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Introduction

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 562: 
SOFTWARE ENGINEERING 
FOR CLOUD COMPUTING  Syllabus, Course Introduction

 Parallel and distributed systems 
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition) 

 Introduction to Cloud Computing
Why study cloud computing?
 History of cloud computing
 Business drivers
 Cloud enabling technologies
 Terminology
 Benefits of cloud adoption
 Risks of cloud adoption
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OBJECTIVES

 Please complete the ONLINE demographics survey:

 https://goo.gl/forms/GUPo5NOyYIfWnEZv2
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DEMOGRAPHICS SURVEY

 Syllabus online at:
http://faculty.washington.edu/wlloyd/courses/tcss562/

 Grading

 Schedule

 Assignments
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TCSS562 – SOFTWARE ENGINEERING 
FOR CLOUD COMPUTING

 [1] Cloud Computing: Concepts, Technology and Architecture

 Thomas Erl,  Prentice Hall 2013

 [2] Cloud Computing - Theory and Practice

 Dan Marinescu, First Edition 2013, Second Edition 2018

 [3] Cloud Computing: 
A Hands-On Approach

 Arshdeep Bahga
2013

 Research papers
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REFERENCES
TCSS 562 – Fall 2018

 Mondays/Wednesdays
 Lecture, midterm, quiz, activities
 No class:

Monday Nov 12, Friday Nov 23
 Key Topics:
 IaaS, Virtualization, Serverless 

computing, Containerization

 Fridays
 Lab Day: Tutorials, group project work

 No Final exam 
 Midterm Wednesday November 7th
 Project presentations – Final Exam Week 
 Term Project: Build and evaluate alternate 

implementations of a native cloud 
serverless application; or group proposed 
cloud research project

TCSS 562
FALL 
2018
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 Project Proposal

 Project Status Reports / Activities / Quiz

 ~ 3-5 total items

 Variety of formats: in class, online, reading, activity

 Midterm

 Open book, note, etc.  

 Class Presentation

 Term Project / Paper / Presentation
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TCS562 COURSE WORK

 Each student will make one presentation in a team of ~3

 Technology sharing presentation

 PPT Slides, demonstration

 Provide technology overview of one cloud service offering 

 Present overview of features, performance, etc.

 Cloud Research Paper Presentation

 PPT slides, identify research contributions, strengths and 
weaknesses of paper, possible areas for future work
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CLASS PRESENTATION

 Project description to be posted 

 Teams of 3, self formed, one project leader

 Proposal due: Friday October 12, 11:59pm (tentative) 

 Focus: 

 Build a native cloud serverless application

 Compose multiple FaaS functions (services)

 Compare alternate implementation of:
 Service compositions 

 Application flow control - AWS Step Functions, laptop client, etc.

 External cloud components (e.g. database, key-value store)

 How does application design impact cost and performance?
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TCS562 TERM PROJECT

 Deliverables

 Demo in class at end of quarter

 Project report paper, GitHub, or How-To (4-6 pgs IEEE 
format, template provided)
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TCSS562 TERM PROJECT - 2

 Can propose open-ended cloud research projects, or cloud 
service evaluation project

 Examples:
 Object/blob storage comparison
 Amazon S3, Google blobstore, Azure blobstore, vs. self-hosted 

 Cloud Relational Database comparison
 Amazon Relational Database Service (RDS), Aurora, Self-Hosted DB

 Cloud Application containers (PaaS)
 Amazon Elastic Beanstalk, Heroku, others

 Other microservices / serverless computing projects
 Google Knative, Google Cloud Functions, Azure Functions, OpenWhisk

 Object/Blob Store
 Evaluation of eventual consistency – time to data replication

 Containerization/Docker research project
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ALTERNATE TERM PROJECT IDEAS 

 Storage systems evaluation
 Amazon EBS, Amazon EFS, others

 Container Services
 Amazon ECS, AKS, Azure Kubernetes Service

 Virtual machine imaging approaches
 Across cloud vendors: Amazon, Google, Microsoft

