
TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.1

Benchmarking FAAS Applications

Fundamental Cloud Architectures

Wes J. Lloyd
School of Engineering and
Technology
University of Washington - Tacoma

TCSS 562:
SOFTWARE ENGINEERING
FOR CLOUD COMPUTING

 Tutorials

 Class Presentations 11/28, 12/3, 12/5

 Capstone/Thesis Presentations 12/5

 12.20pm-2:40pm, WPH, Jane Russell Commons

 Final Term Project Presentation 12/12 – spec posted

 Final Term Project Report 12/14 – spec posted

 Benchmarking for Term Projects cont’d

 Fundamental Cloud Architectures
(Ch. 11, Thomas Erl)

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.2

OBJECTIVES

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.2

 Wednesday November 28

 1. Team 6 (Rahul , Poornima, Sowmya) Azure Cosmo DB

 2. Team 1 (Tanner, Al i , Khanh) AWS Cloud Formation

 Monday December 3rd

 1. Team 2 (Derek, Mi lad) Paper:
Serverless Computing: Design, Implementation, and Performance

 2. Team 7 (Xiaodong, Moran, Zac) Google BigQuery

 3. Team 3 (Feng, J iaqi , Xiaola) Azure Functions

 Wednesday December 5th

 1. Team 5 (Rober t C. , Jared, Raymond) Google Cloud Functions

 2. Team 4 (Rober t B. , Jef f , Daylen) MongoDB Atlas

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.3

CLASS PRESENTATIONS

BENCHMARKING FAAS
APPLICATIONS

November 28, 2018
TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington -
Tacoma

L17.4

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.3

 Average Turnaround Time
 Client’s perspective: time delta before call until result

 Server’s perspective: time delta from function entry point to end

 Compute time: CPU usage

 Measured on the server side – Java
long cputime0 = ManagementFactory.getThreadMXBean().
getThreadCpuTime(java.lang.Thread.currentThread().getId());
long cputime1 = ManagementFactory.getThreadMXBean().
getThreadCpuTime(java.lang.Thread.currentThread().getId());
Long cputimedelta = (cputime1-cputime0)/1000000;

 How do these times relate to billed function time in
CloudWatch log messages?

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.5

SERVICE PERFORMANCE MEASUREMENT

 Latency

 Formally means time between request and response

 Typical to qualify the type of latency: “network latency”

 Time request/response message is in transit

 Estimate: Client’s Turnaround Time – Server’s Turnaround
Time

 Difference estimates round trip latency (both ways)

 Divide by two for estimate of one-way latency

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.6

SERVICE PERFORMANCE - 2

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.4

 Latency cont’d

 Other approach: Network time protocol (NTP)

 Service for synchronizing Linux system time

 Synchronize VM times (EC2 instances) …good for clients

 Research Question: How synchronized are AWS Lambda
clocks?

With synchronized clocks, can capture system event times:

 CLIENT_REQ_SENT, SERVER_REQ_RCVD to server 

 SERVER_RESP_SENT, CLIENT_RESP_RCVD  from server

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.7

SERVICE PERFORMANCE - 3

 Measure per formance behavior of standalone services
 Similar to stress testing
 Sequential tests: one client, repeat test many times

(callservice.sh)
 Establishes how service performs running in one environment
 One VM, one container, no scaling

 Takes longer to collect a lot of samples
 May be more consistent as a single environment may perform

more consistently than many parallel environments

 Research Question: Which type of FAAS testing provides more
stable results (sequential vs. parallel)?
 Stability measured by: standard deviation, variance

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.8

SERVICE PERFORMANCE MEASUREMENT:
SEQUENTIAL

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.5

 Concurrent tests: many clients in parallel (par test.sh)

 Concurrent tests collect performance data for many
deployments in parallel

 Supports collecting a lot of data, FAST!

 Samples how “provisioning variation” impacts performance

 Example: run 1 test, 100 times with short delay between tests

 Problem: Only measures one VM, one “container”

 Fix: Run 100 tests, 1 time in parallel

 Measures many VMs, and 100 “containers”…

 Research Question: How does provisioning variation of FAAS
infrastructure impact service performance?

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.9

SERVICE PERFORMANCE MEASUREMENT:
PARALLEL

 Client must be capable of generating load

 All requests must overlap to force creation of infrastructure

 Approaches:

 (1) Make service time long – can use a laptop for 100 requests

 (2) Use a very powerful client machine – fast CPU & network

 (3) Use synchronized clients – separate VMs with time
synchronization (optional tutorial 9)

 HYBRID- Do both…

 Run 10x-100x batches of 100 with short delay

 Research Question: How does performance vary when running
on one-set of infrastructure?

