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Introduction

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 562: 
SOFTWARE ENGINEERING 
FOR CLOUD COMPUTING  Syllabus, Course Introduction

 Parallel and distributed systems 
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition) 

 Introduction to Cloud Computing
Why study cloud computing?
 History of cloud computing
 Business drivers
 Cloud enabling technologies
 Terminology
 Benefits of cloud adoption
 Risks of cloud adoption
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OBJECTIVES

 Please complete the ONLINE demographics survey:

 https://goo.gl/forms/GUPo5NOyYIfWnEZv2

September 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L1.3

DEMOGRAPHICS SURVEY

 Syllabus online at:
http://faculty.washington.edu/wlloyd/courses/tcss562/

 Grading

 Schedule

 Assignments
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TCSS562 – SOFTWARE ENGINEERING 
FOR CLOUD COMPUTING

 [1] Cloud Computing: Concepts, Technology and Architecture

 Thomas Erl,  Prentice Hall 2013

 [2] Cloud Computing - Theory and Practice

 Dan Marinescu, First Edition 2013, Second Edition 2018

 [3] Cloud Computing: 
A Hands-On Approach

 Arshdeep Bahga
2013

 Research papers
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REFERENCES
TCSS 562 – Fall 2018

 Mondays/Wednesdays
 Lecture, midterm, quiz, activities
 No class:

Monday Nov 12, Friday Nov 23
 Key Topics:
 IaaS, Virtualization, Serverless 

computing, Containerization

 Fridays
 Lab Day: Tutorials, group project work

 No Final exam 
 Midterm Wednesday November 7th
 Project presentations – Final Exam Week 
 Term Project: Build and evaluate alternate 

implementations of a native cloud 
serverless application; or group proposed 
cloud research project

TCSS 562
FALL 
2018
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 Project Proposal

 Project Status Reports / Activities / Quiz

 ~ 3-5 total items

 Variety of formats: in class, online, reading, activity

 Midterm

 Open book, note, etc.  

 Class Presentation

 Term Project / Paper / Presentation
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TCS562 COURSE WORK

 Each student will make one presentation in a team of ~3

 Technology sharing presentation

 PPT Slides, demonstration

 Provide technology overview of one cloud service offering 

 Present overview of features, performance, etc.

 Cloud Research Paper Presentation

 PPT slides, identify research contributions, strengths and 
weaknesses of paper, possible areas for future work
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CLASS PRESENTATION

 Project description to be posted 

 Teams of 3, self formed, one project leader

 Proposal due: Friday October 12, 11:59pm (tentative) 

 Focus: 

 Build a native cloud serverless application

 Compose multiple FaaS functions (services)

 Compare alternate implementation of:
 Service compositions 

 Application flow control - AWS Step Functions, laptop client, etc.

 External cloud components (e.g. database, key-value store)

 How does application design impact cost and performance?
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TCS562 TERM PROJECT

 Deliverables

 Demo in class at end of quarter

 Project report paper, GitHub, or How-To (4-6 pgs IEEE 
format, template provided)

September 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L1.10

TCSS562 TERM PROJECT - 2

 Can propose open-ended cloud research projects, or cloud 
service evaluation project

 Examples:
 Object/blob storage comparison
 Amazon S3, Google blobstore, Azure blobstore, vs. self-hosted 

 Cloud Relational Database comparison
 Amazon Relational Database Service (RDS), Aurora, Self-Hosted DB

 Cloud Application containers (PaaS)
 Amazon Elastic Beanstalk, Heroku, others

 Other microservices / serverless computing projects
 Google Knative, Google Cloud Functions, Azure Functions, OpenWhisk

 Object/Blob Store
 Evaluation of eventual consistency – time to data replication

 Containerization/Docker research project
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ALTERNATE TERM PROJECT IDEAS 

 Storage systems evaluation
 Amazon EBS, Amazon EFS, others

 Container Services
 Amazon ECS, AKS, Azure Kubernetes Service

 Virtual machine imaging approaches
 Across cloud vendors: Amazon, Google, Microsoft

