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Cloud Computing:
How did we get here?

Wes J. Lloyd
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University of Washington - Tacoma

TCSS 562: 
SOFTWARE ENGINEERING 
FOR CLOUD COMPUTING

 Material Rating:

 Mostly New to Me: 10- 6 respondents
9- 4 respondents
7- 1 respondent
6- 1 respondent 
5- 3 respondents
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 I  know absolutely nothing about cloud computing

 We need to go into basic/fundamental concepts of cloud 
computing

 I  did not get the project description

 The team project(s)
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FEEDBACK - 2

Cloud Computing: How did we get here?
Parallel and distributed systems 

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
 Data, thread-level, task-level parallelism

 Parallel architectures

 SIMD architectures, vector processing, multimedia 
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

Modularity 
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 General interest in parallel computing

Moore’s Law - # of transistors doubles every 18 months

 Post 2004: heat dissipation challenges:
can no longer easily increase cloud speed

 Overclocking to 7GHz takes 
more than just liquid nitrogen:
 https://tinyurl.com/y93s2yz2

Solutions:
 Vary CPU clock speed

 Add CPU cores

Multi-core technology
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CLOUD COMPUTING: 
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 To make computing faster, we must go “parallel”

 Difficult to expose parallelism in scientific 
applications

 Not every problem solution has a parallel algorithm
 Chicken and egg problem…

 Many commercial efforts in promoting pure parallel 
programming efforts have failed

 Enterprise computing world has been skeptical and 
less involved in parallel programming
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CLOUD COMPUTING:
HOW DID WE GET HERE? - 2

Cloud computing provides access to “infinite” 
scalable compute infrastructure on demand

 Infrastructure availability is key to exploiting 
parallelism

Cloud applications

Based on client-server paradigm

Thin clients leverage compute hosted on the cloud

Applications run many web service instances

Employ load balancing
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Big Data requires massive amounts of compute 
resources

MAP – REDUCE

Single instruction, multiple data (SIMD)

Exploit data level parallelism

Bioinformatics example

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.9

CLOUD COMPUTING:
HOW DID WE GET HERE? - 4

SMITH WATERMAN USE CASE

Applies dynamic programming to find best local 
alignment of two protein sequences
 Embarrassingly parallel, each task can run in isolation

 Use case for GPU acceleration 

AWS Lambda Serverless Computing Use Case:
Goal: Pair-wise comparison of all unique human 
protein sequences (20,336)
 Python client as scheduler

 C Striped Smith-Waterman (SSW) execution engine
From: Zhao M, Lee WP, Garrison EP, Marth GT: SSW library: an SIMD Smith-
Waterman C/C++ library for use in genomic applications. 
PLoS One 2013, 8:e82138
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SMITH WATERMAN RUNTIME

 Laptop server and client (2-core, 4-HT): 8.7 hours

 AWS Lambda server, laptop as client: 2.2 minutes
 Partitions 20,336 sequences into 41 sets
 Execution cost: ~ 82¢  (~237x speed-up)

 AWS Lambda server, EC2 instance as client: 1.28 
minutes
 Execution cost: ~ 87¢  (~408x speed-up)

 Hardware
 Laptop client: Intel i5-7200U 2.5 GHz :4 HT, 2 CPU, 
 Cloud client: EC2 instance - m5.24xlarge: 96 vCPUs
 Cloud server: Lambda ~1000 Intel E5-2666v3 2.9GHz CPUs
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Compute clouds are large-scale distributed 
systems

Heterogeneous systems

Homogeneous systems

Autonomous

Self organizing 
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 Discovering parallelism and development of parallel 
algorithms requires considerable ef fort

 Example: numerical analysis problems, such as solving large 
systems of l inear equations or solving systems of Partial 
Dif ferential Equations (PDEs), require algorithms based on 
domain decomposition methods. 

 How can the problem be split into independent chunks?

 Fine-grained parallelism
 Only small bits of code can run in parallel without coordination 

 Communication is required to synchronize state across nodes

 Coarse-grained parallelism
 Large blocks of code can run without coordination
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PARALLELISM

 Coordination of nodes

 Requires message passing or shared memory

 Debugging parallel message passing code is easier 
than parallel shared memory code

 Message passing: all of the interactions are clear

 Shared memory : interactions can be implicit – must 
read the code!!