 Queueing services comparison
 Amazon SQS, others

 NoSQL database services comparison
 DynamoDB, Google BigTable, MongoDB, Cassandra

 Propose your own 

September 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L1.12

TERM PROJECT IDEAS - 2
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 Project cloud infrastructure support 

 Sign up for the Github Student Developer Pack:
 https://education.github.com/pack

 Includes up to $150 in Amazon Cloud Credits

 AWS credit extensions provided as needed

 Microsoft Azure
 $200 free credit per account valid for 30 days

 https://azure.microsoft.com/en-us/free/?b=17.09c

 Google Cloud
 New account credits $

 Chameleon / CloudLab
 Bare metal NSF cloud - free

September 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L1.13

PROJECT SUPPORT

 Projects can lead to papers or posters presented at 
ACM/IEEE/USENIX conferences, workshops
 Networking and travel opportunity 

 Conference participation (posters, papers) 
helps differentiate your resume from others

 Project can support preliminary work for:
UWT - MS capstone/thesis project proposals

 Research projects provide valuable practicum experience 
with cloud systems analysis, prototyping

 Publications are key when applying to PhD programs
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TCSS562 TERM PROJECT OPPORTUNITIES

 Project status report / term project check-ins

Written status report 

 2-3 times in quarter 

 Part of: “Project Status Reports / Activities / Quizzes”
category

 10% of grade

 Project meetings with instructor
 After class, end half of class, office hours
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TCSS562 TERM PROJECT - 3

 From Cloud Computing – Theory and Practice

 1st edition Ch. 2, 2nd edition Ch.4

 Data, thread-level, task-level parallelism

 Parallel architectures

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdhal’s Law, Scaled Speedup

 Properties of distributed systems

 Modularity
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ORIGINS OF CLOUD COMPUTING

QUESTIONS
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 Origins from parallel and distributed systems

 Difficult to expose parallelism in many scientific applications

 Enterprise computing world has been skeptical and less
involved in parallel programming

 Multi-core technology has replaced faster CPU clock rates

 Cloud computing enables effortless exploitation of parallelism

 Big Data requires massive amounts of compute resources

 Cloud applications
 Based on client-server paradigm

 Thin clients leverage compute hosted on the cloud

 Applications run many web service instances

 Employ load balancing

September 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
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CLOUD COMPUTING: 
HOW DID WE GET HERE?
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Many commercial efforts in promoting pure
parallel programming efforts have failed

Compute clouds are large-scale distributed 
systems

Autonomous and heterogeneous systems

September 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L1.19

CLOUD COMPUTING:
HOW DID WE GET HERE? - 2

 Discovering parallelism and development of parallel
algorithms requires considerable effort

 Example: numerical analysis problems, such as solving large 
systems of linear equations or solving systems of Partial 
Differential Equations (PDEs), require algorithms based on 
domain decomposition methods. 

 How can the problem be split into independent chunks?

 Fine-grained parallelism
 Only small bits of code can run in parallel without coordination 

 Communication is required to synchronize state across nodes

 Coarse-grained parallelism
 Large blocks of code can run without coordination
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PARALLELISM

 Coordination of nodes
 Requires message passing or shared memory

 Debugging parallel message passing code is easier than parallel 
shared memory code

 Message passing: all of the interactions are clear

 Shared memory: interactions can be implicit

 Processing speed orders of magnitude faster than communication

 Avoiding coordination achieves the best speed-up

 Data-level parallelism
 Partition data into big chunks, run separate copies of the program 

on them with little or no communication

 This is embarrassingly parallel

 MapReduce programming model is an example 
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PARALLELISM - 2

 Modern CPUs provide multiple instruction pipelines,
supporting multiple execution threads, usually 2
to feed instructions to a single CPU core…

 Two hyper-threads 
are not equivalent 
to (2) CPU cores

 i7-4770 and i5-4760
same CPU, with and
without HTT

September 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L1.22

HYPER THREADING

 Number of threads that an application runs at any one time

 Varies throughout program execution

 As a metric:

 Minimum: 1 thread

 Can measure average, maximum

 What are the consequences of  average (TLP) for  scheduling an 
application to run on a computer with a f ixed number of  CPU 
cores and hyperthreads? 

