/o knowledge of their location.
- <u>Concurrency transparency</u>: several processes run concurrently using shared objects w/o interference among them
- <u>Replication transparency</u>: multiple instances of objects are used to increase reliability
 users are unaware if and how the system is replicated
- Failure transparency: concealment of faults
- Migration transparency: objects are moved w/o affecting operations performed on them
- Performance transparency: system can be reconfigured based on load and quality of service requirements
- Scaling transparency: system and applications can scale w/o change in system structure and w/o affecting applications October 3, 2018

TCSS562: Software Engineering for Cloud Computing [Fall 2018] School of Engineering and Technology, University of Washington - Tacoma

L3.21

TYPES OF MODULARITY

- Soft modularity: TRADITIONAL
- Divide a program into modules (classes) that call each other and communicate with shared-memory
- A procedure calling convention is used (or method invocation)
- Enforced modularity: CLOUD COMPUTING
- Program is divided into modules that communicate only through message passing
- The ubiquitous client-server paradigm
- Clients and servers are independent decoupled modules
- System is more robust if servers are stateless
- May be scaled and deployed separately

May also FAIL separately!

TCSS562: Software Engineering for Cloud Computing [Fall 2018] School of Engineering and Technology, University of Washington - Tacc October 3, 2018

L3.22