 Queueing services comparison
 Amazon SQS, others

 NoSQL database services comparison
 DynamoDB, Google BigTable, MongoDB, Cassandra

 Propose your own 
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TERM PROJECT IDEAS - 2
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 Project cloud infrastructure support 

 Sign up for the Github Student Developer Pack:
 https://education.github.com/pack

 Includes up to $150 in Amazon Cloud Credits

 AWS credit extensions provided as needed

 Microsoft Azure
 $200 free credit per account valid for 30 days

 https://azure.microsoft.com/en-us/free/?b=17.09c

 Google Cloud
 New account credits $

 Chameleon / CloudLab
 Bare metal NSF cloud - free
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PROJECT SUPPORT

 Projects can lead to papers or posters presented at 
ACM/IEEE/USENIX conferences, workshops
 Networking and travel opportunity 

 Conference participation (posters, papers) 
helps differentiate your resume from others

 Project can support preliminary work for:
UWT - MS capstone/thesis project proposals

 Research projects provide valuable practicum experience 
with cloud systems analysis, prototyping

 Publications are key when applying to PhD programs
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TCSS562 TERM PROJECT OPPORTUNITIES

 Project status report / term project check-ins

Written status report 

 2-3 times in quarter 

 Part of: “Project Status Reports / Activities / Quizzes”
category

 10% of grade

 Project meetings with instructor
 After class, end half of class, office hours
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TCSS562 TERM PROJECT - 3

 From Cloud Computing – Theory and Practice

 1st edition Ch. 2, 2nd edition Ch.4

 Data, thread-level, task-level parallelism

 Parallel architectures

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdhal’s Law, Scaled Speedup

 Properties of distributed systems

 Modularity
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ORIGINS OF CLOUD COMPUTING

QUESTIONS
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 Origins from parallel and distributed systems

 Difficult to expose parallelism in many scientific applications

 Enterprise computing world has been skeptical and less
involved in parallel programming

 Multi-core technology has replaced faster CPU clock rates

 Cloud computing enables effortless exploitation of parallelism

 Big Data requires massive amounts of compute resources

 Cloud applications
 Based on client-server paradigm

 Thin clients leverage compute hosted on the cloud

 Applications run many web service instances

 Employ load balancing
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CLOUD COMPUTING: 
HOW DID WE GET HERE?
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Many commercial efforts in promoting pure
parallel programming efforts have failed

Compute clouds are large-scale distributed 
systems

Autonomous and heterogeneous systems
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CLOUD COMPUTING:
HOW DID WE GET HERE? - 2

 Discovering parallelism and development of parallel
algorithms requires considerable effort

 Example: numerical analysis problems, such as solving large 
systems of linear equations or solving systems of Partial 
Differential Equations (PDEs), require algorithms based on 
domain decomposition methods. 

 How can the problem be split into independent chunks?

 Fine-grained parallelism
 Only small bits of code can run in parallel without coordination 

 Communication is required to synchronize state across nodes

 Coarse-grained parallelism
 Large blocks of code can run without coordination
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PARALLELISM

 Coordination of nodes
 Requires message passing or shared memory

 Debugging parallel message passing code is easier than parallel 
shared memory code

 Message passing: all of the interactions are clear

 Shared memory: interactions can be implicit

 Processing speed orders of magnitude faster than communication

 Avoiding coordination achieves the best speed-up

 Data-level parallelism
 Partition data into big chunks, run separate copies of the program 

on them with little or no communication

 This is embarrassingly parallel

 MapReduce programming model is an example 
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PARALLELISM - 2

 Modern CPUs provide multiple instruction pipelines,
supporting multiple execution threads, usually 2
to feed instructions to a single CPU core…

 Two hyper-threads 
are not equivalent 
to (2) CPU cores

 i7-4770 and i5-4760
same CPU, with and
without HTT
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HYPER THREADING

 Number of threads that an application runs at any one time

 Varies throughout program execution

 As a metric:

 Minimum: 1 thread

 Can measure average, maximum

 What are the consequences of  average (TLP) for  scheduling an 
application to run on a computer with a f ixed number of  CPU 
cores and hyperthreads? 