 Processing speed is orders of magnitude faster than 
communication speed (CPU > memory bus speed)

 Avoiding coordination achieves the best speed-up
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PARALLELISM - 2
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 Thread-level parallelism (TLP)

Control flow architecture

Data-level parallelism

Data flow architecture

Bit-level parallelism

 Instruction-level parallelism (ILP)
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TYPES OF PARALLELISM

Partition data into big chunks, run separate copies 
of the program on them with little or no 
communication

Problems are considered to be 
embarrassingly parallel

Also perfectly parallel or pleasingly parallel…

 Little or no effort needed to separate problem 
into a number of parallel tasks

MapReduce programming model is an example
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DATA-LEVEL PARALLELISM
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 Modern CPUs provide multiple instruction pipelines,
supporting multiple execution threads, usually 2
to feed instructions to a single CPU core…

 Two hyper-threads 
are not equivalent 
to (2) CPU cores

 i7-4770 and i5-4760
same CPU, with and
without HTT
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HYPER THREADING

 Number of threads an application runs at any one time
 Varies throughout program execution
 As a metric:
 Minimum: 1 thread
 Can measure average, maximum (peak)

 QUESTION: What are the consequences of average (TLP) 
for scheduling an application to run on a computer with a 
fixed number of CPU cores and hyperthreads? 

 Let’s say there are 4 cores, or 8 hyper-threads…

Key to avoiding waste of computing resources 
is knowing your application’s TLP…
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THREAD LEVEL PARALLELISM (TLP)
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 By John von Neumann (1945)

 Also called the Von Neumann architecture

 Dominant computer system architecture

 Program counter (PC) determines next instruction 
to load into instruction register

 Program execution is sequential
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CONTROL-FLOW ARCHITECTURE

 Alternate architecture used by network routers, digital 
signal processors, special purpose systems

 Operations performed when input (data) becomes 
available

 Envisioned to provide much higher parallelism

 Multiple problems has prevented wide-scale adoption
 Efficiently broadcasting data tokens in a massively 

parallel system
 Efficiently dispatching instruction tokens in a massively 

parallel system
 Building content addressable memory large enough to 

hold all of the dependencies of a real program
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DATA FLOW ARCHITECTURE



TCSS 562: Software Engineering for Cloud 
Computing [Fall 2018]  
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.11

 Architecture not as popular as control-flow

 Modern CPUs emulate data flow architecture for dynamic 
instruction scheduling since the 1990s

 Out-of-order execution – reduces CPU idle time by not blocking 
for instructions requiring data by defining execution windows

 Execution windows identify instructions that can be run by data 
dependency  

 Instructions are completed in data dependency order within 
execution window
 Execution window size typically 32 to 200 instructions

Utility of data flow architectures has been
much less than envisioned
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DATA FLOW ARCHITECTURE - 2

 Computations on large words (e.g. 64-bit integer) are 
performed as a single instruction

 Fewer instructions are required on 64-bit CPUs to process 
larger operands (A+B) providing dramatic performance 
improvements

 Processors have evolved: 4-bit, 8-bit, 16-bit, 32-bit, 64-bit

QUESTION: How many instructions are required to add two 
64-bit numbers on a 16-bit CPU?  (Intel 8088)

 64-bit MAX int = 9,223,372,036,854,775,807 (signed)

 16-bit MAX int = 32,767 (signed)

 Intel 8088 – limited to 16-bit registers
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BIT-LEVEL PARALLELISM
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 CPU pipelining architectures enable ILP

 CPUs have multi-stage processing pipelines

 Pipelining: split instructions into sequence of steps that 
can execute concurrently on different CPU circuitry 

 Basic RISC CPU - Each instruction has 5 pipeline stages:

 IF – instruction fetch

 ID- instruction decode

 EX – instruction execution

 MEM – memory access

 WB – write back
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INSTRUCTION-LEVEL PARALLELISM (ILP)

October 1, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.24

CPU PIPELINING
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 After 5 clock cycles, all 5 stages of an instruction are 
loaded

 Starting with 6th clock cycle, one full instruction 
completes each cycle

 The CPU performs 5 tasks per clock cycle!
Fetch, decode, execute, memory read, memory write back