 Let’s say there are 4 cores, or 8 hyper-threads…
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THREAD LEVEL PARALLELISM (TLP)

 By John von Neumann (1945)

 Also called the Von Neumann architecture

 Dominant computer system architecture

 Program counter (PC) determines next instruction 
to load into instruction register

 Program execution is sequential
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CONTROL-FLOW ARCHITECTURE
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 Alternate architecture used by network routers, digital signal 
processors, special purpose systems

 Operations performed when input (data) becomes available

 Envisioned to provide much higher parallelism

 Multiple problems prevented wide-scale adoption

 Efficiently broadcasting data tokens in a massively parallel 
system

 Efficiently dispatching instruction tokens in a massively 
parallel system

 Building content addressable memory large enough to hold all 
of the dependencies of a real program
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DATA FLOW ARCHITECTURE

 Architecture not as popular as control-flow

 Modern CPUs emulate data flow architecture for dynamic 
instruction scheduling since the 1990s

 Out-of-order execution – reduces CPU idle time by not 
blocking for instructions requiring data by defining 
execution windows
 Execution windows identify instructions that can be run by 

data dependency  
 Instructions are completed in data dependency order 

within window
 Execution window size typically 32 to 200 instructions

 Utility of  data f low concept is much less than envisioned

September 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L1.26

DATA FLOW ARCHITECTURE - 2

 Computations on large words (e.g. 64-bit integer) are 
performed as a single instruction

 Fewer instructions are required on 64-bit CPUs to process 
larger operands (A+B) providing dramatic performance 
improvements

 Processors have evolved: 4-bit, 8-bit, 16-bit, 32-bit, 64-bit

How many instructions are required to add two 64-bit numbers
on a 16-bit CPU?  ( Intel 8088)

 64-bit MAX int = 9,223,372,036,854,775,807 (signed)
 16-bit MAX int = 32,767 (signed)
 Intel 8088 – limited to 16-bit registers
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BIT-LEVEL PARALLELISM

 CPU pipelining architectures enable ILP

 CPUs have multi-stage processing pipelines

 Pipelining: split instructions into sequence of steps that can 
execute concurrently on different CPU circuitry 

 Consider basic RISC 5-stage pipeline

 Each instruction has 5 stages:

 IF – instruction fetch , ID- instruction decode , EX – instruction
execution , MEM – memory access , WB – write back

 After 5 clock cycles, all 5 stages of an instruction are loaded

 Starting with 6th clock cycle, one full instruction completes 
each cycle

 Pentium 4 (CISC) – 35 stages!
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INSTRUCTION-LEVEL PARALLELISM (ILP)
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CPU PIPELINING

 Michael Flynn’s proposed taxonomy of computer 
architectures based on concurrent instructions and 
number of data streams (1966)

 SISD (Single Instruction Single Data) – scalar architecture 
with one processor/core.
 Individual cores of modern multicore processors are “SISD”

 SIMD (Single Instruction, Multiple Data) - supports vector 
processing. When a SIMD instruction is issued, the operations 
on individual vector components are carried out concurrently.
 Elements of two 64-element vectors can be added in parallel

 Vector processing instructions have been added to modern CPUs

 Example: Intel MMX (multimedia) instructions
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MICHAEL FLYNN’S COMPUTER 
ARCHITECTURE TAXONOMY
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 Exploit data-parallelism: vector operations enable speedups

 Vectors architecture provide vector registers that can store 
entire matrices into a CPU register

 SIMD CPU extension (e.g. MMX) add support for vector 
operations on traditional CPUs

 Vector operations reduces total number of instructions for 
large vector operations 

 Provides higher potential speedup vs. MIMD architecture

 Developers think sequentially; not worry about parallelism
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SIMD ADVANTAGES

 MIMD (Multiple Instructions, Multiple Data) - system with 
several processors and/or cores that function asynchronously 
and independently

