
TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.1

Cloud Computing:
How did we get here?

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 562:
SOFTWARE ENGINEERING
FOR CLOUD COMPUTING

 Material Rating:

 Mostly New to Me: 10- 6 respondents
9- 4 respondents
7- 1 respondent
6- 1 respondent
5- 3 respondents

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.2

FEEDBACK FROM 9/26

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.2

 I know absolutely nothing about cloud computing

 We need to go into basic/fundamental concepts of cloud
computing

 I did not get the project description

 The team project(s)

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.3

FEEDBACK - 2

Cloud Computing: How did we get here?
Parallel and distributed systems

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
 Data, thread-level, task-level parallelism

 Parallel architectures

 SIMD architectures, vector processing, multimedia
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

Modularity

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.4

OBJECTIVES

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.3

 General interest in parallel computing

Moore’s Law - # of transistors doubles every 18 months

 Post 2004: heat dissipation challenges:
can no longer easily increase cloud speed

 Overclocking to 7GHz takes
more than just liquid nitrogen:
 https://tinyurl.com/y93s2yz2

Solutions:
 Vary CPU clock speed

 Add CPU cores

Multi-core technology

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.5

CLOUD COMPUTING:
HOW DID WE GET HERE?

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.6

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.4

 To make computing faster, we must go “parallel”

 Difficult to expose parallelism in scientific
applications

 Not every problem solution has a parallel algorithm
 Chicken and egg problem…

 Many commercial efforts in promoting pure parallel
programming efforts have failed

 Enterprise computing world has been skeptical and
less involved in parallel programming

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.7

CLOUD COMPUTING:
HOW DID WE GET HERE? - 2

Cloud computing provides access to “infinite”
scalable compute infrastructure on demand

 Infrastructure availability is key to exploiting
parallelism

Cloud applications

Based on client-server paradigm

Thin clients leverage compute hosted on the cloud

Applications run many web service instances

Employ load balancing

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.8

CLOUD COMPUTING:
HOW DID WE GET HERE? - 3

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.5

Big Data requires massive amounts of compute
resources

MAP – REDUCE

Single instruction, multiple data (SIMD)

Exploit data level parallelism

Bioinformatics example

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.9

CLOUD COMPUTING:
HOW DID WE GET HERE? - 4

SMITH WATERMAN USE CASE

Applies dynamic programming to find best local
alignment of two protein sequences
 Embarrassingly parallel, each task can run in isolation

 Use case for GPU acceleration

AWS Lambda Serverless Computing Use Case:
Goal: Pair-wise comparison of all unique human
protein sequences (20,336)
 Python client as scheduler

 C Striped Smith-Waterman (SSW) execution engine
From: Zhao M, Lee WP, Garrison EP, Marth GT: SSW library: an SIMD Smith-
Waterman C/C++ library for use in genomic applications.
PLoS One 2013, 8:e82138

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.10

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.6

SMITH WATERMAN RUNTIME

 Laptop server and client (2-core, 4-HT): 8.7 hours

 AWS Lambda server, laptop as client: 2.2 minutes
 Partitions 20,336 sequences into 41 sets
 Execution cost: ~ 82¢ (~237x speed-up)

 AWS Lambda server, EC2 instance as client: 1.28
minutes
 Execution cost: ~ 87¢ (~408x speed-up)

 Hardware
 Laptop client: Intel i5-7200U 2.5 GHz :4 HT, 2 CPU,
 Cloud client: EC2 instance - m5.24xlarge: 96 vCPUs
 Cloud server: Lambda ~1000 Intel E5-2666v3 2.9GHz CPUs

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.11

Compute clouds are large-scale distributed
systems

Heterogeneous systems

Homogeneous systems

Autonomous

Self organizing

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.12

CLOUD COMPUTING:
HOW DID WE GET HERE? - 3

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.7

 Discovering parallelism and development of parallel
algorithms requires considerable ef fort

 Example: numerical analysis problems, such as solving large
systems of l inear equations or solving systems of Partial
Dif ferential Equations (PDEs), require algorithms based on
domain decomposition methods.

 How can the problem be split into independent chunks?

 Fine-grained parallelism
 Only small bits of code can run in parallel without coordination

 Communication is required to synchronize state across nodes

 Coarse-grained parallelism
 Large blocks of code can run without coordination

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.13

PARALLELISM

 Coordination of nodes

 Requires message passing or shared memory

 Debugging parallel message passing code is easier
than parallel shared memory code

 Message passing: all of the interactions are clear

 Shared memory : interactions can be implicit – must
read the code!!