 Let’s say there are 4 cores, or 8 hyper-threads…
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THREAD LEVEL PARALLELISM (TLP)

 By John von Neumann (1945)

 Also called the Von Neumann architecture

 Dominant computer system architecture

 Program counter (PC) determines next instruction 
to load into instruction register

 Program execution is sequential
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CONTROL-FLOW ARCHITECTURE
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 Alternate architecture used by network routers, digital signal 
processors, special purpose systems

 Operations performed when input (data) becomes available

 Envisioned to provide much higher parallelism

 Multiple problems prevented wide-scale adoption

 Efficiently broadcasting data tokens in a massively parallel 
system

 Efficiently dispatching instruction tokens in a massively 
parallel system

 Building content addressable memory large enough to hold all 
of the dependencies of a real program
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DATA FLOW ARCHITECTURE

 Architecture not as popular as control-flow

 Modern CPUs emulate data flow architecture for dynamic 
instruction scheduling since the 1990s

 Out-of-order execution – reduces CPU idle time by not 
blocking for instructions requiring data by defining 
execution windows
 Execution windows identify instructions that can be run by 

data dependency  
 Instructions are completed in data dependency order 

within window
 Execution window size typically 32 to 200 instructions

 Utility of  data f low concept is much less than envisioned
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DATA FLOW ARCHITECTURE - 2

 Computations on large words (e.g. 64-bit integer) are 
performed as a single instruction

 Fewer instructions are required on 64-bit CPUs to process 
larger operands (A+B) providing dramatic performance 
improvements

 Processors have evolved: 4-bit, 8-bit, 16-bit, 32-bit, 64-bit

How many instructions are required to add two 64-bit numbers
on a 16-bit CPU?  ( Intel 8088)

 64-bit MAX int = 9,223,372,036,854,775,807 (signed)
 16-bit MAX int = 32,767 (signed)
 Intel 8088 – limited to 16-bit registers
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BIT-LEVEL PARALLELISM

 CPU pipelining architectures enable ILP

 CPUs have multi-stage processing pipelines

 Pipelining: split instructions into sequence of steps that can 
execute concurrently on different CPU circuitry 

 Consider basic RISC 5-stage pipeline

 Each instruction has 5 stages:

 IF – instruction fetch , ID- instruction decode , EX – instruction
execution , MEM – memory access , WB – write back

 After 5 clock cycles, all 5 stages of an instruction are loaded

 Starting with 6th clock cycle, one full instruction completes 
each cycle

 Pentium 4 (CISC) – 35 stages!
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INSTRUCTION-LEVEL PARALLELISM (ILP)
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CPU PIPELINING

 Michael Flynn’s proposed taxonomy of computer 
architectures based on concurrent instructions and 
number of data streams (1966)

 SISD (Single Instruction Single Data) – scalar architecture 
with one processor/core.
 Individual cores of modern multicore processors are “SISD”

 SIMD (Single Instruction, Multiple Data) - supports vector 
processing. When a SIMD instruction is issued, the operations 
on individual vector components are carried out concurrently.
 Elements of two 64-element vectors can be added in parallel

 Vector processing instructions have been added to modern CPUs

 Example: Intel MMX (multimedia) instructions
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MICHAEL FLYNN’S COMPUTER 
ARCHITECTURE TAXONOMY
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 Exploit data-parallelism: vector operations enable speedups

 Vectors architecture provide vector registers that can store 
entire matrices into a CPU register

 SIMD CPU extension (e.g. MMX) add support for vector 
operations on traditional CPUs

 Vector operations reduces total number of instructions for 
large vector operations 

 Provides higher potential speedup vs. MIMD architecture

 Developers think sequentially; not worry about parallelism
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SIMD ADVANTAGES

 MIMD (Multiple Instructions, Multiple Data) - system with 
several processors and/or cores that function asynchronously 
and independently

 At any time, different processors/cores may execute different 
instructions on different data