 Measures warm performance

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.10

SERVICE PERFORMANCE MEASUREMENT:
PARALLEL - 2

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.6

 Run 10x-100x batches of 100 with LONG delay…
 Long delay is to ensure infrastructure goes COLD and is

reprovisioned from scratch

 Provides a realistic test

 In the wild, functions will go dormant, and new infrastructure will be
dynamically created on-the-fly

 We are interested in understanding how performance might vary
each time this happens

 Application based testing – AWS Lambda
 Observed ~34% performance variance for various memory settings

from 128MB to 512MB of different “generations” of infrastructure

 An infrastructure generation is one set created in response to
service demand

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.11

SERVICE PERFORMANCE MEASUREMENT:
PARALLEL - 3

 Possible approaches – best to worst

1. Wait ~45 minutes: all infrastructure (VMs & containers) are
deprecated, new ones are created

2. Change VPCs / Availability Zones: forces function to be
deployed to new location
 Can run out of AZs

3. Change a parameter: (e.g. memory allocation, max runtime)
– container is destroyed, but host/VM remains the same
 Not a true cold performance test

4. Redeploy new version of code: container is destroyed (?), but
host/VM remain the same

5. Larger parallel request: forces creation of new infrastructure
 Old infrastructure remains

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.12

FORCING COLD INFRASTRUCTURE

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.7

13

RQ-4:
Lambda

Container
Recycling

Lambda
Virtual Machine

Recycling

Tests from 2017

 What does “average” look l ike for
the service?

 One “sample” could be perfectly
sunny, or very rainy

 How does service perform overall ?

 Many requests may have similar
performance, a few are slow…
(skewed to the r ight -hand s ide o f the graph)

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.14

ESTABLISHING PERFORMANCE BEHAVIOR

Performance may be
“log normal”

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.8

 Need to run multiple tests to “sample” how the system
responds

 Goal: obtain performance measurements which compare
apples-to-apples scenarios

 It is easy to find a pear…

 LAMBDA PEARS:

 Must consider state: VM-cold, Container-cold, warm

 Must consider server location: which availability zone (AZ)?
 Can “pin” functions to a specific AZ by running in a VPC

 Use of VPCs add initialization overhead

 Lambdas must negotiate private IP address on VPC (one time)

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.15

ESTABLISHING PERFORMANCE BEHAVIOR - 2

 PEARS cont’d

 Client location – Starbucks? At home? At UWT?

 Best client is an EC2 instance in an unchanging availability
zone (AZ)
 ssh to the instance from anywhere, run tests via the cloud

 Concurrent tests – Changing infrastructure
 100 parallel requests: can receive different distributions of

containers-to-VMs

 Each infrastructure-set can exhibit different performance
characteristics depending on the workload

 Resource Contention from co-located users
 May vary due to time of day

 How can these conditions be replicated?

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.16

ESTABLISHING PERFORMANCE BEHAVIOR - 3

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.9

 How does per formance change when increasing the number of
concurrent clients?

 What is the “STEP” of the scale-up?

 STEP by 1 – add 1 new client each round

 STEP by 10 –
add 10 new clients
each round

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.17

SCALE-UP PERFORMANCE

 CPU power (% allocation) on
AWS Lambda is coupled to
memory reservation size

 Performance is always better at
with higher RAM, but how much?

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.18

MEMORY VS. PERFORMANCE

Performance boost is
based on how CPU-bound
the function is…

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.10

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.19

MEMORY VS. COST

 AWS Lambda performance is based on memory reservation
size and run time

 Changing memory reservation size increases CPU power

 Once memory vs. per formance is established can calculated
memory reservation size
to optimize cost

 Estimate cost for a
fictional large workload
e.g. 1 ,000,000 requests

 Transform Service

 Can calculate data processing throughput: rows per second

 Given dif ferent fi le sizes (e.g. 100, 1000 10000 rows) what is
the throughput?

 Research Question: How does the size of the cl ient data
payload relate to data processing throughput? (rows/second)

 Are smaller or larger fi les faster to process?

 E.g. what is the price per ounce? (gram)

 Load Service

 What is the data throughput (rows/second) in loading SQL
backend with data?

 How does load per formance relate to transformation speed?