 Processing speed is orders of magnitude faster than
communication speed (CPU > memory bus speed)

 Avoiding coordination achieves the best speed-up
October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma
L2.14

PARALLELISM - 2

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.8

 Thread-level parallelism (TLP)

Control flow architecture

Data-level parallelism

Data flow architecture

Bit-level parallelism

 Instruction-level parallelism (ILP)

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.15

TYPES OF PARALLELISM

Partition data into big chunks, run separate copies
of the program on them with little or no
communication

Problems are considered to be
embarrassingly parallel

Also perfectly parallel or pleasingly parallel…

 Little or no effort needed to separate problem
into a number of parallel tasks

MapReduce programming model is an example

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.16

DATA-LEVEL PARALLELISM

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.9

 Modern CPUs provide multiple instruction pipelines,
supporting multiple execution threads, usually 2
to feed instructions to a single CPU core…

 Two hyper-threads
are not equivalent
to (2) CPU cores

 i7-4770 and i5-4760
same CPU, with and
without HTT

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.17

HYPER THREADING

 Number of threads an application runs at any one time
 Varies throughout program execution
 As a metric:
 Minimum: 1 thread
 Can measure average, maximum (peak)

 QUESTION: What are the consequences of average (TLP)
for scheduling an application to run on a computer with a
fixed number of CPU cores and hyperthreads?

 Let’s say there are 4 cores, or 8 hyper-threads…

Key to avoiding waste of computing resources
is knowing your application’s TLP…

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.18

THREAD LEVEL PARALLELISM (TLP)

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.10

 By John von Neumann (1945)

 Also called the Von Neumann architecture

 Dominant computer system architecture

 Program counter (PC) determines next instruction
to load into instruction register

 Program execution is sequential

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.19

CONTROL-FLOW ARCHITECTURE

 Alternate architecture used by network routers, digital
signal processors, special purpose systems

 Operations performed when input (data) becomes
available

 Envisioned to provide much higher parallelism

 Multiple problems has prevented wide-scale adoption
 Efficiently broadcasting data tokens in a massively

parallel system
 Efficiently dispatching instruction tokens in a massively

parallel system
 Building content addressable memory large enough to

hold all of the dependencies of a real program
October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma
L2.20

DATA FLOW ARCHITECTURE

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.11

 Architecture not as popular as control-flow

 Modern CPUs emulate data flow architecture for dynamic
instruction scheduling since the 1990s

 Out-of-order execution – reduces CPU idle time by not blocking
for instructions requiring data by defining execution windows

 Execution windows identify instructions that can be run by data
dependency

 Instructions are completed in data dependency order within
execution window
 Execution window size typically 32 to 200 instructions

Utility of data flow architectures has been
much less than envisioned

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.21

DATA FLOW ARCHITECTURE - 2

 Computations on large words (e.g. 64-bit integer) are
performed as a single instruction

 Fewer instructions are required on 64-bit CPUs to process
larger operands (A+B) providing dramatic performance
improvements

 Processors have evolved: 4-bit, 8-bit, 16-bit, 32-bit, 64-bit

QUESTION: How many instructions are required to add two
64-bit numbers on a 16-bit CPU? (Intel 8088)

 64-bit MAX int = 9,223,372,036,854,775,807 (signed)

 16-bit MAX int = 32,767 (signed)

 Intel 8088 – limited to 16-bit registers

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.22

BIT-LEVEL PARALLELISM

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.12

 CPU pipelining architectures enable ILP

 CPUs have multi-stage processing pipelines

 Pipelining: split instructions into sequence of steps that
can execute concurrently on different CPU circuitry

 Basic RISC CPU - Each instruction has 5 pipeline stages:

 IF – instruction fetch

 ID- instruction decode

 EX – instruction execution

 MEM – memory access

 WB – write back

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.23

INSTRUCTION-LEVEL PARALLELISM (ILP)

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.24

CPU PIPELINING

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.13

 After 5 clock cycles, all 5 stages of an instruction are
loaded

 Starting with 6th clock cycle, one full instruction
completes each cycle

 The CPU performs 5 tasks per clock cycle!
Fetch, decode, execute, memory read, memory write back

 Pentium 4 (CISC) – 35 stages!