 Multi-core CPUs are MIMD

 Processors share memory via interconnection networks
 Hypercube, 2D torus, 3D torus, omega network, other topologies

 MIMD systems have different methods of sharing memory
 Uniform Memory Access (UMA)

 Cache Only Memory Access (COMA)

 Non-Uniform Memory Access (NUMA)
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FLYNN’S TAXONOMY - 2

 Arithmetic intensity – number of floating point operations per 
byte of data read

 SIMD provides fast matrix operations

 Characterizes application scalability based on SIMD support

 High arithmetic Intensity:
Programs with dense matrix operations scale up nicely

 Low ar ithmetic intensity:
Programs with sparse matrix operations do not scale well with 
problem size
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ARITHMETIC INTENSITY

 When program reaches a given arithmetic intensity 
performance of code running on CPU hits a “roof” 

 CPU performance bottleneck changes from:
memory bandwidth (left)  floating point performance (right)
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ROOFLINE MODEL

 GPU provides multiple SIMD processors 

 Typically 7 to 15 SIMD processors each

 32,768 total registers, divided into 16 lanes (2048 reg ea)

 GPU programming model: single instruction, multiple thread

 Programmed using CUDA- C like programming language by 
NVIDIA for GPUs

 CUDA threads – single thread associated with each data
element (e.g. vector or matrix)

 Thousands of threads run concurrently 
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GRAPHICAL PROCESSING UNITS (GPUS)

Parallel hardware and software systems allow: 
 Solve problems demanding resources not available on 

single system.
 Reduce time required to obtain solution

 The speed-up (S) measures effectiveness of 
parallelization:

S(N) = T(1) / T(N) 

T(1)  execution time of total sequential computation
T(N)  execution time for performing N parallel 

computations in parallel 
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PARALLEL COMPUTING
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 Consider embarrassingly parallel image processing
 Eight images (multiple data)
 Apply image transformation (greyscale) in parallel
 8-core CPU, 16 hyperthreads

 Sequential processing: perform transformations one at a time 
using a single program thread
 8 images, 3 seconds each: T(1) = 24 seconds

 Parallel processing
 8 images, 3 seconds each: T(N) = 3 seconds

 Speedup: S(N) = 24 / 3 = 8 seconds 
 Called “per fect scaling”

 Must consider data transfer and computation setup time
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SPEED-UP EXAMPLE

 Portion of computation which cannot be parallelized 
determines the overall speedup 

 For an embarrassingly parallel job of fixed size
 Assuming no overhead for distributing the work, and a 

perfectly even work distribution

α: fraction of running time which can not be parallelized
(e.g. must run sequentially)

 Maximum speedup is:

S = 1/ α

 Example:
Consider a program where 25% cannot be parallelized
What is  the maximum possible speedup of the program?
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AMDAHL’S LAW

 Calculates the scaled speed-up with “N” processes

S(N)  = N – α( N-1)

N: Number of processes

α: fraction of running time which can not be parallelized 
(e.g. must run sequentially)

 Example:
Consider a program that is embarrassingly parallel but 
where 25% cannot be parallelized.
I f  deploying the job on a 2-core CPU, what scaled speedup 
is possible assuming the two processes can run in 
parallel?
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GUSTAFSON'S LAW

 Transistors on a chip doubles approximately every 1.5 years

 CPUs now have billions of transistors

 Power dissipation issues at faster clock rates leads to heat 
removal challenges
 Transition from: increasing clock rates  to adding CPU cores

 Symmetric core processor –multi-core CPU, all cores have the 
same computational resources and speed  

 Asymmetric core processor – on a multi-core CPU, some cores 
have more resources and speed  

 Dynamic core processor – processing resources and speed can 
be dynamically configured among cores

 Observation: asymmetric processors of fer a higher speedup
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MOORE’S LAW

 Collection of autonomous computers, connected through a 
network with distribution software called “middleware” that 
enables coordination of activities and sharing of resources

 Key characteristics:

 Users perceive system as a single, integrated computing 
facility. 