 At any time, different processors/cores may execute different 
instructions on different data

 Multi-core CPUs are MIMD

 Processors share memory via interconnection networks
 Hypercube, 2D torus, 3D torus, omega network, other topologies

 MIMD systems have different methods of sharing memory
 Uniform Memory Access (UMA)

 Cache Only Memory Access (COMA)

 Non-Uniform Memory Access (NUMA)
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FLYNN’S TAXONOMY - 2

 Arithmetic intensity – number of floating point operations per 
byte of data read

 SIMD provides fast matrix operations

 Characterizes application scalability based on SIMD support

 High arithmetic Intensity:
Programs with dense matrix operations scale up nicely

 Low ar ithmetic intensity:
Programs with sparse matrix operations do not scale well with 
problem size
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ARITHMETIC INTENSITY

 When program reaches a given arithmetic intensity 
performance of code running on CPU hits a “roof” 

 CPU performance bottleneck changes from:
memory bandwidth (left)  floating point performance (right)
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ROOFLINE MODEL

 GPU provides multiple SIMD processors 

 Typically 7 to 15 SIMD processors each

 32,768 total registers, divided into 16 lanes (2048 reg ea)

 GPU programming model: single instruction, multiple thread

 Programmed using CUDA- C like programming language by 
NVIDIA for GPUs

 CUDA threads – single thread associated with each data
element (e.g. vector or matrix)

 Thousands of threads run concurrently 
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GRAPHICAL PROCESSING UNITS (GPUS)

Parallel hardware and software systems allow: 
 Solve problems demanding resources not available on 

single system.
 Reduce time required to obtain solution

 The speed-up (S) measures effectiveness of 
parallelization:

S(N) = T(1) / T(N) 

T(1)  execution time of total sequential computation
T(N)  execution time for performing N parallel 

computations in parallel 
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PARALLEL COMPUTING
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 Consider embarrassingly parallel image processing
 Eight images (multiple data)
 Apply image transformation (greyscale) in parallel
 8-core CPU, 16 hyperthreads

 Sequential processing: perform transformations one at a time 
using a single program thread
 8 images, 3 seconds each: T(1) = 24 seconds

 Parallel processing
 8 images, 3 seconds each: T(N) = 3 seconds

 Speedup: S(N) = 24 / 3 = 8 seconds 
 Called “per fect scaling”

 Must consider data transfer and computation setup time
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SPEED-UP EXAMPLE

 Portion of computation which cannot be parallelized 
determines the overall speedup 

 For an embarrassingly parallel job of fixed size
 Assuming no overhead for distributing the work, and a 

perfectly even work distribution

α: fraction of running time which can not be parallelized
(e.g. must run sequentially)

 Maximum speedup is:

S = 1/ α

 Example:
Consider a program where 25% cannot be parallelized
What is  the maximum possible speedup of the program?
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AMDAHL’S LAW

 Calculates the scaled speed-up with “N” processes

S(N)  = N – α( N-1)

N: Number of processes

α: fraction of running time which can not be parallelized 
(e.g. must run sequentially)

 Example:
Consider a program that is embarrassingly parallel but 
where 25% cannot be parallelized.
I f  deploying the job on a 2-core CPU, what scaled speedup 
is possible assuming the two processes can run in 
parallel?
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GUSTAFSON'S LAW

 Transistors on a chip doubles approximately every 1.5 years

 CPUs now have billions of transistors

 Power dissipation issues at faster clock rates leads to heat 
removal challenges
 Transition from: increasing clock rates  to adding CPU cores

 Symmetric core processor –multi-core CPU, all cores have the 
same computational resources and speed  

 Asymmetric core processor – on a multi-core CPU, some cores 
have more resources and speed  

 Dynamic core processor – processing resources and speed can 
be dynamically configured among cores

 Observation: asymmetric processors of fer a higher speedup
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MOORE’S LAW

 Collection of autonomous computers, connected through a 
network with distribution software called “middleware” that 
enables coordination of activities and sharing of resources

 Key characteristics:

 Users perceive system as a single, integrated computing 
facility. 