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.25

INSTRUCTION LEVEL PARALLELISM - 2

Michael Flynn’s proposed taxonomy of computer
architectures based on concurrent instructions and
number of data streams (1966)

 SISD (Single Instruction Single Data)

 SIMD (Single Instruction, Multiple Data)

 MIMD (Multiple Instructions, Multiple Data)

 LESS COMMON: MISD (Multiple Instructions, Single Data)

 Pipeline architectures: functional units perform different
operations on the same data

 For fault tolerance, may want to execute same instructions
redundantly to detect and mask errors – for task replication

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.26

MICHAEL FLYNN’S COMPUTER
ARCHITECTURE TAXONOMY

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.14

 SISD (Single Instruction Single Data)
Scalar architecture with one processor/core.

 Individual cores of modern multicore processors are
“SISD”

 SIMD (Single Instruction, Multiple Data)
Supports vector processing

When SIMD instruction is issued, operations on individual
vector components are carried out concurrently

 Two 64-element vectors can be added in parallel

 Vector processing instructions added to modern CPUs

 Example: Intel MMX (multimedia) instructions

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.27

FLYNN’S TAXONOMY

 Exploit data-parallelism: vector operations enable speedups

 Vectors architecture provide vector registers that can store
entire matrices into a CPU register

 SIMD CPU extension (e.g. MMX) add support for vector
operations on traditional CPUs

 Vector operations reduces total number of instructions for
large vector operations

 Provides higher potential speedup vs. MIMD architecture

 Developers think sequentially; not worry about parallelism

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.28

(SIMD): VECTOR PROCESSING
ADVANTAGES

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.15

 MIMD (Multiple Instructions, Multiple Data) - system with
several processors and/or cores that function asynchronously
and independently

 At any time, dif ferent processors/cores may execute different
instructions on dif ferent data

 Multi-core CPUs are MIMD

 Processors share memory via interconnection networks
 Hypercube, 2D torus, 3D torus, omega network, other topologies

 MIMD systems have different methods of sharing memory
 Uniform Memory Access (UMA)

 Cache Only Memory Access (COMA)

 Non-Uniform Memory Access (NUMA)

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.29

FLYNN’S TAXONOMY - 2

 Arithmetic intensity – number of floating point operations
per byte of data read

 SIMD provides fast matrix operations

 Characterizes application scalability based on SIMD
support

 High arithmetic Intensity:
Programs with dense matrix operations scale up nicely

 Low arithmetic intensity:
Programs with sparse matrix operations do not scale well
with problem size

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.30

ARITHMETIC INTENSITY

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.16

 When program reaches a given arithmetic intensity
performance of code running on CPU hits a “roof”

 CPU performance bottleneck changes from:
memory bandwidth (left) floating point performance (r ight)

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.31

ROOFLINE MODEL

 GPU provides multiple SIMD processors

 Typically 7 to 15 SIMD processors each

 32,768 total registers, divided into 16 lanes
(2048 registers each)

 GPU programming model:
single instruction, multiple thread

 Programmed using CUDA- C like programming
language by NVIDIA for GPUs

 CUDA threads – single thread associated with each
data element (e.g. vector or matrix)

 Thousands of threads run concurrently
October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma
L2.32

GRAPHICAL PROCESSING UNITS (GPUS)

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.17

Parallel hardware and software systems allow:
 Solve problems demanding resources not available on

single system.
 Reduce time required to obtain solution

 The speed-up (S) measures effectiveness of
parallelization:

S(N) = T(1) / T(N)

T(1) execution time of total sequential computation
T(N) execution time for performing N parallel

computations in parallel

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.33

PARALLEL COMPUTING

 Consider embarrassingly parallel image processing
 Eight images (multiple data)
 Apply image transformation (greyscale) in parallel
 8-core CPU, 16 hyperthreads

 Sequential processing: perform transformations one at a time
using a single program thread
 8 images, 3 seconds each: T(1) = 24 seconds

 Parallel processing
 8 images, 3 seconds each: T(N) = 3 seconds

 Speedup: S(N) = 24 / 3 = 8x speedup
 Called “perfect scaling”

 Must consider data transfer and computation setup time

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.34

SPEED-UP EXAMPLE

TCSS 562: Software Engineering for Cloud
Computing [Fall 2018]
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.18

QUESTIONS

October 1, 2018
TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L2.83