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.20

ETL PIPELINE SPECIFICS

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.11

 Query Service

 To benchmark query service performance, should select a few
standard queries, and repeat them using dif ferent sizes of
databases

 Aggregation queries: GROUP BY to sum(), average(), count()

 Filter queries: WHERE [column] = (value)

 Filtering is fast

 Aggregation can be slower

 Joining is slower, but not really applicable for our 1-table ETL
database

 Nested query (select * from (select * from …))

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.21

ETL - 2

 Comparisons of interest

 Service composition: T-Transform L-Load Q-Query
 Fully decomposed, fully composed, others:
 [T] [L] [Q], [T L] [Q], [T] [L Q], [T L Q]

 Application flow control
 Alternate forms: laptop controller, Lambda controller sync, Lambda

async, Step function

 Database backend
 Amazon Aurora RDS, vs. SQLite

 How does these alternate configurations impact performance
(sequential, parallel, scale-up), application hosting costs?

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.22

ETL - 3

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.12

 At the end, groups should have implemented a multi -service
mini-application

 There should be at least:
 The base implementation (akin to the “control” group)

 EXAMPLE: [TRANSFROM] [LOAD] [QUERY] as separate services

 Then there should be a comparison implementation

 Research Question:
 What is the performance and cost implications for the competing

implementations? How did performance/cost change?

 Performance measures: turnaround time, compute time, throughput
(rows/sec), latency

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.23

PROJECT CONCLUSIONS

 For performance tests, reports should describe the test
configurations

 Availability zones, client type (VM, ec2 instance type), # of
requests, # of batches

 Try to capture every detail so the test could be replicated to
confirm results

 Developing test scripts makes it easy to replicate experiments
exactly

 Can include “practical” perspectives

 Lessons learned from building the applications and
implementing the tests

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.24

PROJECT CONCLUSIONS - 2

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.13

FUNDAMENTAL CLOUD
ARCHITECTURES

November 28, 2018 L17.25

 Common foundational cloud architectural models

 Exemplify common configurations of cloud-based
application deployments

 Architectures describe cloud provisioning of:
Compute, disk, and network resources

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.26

FUNDAMENTAL CLOUD ARCHITECTURES

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.14

 Workload distribution architecture: load balancing

 Resource pooling architecture: resource pools

 Dynamic scalability architecture: auto-scaling

 Elastic resource scalability architecture: vertical scaling

 Service load balancing architecture: load balancing for
cloud/web services

 Cloud bursting architecture: hybrid cloud

 Elastic disk provisioning architecture: thin vs. thick disk
provisioning

 Redundant storage architecture: duplicate storage devices
across data centers

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.27

FUNDAMENTAL
CLOUD ARCHITECTURES - 2

 Horizontally scaled IT resources

 Add/remove resources per tier

 Load balancer distributes workload among providers

 Goal is to reduce IT resource:
 Over-utilization
 Under-utilization

 Sophisticated load balancing algorithms / run-time logic
 Support resource management
Workload distribution

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.28

WORKLOAD DISTRIBUTION
ARCHITECTURE

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.15

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.29

WORKLOAD DISTRIBUTION
ARCHITECTURE - 2

Redundant copies of the Cloud Service are implemented on both Virtual
Servers. The load balancer intercepts service requests and directs them
to either virtual server to ensure even workload distribution.

 Can be applied to any IT resource
 Virtual servers
 Cloud storage devices
 Cloud services

 Specializations of this architecture
 Service load balancing (upcoming…)
 Load balanced virtual server architecture

balancing # of VMs per host…
 Load balanced virtual switches architecture

Increasing virtual network bandwidth w/ additional
physical uplinks

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.30

WORKLOAD DISTRIBUTION
ARCHITECTURE - 3

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.16

 Does this architecture encapsulate high availability?
 Redundancy

 Fault tolerant

 Fail-over

 Is the load balancer
fault tolerant?

 How could the load balancer be made fault tolerant?

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.31

WORKLOAD DISTRIBUTION
ARCHITECTURE - 4

 Active / passive mode
 Pair of load balancers are configured

 Primary load balancer distributes traffic

 Second load balancer operates in listening mode

 Secondary load balancer step-ins in if primary fails

 Achieves high availability

 Active / active mode
 Two or more servers aggregate traffic load at the same time

 User sessions are “locked” to one load balancer

 Session is cached, requests are routed to same resource provider

 If user request goes to other load balancer, it doesn’t know how to
route request – would need to query other load balancer… slow!

 If one LB fails, is the other sufficient to route traffic?