 Compute nodes are autonomous

 Scheduling, resource management, and security implemented 
by every node 

 Multiple points of control and failure

 Nodes may not be accessible at all times

 System can be scaled by adding additional nodes

 Availability at low levels of hw/software/network reliability
September 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
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DISTRIBUTED SYSTEMS

 Access transparency: local and remote objects accessed using 
identical operations

 Location transparency: objects accessed w/o knowledge of their 
location.

 Concurrency transparency: several processes run concurrently using 
shared objects w/o interference among them

 Replication transparency: multiple instances of objects increase 
reliabil ity without the knowledge of users or applications

 Failure transparency: concealment of faults
 Migration transparency: information objects are moved w/o 

affecting operations performed on them
 Performance transparency: system can be reconfigured based on 

load and quality of service requirements
 Scaling transparency: system and applications can scale w/o 

change in system structure and w/o affecting applications
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TRANSPARENCY PROPERTIES OF 
DISTRIBUTED SYSTEMS
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 Why study cloud computing?

 History of cloud computing

 Business drivers

 Cloud enabling technologies

 Terminology

 Benefits of cloud adoption

 Risks of cloud adoption
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INTRODUCTION TO CLOUD COMPUTING

 LINKEDIN - TOP IT Skills from job  app data

 #1 Cloud and Distributed Computing 

 https://learning.linkedin.com/week-of-learning/top-skills

 #2 Statistical Analysis and Data Mining

 FORBES Survey – 6 Tech Skills That’ll Help You Earn More

 #1 Data Science

 #2 Cloud and Distributed Computing

 http://www.forbes.com/sites/laurencebradford/2016/12/
19/6-tech-skills-thatll-help-you-earn-more-in-2017/
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WHY STUDY CLOUD COMPUTING?

 Computerworld
Magazine
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WHY STUDY CLOUD COMPUTING? - 2

 John McCarthy, 1961
 Turing award winner for contributions to AI

 “If computers of the kind I have advocated become the 
computers of the future, then computing may someday be 
organized as a public utility just as the telephone system is a 
public utility… The computer utility could become the basis of 
a new and important industry…”
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A BRIEF HISTORY OF CLOUD COMPUTING

 Internet based computer utilities

 Since the mid-1990s

 Search engines: Yahoo!, Google, Bing

 Email: Hotmail, Gmail

 2000s

 Social networking platforms: MySpace, Facebook, LinkedIn

 Social media: Twitter, YouTube

 Popularized core concepts

 Formed basis of cloud computing
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CLOUD HISTORY - 2

 Late 1990s – Early Software-as-a-Service (SaaS)
 Salesforce: Remotely provisioned services for the enterprise

 2002 -
 Amazon Web Services (AWS) platform: Enterprise oriented services 

for remotely provisioned storage, computing resources, and business 
functionality

 2006 – Infrastructure-as-a-Service (IaaS)
 Amazon launches Elastic Compute Cloud (EC2) service

 Organization can “lease” computing capacity and processing power 
to host enterprise applications

 Infrastructure
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CLOUD HISTORY: SERVICES - 1
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 2006 – Software-as-a-Service (SaaS)

 Google: Offers Google DOCS, “MS Office” like fully-web 
based application for online documentation creation and 
collaboration

 2009 – Platform-as-a-Service (PaaS)

 Google: Offers Google App Engine, publicly hosted 
platform for hosting scalable web applications on google-
hosted datacenters
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CLOUD HISTORY: SERVICES - 2
CLOUD COMPUTING

NIST GENERAL DEFINITION

“Cloud computing is a model for enabling
convenient, on-demand network access to a shared
pool of configurable computing resources
(networks, servers, storage, applications and
services) that can be rapidly provisioned and
reused with minimal management effort or service
provider interaction”…
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“Cloud computing is a specialized form of
distributed computing that introduces utilization
models for remotely provisioning scalable and
measured resources.”