 Pentium 4 (CISC) – 35 stages!
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INSTRUCTION LEVEL PARALLELISM - 2

Michael Flynn’s proposed taxonomy of computer 
architectures based on concurrent instructions and 
number of data streams (1966)

 SISD (Single Instruction Single Data)

 SIMD (Single Instruction, Multiple Data)

 MIMD (Multiple Instructions, Multiple Data)

 LESS COMMON: MISD (Multiple Instructions, Single Data)  

 Pipeline architectures: functional units perform different 
operations on the same data 

 For fault tolerance, may want to execute same instructions 
redundantly to detect and mask errors – for task replication
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 SISD (Single Instruction Single Data)
Scalar architecture with one processor/core.

 Individual cores of modern multicore processors are 
“SISD”

 SIMD (Single Instruction, Multiple Data)
Supports vector processing

When SIMD instruction is issued, operations on individual 
vector components are carried out concurrently

 Two 64-element vectors can be added in parallel

 Vector processing instructions added to modern CPUs

 Example: Intel MMX (multimedia) instructions
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FLYNN’S TAXONOMY

 Exploit data-parallelism: vector operations enable speedups

 Vectors architecture provide vector registers that can store 
entire matrices into a CPU register

 SIMD CPU extension (e.g. MMX) add support for vector 
operations on traditional CPUs

 Vector operations reduces total number of instructions for 
large vector operations 

 Provides higher potential speedup vs. MIMD architecture

 Developers think sequentially; not worry about parallelism
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ADVANTAGES
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 MIMD (Multiple Instructions, Multiple Data) - system with 
several processors and/or cores that function asynchronously 
and independently

 At any time, dif ferent processors/cores may execute different 
instructions on dif ferent data

 Multi-core CPUs are MIMD

 Processors share memory via interconnection networks
 Hypercube, 2D torus, 3D torus, omega network, other topologies

 MIMD systems have different methods of sharing memory
 Uniform Memory Access (UMA)

 Cache Only Memory Access (COMA)

 Non-Uniform Memory Access (NUMA)
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FLYNN’S TAXONOMY - 2

 Arithmetic intensity – number of floating point operations 
per byte of data read

 SIMD provides fast matrix operations

 Characterizes application scalability based on SIMD 
support

 High arithmetic Intensity:
Programs with dense matrix operations scale up nicely

 Low arithmetic intensity:
Programs with sparse matrix operations do not scale well 
with problem size
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ARITHMETIC INTENSITY
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 When program reaches a given arithmetic intensity 
performance of code running on CPU hits a “roof” 

 CPU performance bottleneck changes from:
memory bandwidth (left)  floating point performance (r ight)
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ROOFLINE MODEL

 GPU provides multiple SIMD processors 

 Typically 7 to 15 SIMD processors each

 32,768 total registers, divided into 16 lanes
(2048 registers each)

 GPU programming model: 
single instruction, multiple thread

 Programmed using CUDA- C like programming 
language by NVIDIA for GPUs

 CUDA threads – single thread associated with each 
data element (e.g. vector or matrix)

 Thousands of threads run concurrently 
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GRAPHICAL PROCESSING UNITS (GPUS)



TCSS 562: Software Engineering for Cloud 
Computing [Fall 2018]  
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.17

Parallel hardware and software systems allow: 
 Solve problems demanding resources not available on 

single system.
 Reduce time required to obtain solution

 The speed-up (S) measures effectiveness of 
parallelization:

S(N) = T(1) / T(N) 

T(1)  execution time of total sequential computation
T(N)  execution time for performing N parallel 

computations in parallel 
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PARALLEL COMPUTING

 Consider embarrassingly parallel image processing
 Eight images (multiple data)
 Apply image transformation (greyscale) in parallel
 8-core CPU, 16 hyperthreads

 Sequential processing: perform transformations one at a time 
using a single program thread
 8 images, 3 seconds each: T(1) = 24 seconds

 Parallel processing
 8 images, 3 seconds each: T(N) = 3 seconds

 Speedup: S(N) = 24 / 3 = 8x speedup
 Called “perfect scaling”

 Must consider data transfer and computation setup time
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SPEED-UP EXAMPLE



TCSS 562: Software Engineering for Cloud 
Computing [Fall 2018]  
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L2.18

QUESTIONS
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