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.32

HIGH AVAILABILITY LOAD BALANCING

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.17

 Other common elements of this architecture:

 Audit monitor: logs user requests as needed

 Cloud usage monitor: logs server utilization

 Hypervisor: virtual machines may need to be distributed

 Logical network perimeter: workloads distributed within

 Resource cluster: compute cluster resources to
implement architecture

 Resource replication: concept of generating new
resources in response to demand

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.33

WORKLOAD DISTRIBUTION
ARCHITECTURE - 5

 Identical IT resources are grouped and maintained

 System ensures they remained synchronized

 EXAMPLE: Hyper-converged server infrastructure

 Nutanix: https://www.nutanix.in/hyperconverged-
infrastructure/

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.34

RESOURCE POOLING ARCHITECTURE

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.18

 Resource Pools:

 Physical server pool / Vir tual server pool
 Preconfigured with OS/applications, ready for immediate use

 Storage pool
 File-based, block-storage entities, with or without data, ready for use

 Network pool
 Virtual firewall devices or network switches for redundant

connectivity, load balancing, link aggregation

 CPU pool, Memory pool
 Allocated to virtual servers

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.35

RESOURCE POOLING ARCHITECTURE - 2

 Resources pools can be used to provide vir tual devices
 Vir tual server(s)
 Consumes CPU and memory from pool

 Vir tual disk(s)
 Aggregate “just a bunch of disks” (JBoD) to provide disk(s) with required

capacity, IOPS requirements, latency
 Vir tual network
 Aggregate physical network resources to provide virtual network devices

which are isolated, with necessary bandwidth, and capacity

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.36

SAMPLE RESOURCE POOL

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.19

 Nested pools:
Use same resources,
but in different
quantities.

 Allow rapid
instantiation of
resources with
identical
configurations

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.37

RESOURCE POOLING ARCHITECTURE - 2

 Audit monitor: monitor usage to ensure legal use

 Cloud usage monitor: runtime tracking and synchronization to
support management of resource pools

 Pay -per-use monitor: collects usage and bil ling information on
how individual cloud users allocate and use resources

 Remote administration system: inter faces with backend
systems to provide administration support

 Resource management system: supports administering
resource pools

 Hypervisor, Logical network perimeter, Resource replication

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.38

RESOURCE POOLING MECHANISMS

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.20

 Uses predefined scaling conditions to trigger “dynamic
allocation” of IT resources from pools

 Resource allocation is adjusted dynamically based on
demand

 Unnecessary resources are automatically

 Automated scaling listener

Monitors workload thresholds to determine when new
resources should be added / removed using a scaling
policy

 Scaling policy – defines specifics of the scaling thresholds

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.39

DYNAMIC SCALABILITY ARCHITECTURE

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.40

DYNAMIC SCALABILITY ARCHITECTURE - 2

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.21

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.41

DYNAMIC SCALABILITY ARCHITECTURE - 3

Automatic scaling listener triggers creation of additional cloud service
instances, which are added to pool for load balancing. Automated scaling
listener resumes monitoring and adds and subtracts resources as required.

 Example: AWS -Elastic Load Balancer (ELB)

 Classic load balancer: application agnostic distribution of
traffic across nodes

 Uses cloud watch metrics …

 Application load balancer: distributes traffic while
considering unique content of requests enabling advanced
routing capabilities

 ELB integrates with AWS auto scaling to dynamically
provision +/- resources in response to demand

 Load balancer configuration automatically adjusted

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.42

DYNAMIC SCALABILITY ARCHITECTURE - 4

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.22

 Why should load balancers / scaling listeners reroute
subsequent requests for TCP sessions to the same
server?

 How could “sticky” sessions impact load balancing?

 What are the advantages of classic (application agnostic)
load balancing?

 For an “application load balancer” supporting “advanced
routing”, what features and capabilities are required of
the load balancer?

 Which is more performant? Software or hardware load
balancer?

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.43

DYNAMIC SCALABILITY
ARCHITECTURE QUESTIONS

 Supports dynamic provisioning of virtual servers

 Feature of public/private infrastructure-as-a-service
(IaaS) clouds

 Enables reprovisioning CPUs and RAM (*vertical scaling*)
to change the SIZE of a live virtual machine
 Container platforms

 Ability to interact with the hypervisor and
vir tual infrastructure manager (VIM) to manage resources
– **at runtime**

 Virtual server is monitored to increase capacity from a
resource pool when thresholds are met.

