
TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.1

Cloud Computing:
How did we get here?

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 562:
SOFTWARE ENGINEERING
FOR CLOUD COMPUTING

 Material Rating:

 Mostly New to Me: 10- 6 respondents
9- 4 respondents
7- 1 respondent
6- 1 respondent
5- 3 respondents

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.2

FEEDBACK FROM 9/26

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.2

 I know absolutely nothing about cloud computing

 We need to go into basic/fundamental concepts of cloud
computing

 I did not get the project description

 The team project(s)

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.3

FEEDBACK - 2

Cloud Computing: How did we get here?
Parallel and distributed systems

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
 Data, thread-level, task-level parallelism

 Parallel architectures

 SIMD architectures, vector processing, multimedia
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

Modularity

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.4

OBJECTIVES

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.3

 General interest in parallel computing

Moore’s Law - # of transistors doubles every 18 months

 Post 2004: heat dissipation challenges:
can no longer easily increase cloud speed

 Overclocking to 7GHz takes
more than just liquid nitrogen:
 https://tinyurl.com/y93s2yz2

Solutions:
 Vary CPU clock speed

 Add CPU cores

Multi-core technology

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.5

CLOUD COMPUTING:
HOW DID WE GET HERE?

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.6

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.4

 To make computing faster, we must go “parallel”

 Difficult to expose parallelism in scientific
applications

 Not every problem solution has a parallel algorithm
 Chicken and egg problem…

 Many commercial efforts in promoting pure parallel
programming efforts have failed

 Enterprise computing world has been skeptical and
less involved in parallel programming

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.7

CLOUD COMPUTING:
HOW DID WE GET HERE? - 2

Cloud computing provides access to “infinite”
scalable compute infrastructure on demand

 Infrastructure availability is key to exploiting
parallelism

Cloud applications

Based on client-server paradigm

Thin clients leverage compute hosted on the cloud

Applications run many web service instances

Employ load balancing

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.8

CLOUD COMPUTING:
HOW DID WE GET HERE? - 3

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.5

Big Data requires massive amounts of compute
resources

MAP – REDUCE

Single instruction, multiple data (SIMD)

Exploit data level parallelism

Bioinformatics example

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.9

CLOUD COMPUTING:
HOW DID WE GET HERE? - 4

SMITH WATERMAN USE CASE

Applies dynamic programming to find best local
alignment of two protein sequences
 Embarrassingly parallel, each task can run in isolation

 Use case for GPU acceleration

AWS Lambda Serverless Computing Use Case:
Goal: Pair-wise comparison of all unique human
protein sequences (20,336)
 Python client as scheduler

 C Striped Smith-Waterman (SSW) execution engine
From: Zhao M, Lee WP, Garrison EP, Marth GT: SSW library: an SIMD Smith-
Waterman C/C++ library for use in genomic applications.
PLoS One 2013, 8:e82138

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.10

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.6

SMITH WATERMAN RUNTIME

 Laptop server and client (2-core, 4-HT): 8.7 hours

 AWS Lambda server, laptop as client: 2.2 minutes
 Partitions 20,336 sequences into 41 sets
 Execution cost: ~ 82¢ (~237x speed-up)

 AWS Lambda server, EC2 instance as client: 1.28
minutes
 Execution cost: ~ 87¢ (~408x speed-up)

 Hardware
 Laptop client: Intel i5-7200U 2.5 GHz :4 HT, 2 CPU,
 Cloud client: EC2 instance - m5.24xlarge: 96 vCPUs
 Cloud server: Lambda ~1000 Intel E5-2666v3 2.9GHz CPUs

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.11

Compute clouds are large-scale distributed
systems

Heterogeneous systems

Homogeneous systems

Autonomous

Self organizing

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.12

CLOUD COMPUTING:
HOW DID WE GET HERE? - 3

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.7

 Discovering parallelism and development of parallel
algorithms requires considerable ef fort

 Example: numerical analysis problems, such as solving large
systems of l inear equations or solving systems of Partial
Dif ferential Equations (PDEs), require algorithms based on
domain decomposition methods.

 How can the problem be split into independent chunks?

 Fine-grained parallelism
 Only small bits of code can run in parallel without coordination

 Communication is required to synchronize state across nodes

 Coarse-grained parallelism
 Large blocks of code can run without coordination

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.13

PARALLELISM

 Coordination of nodes

 Requires message passing or shared memory

 Debugging parallel message passing code is easier
than parallel shared memory code

 Message passing: all of the interactions are clear

 Shared memory : interactions can be implicit – must
read the code!!