From Cloud Computing Concepts, Technology, and Architecture

Z. Mahmood, R. Puttini, Prentice Hall, 5th printing, 2015
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MORE CONCISE DEFINITION

Capacity planning

Cost reduction

Operational overhead

Organizational agility
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BUSINESS DRIVERS 
FOR CLOUD COMPUTING

 Capacity planning
 Process of determining and fulfilling future demand for IT 

resources

 Capacity vs. demand
 Discrepancy between capacity of IT resources and actual 

demand

 Over-provisioning: resource capacity exceeds demand
 Under-provisioning: demand exceeds resource capacity

 Capacity planning aims to minimize the discrepancy of 
available resources vs. demand
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BUSINESS DRIVERS 
FOR CLOUD COMPUTING
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Dwight, The Office TV sitcom
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 Capacity planning
 Over-provisioning: is costly due to too much infrastructure

 Under-provisioning: is costly due to potential for business loss from 
poor quality of service

 Capacity planning strategies
 Lead strategy: add capacity in anticipation of demand (pre-

provisioning)

 Lag strategy: add capacity when capacity is fully leveraged

 Match strategy: add capacity in small increments as demand 
increases

 Load prediction
 Capacity planning helps anticipate demand flucations
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BUSINESS DRIVERS FOR CLOUD - 2
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CAPACITY PLANNING
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CAPACITY PLANNING - 2

 Capacity planning  Cost reduction
 IT Infrastructure acquisition
 IT Infrastructure maintenance

 Operational overhead
 Technical personnel to maintain physical IT infrastructure
 System upgrades, patches that add testing to deployment 

cycles
 Utility bills, capital investments for power and cooling
 Security and access control measures for server rooms
 Admin and accounting staff to track licenses, support 

agreements, purchases
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BUSINESS DRIVERS FOR CLOUD - 3

 Organizational agility

 Ability to adapt and evolve infrastructure to face change 
from internal and external business factors

 Funding constraints can lead to insufficient on premise IT

 Cloud computing enables IT resources to scale with a 
lower financial commitment
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BUSINESS DRIVERS FOR CLOUD - 4

Cluster computing

Grid computing

Virtualization

Others
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TECHNOLOGY INNOVATIONS 
LEADING TO CLOUD
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 Cluster computing (clustering)
 Cluster is a group of independent IT resources 

interconnected as a single system

 Servers configured with homogeneous hardware and software

 Identical or similar RAM, CPU, HDDs

 Design emphasizes redundancy as server components are easily 
interchanged to keep overall system running

 Example: if a RAID card fails on a key server, the card can be 
swapped from another redundant server

 Enables warm replica servers

 Duplication of key infrastructure servers to provide 
HW failover to ensure high availability (HA)
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CLUSTER COMPUTING

 On going research area since early 1990s

 Distributed heterogeneous computing resources organized into 
logical pools of loosely coupled resources

 For example: heterogeneous servers connected by the internet

 Resources are heterogeneous and geographically dispersed

 Grids use middleware software layer to support workload 
distribution and coordination functions

 Aspects: load balancing, failover control, autonomic 
configuration management

 Grids have influenced clouds contributing common features: 
networked access to machines, resource pooling, scalability, 
and resiliency
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GRID COMPUTING 
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GRID COMPUTING - 2 VIRTUALIZATION
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VIRTUALIZATION
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 Simulate physical hardware resources via software

 The virtual machine (virtual computer)

 Virtual local area network (VLAN)

 Virtual hard disk

 Virtual network attached storage array (NAS)

 Early incarnations featured significant performance, 
reliability, and scalability challenges

 CPU and other HW enhancements have minimized 
performance GAPs

September 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L1.66

VIRTUALIZATION
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 On-Premise Infrastructure
 Local server infrastructure not configured as a cloud

 Cloud Provider
 Corporation or private organization responsible for maintaining cloud

 Cloud Consumer
 User of cloud services

 Scal ing
 Vertical scaling

 Scale up: increase resources of a single virtual server

 Scale down: decrease resources of a single virtual server

 Horizontal scaling

 Scale out: increase number of virtual servers

 Scale in: decrease number of virtual servers
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KEY TERMINOLOGY