 Compute nodes are autonomous

 Scheduling, resource management, and security implemented 
by every node 

 Multiple points of control and failure

 Nodes may not be accessible at all times

 System can be scaled by adding additional nodes

 Availability at low levels of hw/software/network reliability
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DISTRIBUTED SYSTEMS

 Access transparency: local and remote objects accessed using 
identical operations

 Location transparency: objects accessed w/o knowledge of their 
location.

 Concurrency transparency: several processes run concurrently using 
shared objects w/o interference among them

 Replication transparency: multiple instances of objects increase 
reliabil ity without the knowledge of users or applications

 Failure transparency: concealment of faults
 Migration transparency: information objects are moved w/o 

affecting operations performed on them
 Performance transparency: system can be reconfigured based on 

load and quality of service requirements
 Scaling transparency: system and applications can scale w/o 

change in system structure and w/o affecting applications
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TRANSPARENCY PROPERTIES OF 
DISTRIBUTED SYSTEMS
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 Why study cloud computing?

 History of cloud computing

 Business drivers

 Cloud enabling technologies

 Terminology

 Benefits of cloud adoption

 Risks of cloud adoption
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INTRODUCTION TO CLOUD COMPUTING

 LINKEDIN - TOP IT Skills from job  app data

 #1 Cloud and Distributed Computing 

 https://learning.linkedin.com/week-of-learning/top-skills

 #2 Statistical Analysis and Data Mining

 FORBES Survey – 6 Tech Skills That’ll Help You Earn More

 #1 Data Science

 #2 Cloud and Distributed Computing

 http://www.forbes.com/sites/laurencebradford/2016/12/
19/6-tech-skills-thatll-help-you-earn-more-in-2017/
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WHY STUDY CLOUD COMPUTING?

 Computerworld
Magazine
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WHY STUDY CLOUD COMPUTING? - 2

 John McCarthy, 1961
 Turing award winner for contributions to AI

 “If computers of the kind I have advocated become the 
computers of the future, then computing may someday be 
organized as a public utility just as the telephone system is a 
public utility… The computer utility could become the basis of 
a new and important industry…”
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A BRIEF HISTORY OF CLOUD COMPUTING

 Internet based computer utilities

 Since the mid-1990s

 Search engines: Yahoo!, Google, Bing

 Email: Hotmail, Gmail

 2000s

 Social networking platforms: MySpace, Facebook, LinkedIn

 Social media: Twitter, YouTube

 Popularized core concepts

 Formed basis of cloud computing
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CLOUD HISTORY - 2

 Late 1990s – Early Software-as-a-Service (SaaS)
 Salesforce: Remotely provisioned services for the enterprise

 2002 -
 Amazon Web Services (AWS) platform: Enterprise oriented services 

for remotely provisioned storage, computing resources, and business 
functionality

 2006 – Infrastructure-as-a-Service (IaaS)
 Amazon launches Elastic Compute Cloud (EC2) service

 Organization can “lease” computing capacity and processing power 
to host enterprise applications

 Infrastructure
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 2006 – Software-as-a-Service (SaaS)

 Google: Offers Google DOCS, “MS Office” like fully-web 
based application for online documentation creation and 
collaboration

 2009 – Platform-as-a-Service (PaaS)

 Google: Offers Google App Engine, publicly hosted 
platform for hosting scalable web applications on google-
hosted datacenters
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CLOUD HISTORY: SERVICES - 2
CLOUD COMPUTING

NIST GENERAL DEFINITION

“Cloud computing is a model for enabling
convenient, on-demand network access to a shared
pool of configurable computing resources
(networks, servers, storage, applications and
services) that can be rapidly provisioned and
reused with minimal management effort or service
provider interaction”…

September 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L1.50

“Cloud computing is a specialized form of
distributed computing that introduces utilization
models for remotely provisioning scalable and
measured resources.”