 Processing speed is orders of magnitude faster than
communication speed (CPU > memory bus speed)

 Avoiding coordination achieves the best speed-up
October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma
L2.14

PARALLELISM - 2

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.8

 Thread-level parallelism (TLP)

Control flow architecture

Data-level parallelism

Data flow architecture

Bit-level parallelism

 Instruction-level parallelism (ILP)

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.15

TYPES OF PARALLELISM

Partition data into big chunks, run separate copies
of the program on them with little or no
communication

Problems are considered to be
embarrassingly parallel

Also perfectly parallel or pleasingly parallel…

 Little or no effort needed to separate problem
into a number of parallel tasks

MapReduce programming model is an example

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.16

DATA-LEVEL PARALLELISM

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.9

 Modern CPUs provide multiple instruction pipelines,
supporting multiple execution threads, usually 2
to feed instructions to a single CPU core…

 Two hyper-threads
are not equivalent
to (2) CPU cores

 i7-4770 and i5-4760
same CPU, with and
without HTT

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.17

HYPER THREADING

 Number of threads an application runs at any one time
 Varies throughout program execution
 As a metric:
 Minimum: 1 thread
 Can measure average, maximum (peak)

 QUESTION: What are the consequences of average (TLP)
for scheduling an application to run on a computer with a
fixed number of CPU cores and hyperthreads?

 Let’s say there are 4 cores, or 8 hyper-threads…

Key to avoiding waste of computing resources
is knowing your application’s TLP…

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.18

THREAD LEVEL PARALLELISM (TLP)

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.10

 By John von Neumann (1945)

 Also called the Von Neumann architecture

 Dominant computer system architecture

 Program counter (PC) determines next instruction
to load into instruction register

 Program execution is sequential

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.19

CONTROL-FLOW ARCHITECTURE

 Alternate architecture used by network routers, digital
signal processors, special purpose systems

 Operations performed when input (data) becomes
available

 Envisioned to provide much higher parallelism

 Multiple problems has prevented wide-scale adoption
 Efficiently broadcasting data tokens in a massively

parallel system
 Efficiently dispatching instruction tokens in a massively

parallel system
 Building content addressable memory large enough to

hold all of the dependencies of a real program
October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma
L2.20

DATA FLOW ARCHITECTURE

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.11

 Architecture not as popular as control-flow

 Modern CPUs emulate data flow architecture for dynamic
instruction scheduling since the 1990s

 Out-of-order execution – reduces CPU idle time by not blocking
for instructions requiring data by defining execution windows

 Execution windows identify instructions that can be run by data
dependency

 Instructions are completed in data dependency order within
execution window
 Execution window size typically 32 to 200 instructions

Utility of data flow architectures has been
much less than envisioned

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.21

DATA FLOW ARCHITECTURE - 2

 Computations on large words (e.g. 64-bit integer) are
performed as a single instruction

 Fewer instructions are required on 64-bit CPUs to process
larger operands (A+B) providing dramatic performance
improvements

 Processors have evolved: 4-bit, 8-bit, 16-bit, 32-bit, 64-bit

QUESTION: How many instructions are required to add two
64-bit numbers on a 16-bit CPU? (Intel 8088)

 64-bit MAX int = 9,223,372,036,854,775,807 (signed)

 16-bit MAX int = 32,767 (signed)

 Intel 8088 – limited to 16-bit registers

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.22

BIT-LEVEL PARALLELISM

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.12

 CPU pipelining architectures enable ILP

 CPUs have multi-stage processing pipelines

 Pipelining: split instructions into sequence of steps that
can execute concurrently on different CPU circuitry

 Basic RISC CPU - Each instruction has 5 pipeline stages:

 IF – instruction fetch

 ID- instruction decode

 EX – instruction execution

 MEM – memory access

 WB – write back

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.23

INSTRUCTION-LEVEL PARALLELISM (ILP)

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.24

CPU PIPELINING

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.13

 After 5 clock cycles, all 5 stages of an instruction are
loaded

 Starting with 6th clock cycle, one full instruction
completes each cycle

 The CPU performs 5 tasks per clock cycle!
Fetch, decode, execute, memory read, memory write back

 Pentium 4 (CISC) – 35 stages!