 Reconfigure vir tual machine to have different resources:
 CPU cores

 RAM

 HDD/SDD capacity

 May require VM migration if
physical host machine 
resources are exceeded
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VERTICAL SCALING

 Increase (scale-out) or decrease (scale-in) number of vir tual 
servers based on demand
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HORIZONTAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers
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HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers

IT resources instantly available IT resources typically instantly available
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HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication
and automated scaling

Additional setup is normally needed
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HORIZONTAL VS VERTICAL SCALING
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Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication
and automated scaling

Additional setup is normally needed

Additional servers required No additional servers required
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HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication
and automated scaling

Additional setup is normally needed

Additional servers required No additional servers required

Not limited by individual server capacity Limited by individual server capacity

September 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L1.74

HORIZONTAL VS VERTICAL SCALING

 Cloud services

 Broad array of resources accessible “as-a-service”

 Categorized as Infrastructure (IaaS), Platform (PaaS), 
Software (SaaS)

 Service-level-agreements (SLAs):

 Establish expectations for: uptime, security, availability, 
reliability, and performance
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KEY TERMINOLOGY - 2

 Cloud providers
 Leverage economies of scale through mass-acquisition and 

management of large-scale IT resources

 Locate datacenters to optimize costs where electricity is low

 Cloud consumers
 Key business/accounting difference:

 Cloud computing enables anticipated capital expenditures to be 
replaced with operational expenditures

 Operational expenditures always scale with the business

 Eliminates need to invest in server infrastructure based on 
anticipated business needs

 Businesses become more agile and lower their financial risks by 
eliminating large capital investments in physical infrastructure 

September 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L1.76

GOALS AND BENEFITS

 On demand access to pay-as-you-go resources on a short-term 
basis (less commitment)

 Ability to acquire “unlimited” computing
resources on demand when required for 
business needs

 Ability to add/remove IT resources at 
a fine-grained level

 Abstraction of server infrastructure so 
applications deployments are not dependent
on specific locations, hardware, etc.

 The cloud has made our software deployments 
more agile…
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CLOUD BENEFITS - 2

 Example: Using 100 servers for 1 hour costs the same as 
using 1 server for 100 hours

 Rosetta Protein Folding: Working with a UW-Tacoma graduate 
student, we recently deployed this science model across 5,900 
compute cores on Amazon for 2-days…

 What is  the cost to purchase 5,900 compute cores?

 Recent Dell Server purchase example: 
20 cores on 2 servers for $4,478…

 Using this ratio 5,900 cores costs $1.3 million (purchase only)
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CLOUD BENEFITS - 3
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Gene Wilder, Charlie and the Chocolate Factory

 Increased scalability
 Example demand over a

24-hour day  

 Increased availability

 Increased reliability
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CLOUD BENEFITS

 Increased security vulnerabilities
 Expansion of trust boundaries now include the external 

cloud
 Security responsibility shared with cloud provider

 Reduced operational governance / control
 Users have less control of physical hardware
 Cloud user does not directly control resources to ensure 

quality-of-service
 Infrastructure management is abstracted
 Quality and stability of resources can vary
 Network latency costs and variability 
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CLOUD ADOPTION RISKS
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NETWORK LATENCY COSTS

 Performance monitoring of  cloud applications
 Cloud metrics (AWS cloudwatch) support monitoring cloud 

infrastructure (network load, CPU utilization, I/O)
 Performance of cloud applications depends on the health of 

aggregated cloud resources working together
 User must monitor this aggregate performance 

 Limited portability among clouds
 Early cloud systems have significant “vendor” lock-in
 Common APIs and deployment models are slow to evolve
 Operating system containers help make applications more 

portable, but containers still must be deployed

 Geographical issues
 Abstraction of cloud location leads to legal challenges with respect 

to laws for data privacy and storage
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CLOUD RISKS - 2
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CLOUD: VENDOR LOCK-IN