From Cloud Computing Concepts, Technology, and Architecture

Z. Mahmood, R. Puttini, Prentice Hall, 5th printing, 2015
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MORE CONCISE DEFINITION

Capacity planning

Cost reduction

Operational overhead

Organizational agility
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BUSINESS DRIVERS 
FOR CLOUD COMPUTING

 Capacity planning
 Process of determining and fulfilling future demand for IT 

resources

 Capacity vs. demand
 Discrepancy between capacity of IT resources and actual 

demand

 Over-provisioning: resource capacity exceeds demand
 Under-provisioning: demand exceeds resource capacity

 Capacity planning aims to minimize the discrepancy of 
available resources vs. demand
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BUSINESS DRIVERS 
FOR CLOUD COMPUTING
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Dwight, The Office TV sitcom
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 Capacity planning
 Over-provisioning: is costly due to too much infrastructure

 Under-provisioning: is costly due to potential for business loss from 
poor quality of service

 Capacity planning strategies
 Lead strategy: add capacity in anticipation of demand (pre-

provisioning)

 Lag strategy: add capacity when capacity is fully leveraged

 Match strategy: add capacity in small increments as demand 
increases

 Load prediction
 Capacity planning helps anticipate demand flucations
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BUSINESS DRIVERS FOR CLOUD - 2
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CAPACITY PLANNING
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CAPACITY PLANNING - 2

 Capacity planning  Cost reduction
 IT Infrastructure acquisition
 IT Infrastructure maintenance

 Operational overhead
 Technical personnel to maintain physical IT infrastructure
 System upgrades, patches that add testing to deployment 

cycles
 Utility bills, capital investments for power and cooling
 Security and access control measures for server rooms
 Admin and accounting staff to track licenses, support 

agreements, purchases
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BUSINESS DRIVERS FOR CLOUD - 3

 Organizational agility

 Ability to adapt and evolve infrastructure to face change 
from internal and external business factors

 Funding constraints can lead to insufficient on premise IT

 Cloud computing enables IT resources to scale with a 
lower financial commitment
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BUSINESS DRIVERS FOR CLOUD - 4

Cluster computing

Grid computing

Virtualization

Others

September 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L1.60

TECHNOLOGY INNOVATIONS 
LEADING TO CLOUD



TCSS 562: Software Engineering for Cloud 
Computing [Fall 2018]  
School of Engineering and Technology, UW Tacoma

9/27/2018

Slides by Wes J. Lloyd L1.11

 Cluster computing (clustering)
 Cluster is a group of independent IT resources 

interconnected as a single system

 Servers configured with homogeneous hardware and software

 Identical or similar RAM, CPU, HDDs

 Design emphasizes redundancy as server components are easily 
interchanged to keep overall system running

 Example: if a RAID card fails on a key server, the card can be 
swapped from another redundant server

 Enables warm replica servers

 Duplication of key infrastructure servers to provide 
HW failover to ensure high availability (HA)

September 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L1.61

CLUSTER COMPUTING

 On going research area since early 1990s

 Distributed heterogeneous computing resources organized into 
logical pools of loosely coupled resources

 For example: heterogeneous servers connected by the internet

 Resources are heterogeneous and geographically dispersed

 Grids use middleware software layer to support workload 
distribution and coordination functions

 Aspects: load balancing, failover control, autonomic 
configuration management

 Grids have influenced clouds contributing common features: 
networked access to machines, resource pooling, scalability, 
and resiliency
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GRID COMPUTING 
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GRID COMPUTING - 2 VIRTUALIZATION
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VIRTUALIZATION
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 Simulate physical hardware resources via software

 The virtual machine (virtual computer)

 Virtual local area network (VLAN)

 Virtual hard disk

 Virtual network attached storage array (NAS)

 Early incarnations featured significant performance, 
reliability, and scalability challenges

 CPU and other HW enhancements have minimized 
performance GAPs
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VIRTUALIZATION
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 On-Premise Infrastructure
 Local server infrastructure not configured as a cloud

 Cloud Provider
 Corporation or private organization responsible for maintaining cloud