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.25

INSTRUCTION LEVEL PARALLELISM - 2

Michael Flynn’s proposed taxonomy of computer
architectures based on concurrent instructions and
number of data streams (1966)

 SISD (Single Instruction Single Data)

 SIMD (Single Instruction, Multiple Data)

 MIMD (Multiple Instructions, Multiple Data)

 LESS COMMON: MISD (Multiple Instructions, Single Data)

 Pipeline architectures: functional units perform different
operations on the same data

 For fault tolerance, may want to execute same instructions
redundantly to detect and mask errors – for task replication

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.26

MICHAEL FLYNN’S COMPUTER
ARCHITECTURE TAXONOMY

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.14

 SISD (Single Instruction Single Data)
Scalar architecture with one processor/core.

 Individual cores of modern multicore processors are
“SISD”

 SIMD (Single Instruction, Multiple Data)
Supports vector processing

When SIMD instruction is issued, operations on individual
vector components are carried out concurrently

 Two 64-element vectors can be added in parallel

 Vector processing instructions added to modern CPUs

 Example: Intel MMX (multimedia) instructions

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.27

FLYNN’S TAXONOMY

 Exploit data-parallelism: vector operations enable speedups

 Vectors architecture provide vector registers that can store
entire matrices into a CPU register

 SIMD CPU extension (e.g. MMX) add support for vector
operations on traditional CPUs

 Vector operations reduces total number of instructions for
large vector operations

 Provides higher potential speedup vs. MIMD architecture

 Developers think sequentially; not worry about parallelism

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.28

(SIMD): VECTOR PROCESSING
ADVANTAGES

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.15

 MIMD (Multiple Instructions, Multiple Data) - system with
several processors and/or cores that function asynchronously
and independently

 At any time, dif ferent processors/cores may execute different
instructions on dif ferent data

 Multi-core CPUs are MIMD

 Processors share memory via interconnection networks
 Hypercube, 2D torus, 3D torus, omega network, other topologies

 MIMD systems have different methods of sharing memory
 Uniform Memory Access (UMA)

 Cache Only Memory Access (COMA)

 Non-Uniform Memory Access (NUMA)

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.29

FLYNN’S TAXONOMY - 2

 Arithmetic intensity – number of floating point operations
per byte of data read

 SIMD provides fast matrix operations

 Characterizes application scalability based on SIMD
support

 High arithmetic Intensity:
Programs with dense matrix operations scale up nicely

 Low arithmetic intensity:
Programs with sparse matrix operations do not scale well
with problem size

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.30

ARITHMETIC INTENSITY

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.16

 When program reaches a given arithmetic intensity
performance of code running on CPU hits a “roof”

 CPU performance bottleneck changes from:
memory bandwidth (left)  floating point performance (r ight)

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.31

ROOFLINE MODEL

 GPU provides multiple SIMD processors

 Typically 7 to 15 SIMD processors each

 32,768 total registers, divided into 16 lanes
(2048 registers each)

 GPU programming model:
single instruction, multiple thread

 Programmed using CUDA- C like programming
language by NVIDIA for GPUs

 CUDA threads – single thread associated with each
data element (e.g. vector or matrix)

 Thousands of threads run concurrently
October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma
L2.32

GRAPHICAL PROCESSING UNITS (GPUS)

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.17

Parallel hardware and software systems allow:
 Solve problems demanding resources not available on

single system.
 Reduce time required to obtain solution

 The speed-up (S) measures effectiveness of
parallelization:

S(N) = T(1) / T(N)

T(1)  execution time of total sequential computation
T(N)  execution time for performing N parallel

computations in parallel

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.33

PARALLEL COMPUTING

 Consider embarrassingly parallel image processing
 Eight images (multiple data)
 Apply image transformation (greyscale) in parallel
 8-core CPU, 16 hyperthreads

 Sequential processing: perform transformations one at a time
using a single program thread
 8 images, 3 seconds each: T(1) = 24 seconds

 Parallel processing
 8 images, 3 seconds each: T(N) = 3 seconds

 Speedup: S(N) = 24 / 3 = 8x speedup
 Called “perfect scaling”

 Must consider data transfer and computation setup time

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.34

SPEED-UP EXAMPLE

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.18

QUESTIONS

October 1, 2018
TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L2.83