 Cloud Consumer
 User of cloud services

 Scal ing
 Vertical scaling

 Scale up: increase resources of a single virtual server

 Scale down: decrease resources of a single virtual server

 Horizontal scaling

 Scale out: increase number of virtual servers

 Scale in: decrease number of virtual servers
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KEY TERMINOLOGY

 Reconfigure vir tual machine to have different resources:
 CPU cores

 RAM

 HDD/SDD capacity

 May require VM migration if
physical host machine 
resources are exceeded
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VERTICAL SCALING

 Increase (scale-out) or decrease (scale-in) number of vir tual 
servers based on demand
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HORIZONTAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers
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HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers

IT resources instantly available IT resources typically instantly available
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HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication
and automated scaling

Additional setup is normally needed
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Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication
and automated scaling

Additional setup is normally needed

Additional servers required No additional servers required
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HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication
and automated scaling

Additional setup is normally needed

Additional servers required No additional servers required

Not limited by individual server capacity Limited by individual server capacity
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HORIZONTAL VS VERTICAL SCALING

 Cloud services

 Broad array of resources accessible “as-a-service”

 Categorized as Infrastructure (IaaS), Platform (PaaS), 
Software (SaaS)

 Service-level-agreements (SLAs):

 Establish expectations for: uptime, security, availability, 
reliability, and performance
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KEY TERMINOLOGY - 2

 Cloud providers
 Leverage economies of scale through mass-acquisition and 

management of large-scale IT resources

 Locate datacenters to optimize costs where electricity is low

 Cloud consumers
 Key business/accounting difference:

 Cloud computing enables anticipated capital expenditures to be 
replaced with operational expenditures

 Operational expenditures always scale with the business

 Eliminates need to invest in server infrastructure based on 
anticipated business needs

 Businesses become more agile and lower their financial risks by 
eliminating large capital investments in physical infrastructure 
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GOALS AND BENEFITS

 On demand access to pay-as-you-go resources on a short-term 
basis (less commitment)

 Ability to acquire “unlimited” computing
resources on demand when required for 
business needs

 Ability to add/remove IT resources at 
a fine-grained level

 Abstraction of server infrastructure so 
applications deployments are not dependent
on specific locations, hardware, etc.

 The cloud has made our software deployments 
more agile…
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CLOUD BENEFITS - 2

 Example: Using 100 servers for 1 hour costs the same as 
using 1 server for 100 hours

 Rosetta Protein Folding: Working with a UW-Tacoma graduate 
student, we recently deployed this science model across 5,900 
compute cores on Amazon for 2-days…

 What is  the cost to purchase 5,900 compute cores?

 Recent Dell Server purchase example: 
20 cores on 2 servers for $4,478…

 Using this ratio 5,900 cores costs $1.3 million (purchase only)
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CLOUD BENEFITS - 3
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Gene Wilder, Charlie and the Chocolate Factory

 Increased scalability
 Example demand over a

24-hour day  

 Increased availability

 Increased reliability
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CLOUD BENEFITS

 Increased security vulnerabilities
 Expansion of trust boundaries now include the external 

cloud
 Security responsibility shared with cloud provider

 Reduced operational governance / control
 Users have less control of physical hardware
 Cloud user does not directly control resources to ensure 

quality-of-service
 Infrastructure management is abstracted
 Quality and stability of resources can vary
 Network latency costs and variability 
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CLOUD ADOPTION RISKS
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NETWORK LATENCY COSTS

 Performance monitoring of  cloud applications
 Cloud metrics (AWS cloudwatch) support monitoring cloud 

infrastructure (network load, CPU utilization, I/O)
 Performance of cloud applications depends on the health of 

aggregated cloud resources working together
 User must monitor this aggregate performance 

 Limited portability among clouds
 Early cloud systems have significant “vendor” lock-in
 Common APIs and deployment models are slow to evolve
 Operating system containers help make applications more 

portable, but containers still must be deployed

 Geographical issues
 Abstraction of cloud location leads to legal challenges with respect 

to laws for data privacy and storage
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CLOUD RISKS - 2
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CLOUD: VENDOR LOCK-IN