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.44

ELASTIC ‘RESOURCE CAPACITY’
ARCHITECTURE

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.23

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.45

ELASTIC RESOURCE CAPACITY
ARCHITECTURE - 2

 Virtual servers may require rebooting for the changes in
memory and CPU to take effect

 VIMs may automatically redistribute RAM & CPUs to VMs
based on demand if rebooting is not required

 Not all Cloud VIMs or Container orchestration frameworks
support/expose this feature

 Features are accessible at the hypervisor level

 Can resize # of CPUs and RAM of VMs on-the-fly by
interacting directly with XEN/KVM hypervisors
– via the CLI !
 Its preferable to recreating the VM entirely

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.46

ELASTIC RESOURCE CAPACITY
ARCHITECTURE - 3

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.24

 Workload distribution architecture: load balancing

 Resource pooling architecture: resource pools

 Dynamic scalability architecture: auto-scaling

 Elastic resource scalability architecture: vertical scaling

 Service load balancing architecture: load balancing for
cloud/web services

 Cloud bursting architecture: hybrid cloud

 Elastic disk provisioning architecture: thin vs. thick disk
provisioning

 Redundant storage architecture: duplicate storage devices
across data centers

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.47

FUNDAMENTAL
CLOUD ARCHITECTURES

 A specialized variation of the
workload distribution
architecture

 Redundant deployments of
cloud services are created,
and load balancer distributes
workloads

 The architecture we configure
in tutorial #2 !

 Focuses on scaling cloud
service implementations

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.48

SERVICE LOAD BALANCING
ARCHITECTURE

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.25

 Service redistributes
request to the proper server

 “Shard” is a segment of
a database hosted on a
single server

 Sharding enables horizontal
scaling of datasets by
distributing rows across
multiple servers

 Data fetch with sharding:
Request is processed by
application server to route
request to server hosting
the shard

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.49

REQUEST REDISTRIBUTION

 Burst beyond on-premise IT resources to use public cloud
when predefined capacity thresholds are surpassed

 Cloud resources are pre-deployed, but in inactive state until
cloud bursting occurs

 Once cloud resources
are no longer needed,
they are released

 Automated scaling
l istener is used

 Latency to the cloud
should be considered

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.50

CLOUD BURSTING ARCHITECTURE

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.26

 When is vertical scaling preferable to horizontal scaling
of cloud resources?

 Is cloud bursting vertical or horizontal scaling?

 Consider a private cloud with 5 host servers. What types
of scaling is likely to be more important to the system
administrator: horizontal or vertical scaling? Why?

 Can Docker container orchestration frameworks support
horizontal scaling?

 Vertical scaling?

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.51

SCALING QUESTIONS

 Static allocations of fixed amounts of cloud disk space
are expensive

 Example:
Provision virtual Windows Server with 450GB disk

 Before OS is installed: 0 GB is used

 After OS is installed: <100 GB is used

 Customer is charged for: 450GB

 Elastic disk provisioning establishes a dynamic storage
provisioning system to granularly bill a user for storage
actually used…

 Based on “thin-provisioning” of storage

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.52

ELASTIC DISK PROVISIONING
ARCHITECTURE

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.27

 Thin Provisioning

 Only allocate storage space as it is used

 Increases potential for sharing the disk

 Introduces problem of over-provisioning : allocate more
virtual disk space than actually exists

 Thick Provisioning

 Statically allocate all requested disk space

 A single user can provision the whole disk rendering it
unusable by others !

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.53

THIN VS. THICK PROVISIONING

 Virtual box supports “thin provisioning” of virtual disks

 Disks have a maximize size, but only what is actually
used is provisioned allowing the volume to grow.

 Eucalyptus EBS volume implementation
 Disk volumes are thinly provisioned

 Threat of over provisioning

 Resizing volumes can be challenging

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.54

THIN PROVISIONING - EXAMPLE

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.28

 Provide fault tolerance and improved availability of cloud
storage devices

 Individual storage devices already have dual disk arrays
and redundant disk controllers

 We are talking about SANs, NASs

 The idea is to replicate storage
devices

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.55

REDUNDANT STORAGE ARCHITECTURE

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.56

REDUNDANT STORAGE ARCHITECTURE - 2These colored blocks represent user disks. They are
“Virtual” in the sense that the storage device abstracts
how they are implemented with physical disks…

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.29

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.57

REDUNDANT STORAGE ARCHITECTURE - 3

 Introduce a secondary duplicate cloud storage
device that synchronizes data with the primary
storage device

Storage gateway service routes requests to second
device when the primary device fails

Secondary storage devices may be located in
different physical locations

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.58

REDUNDANT STORAGE ARCHITECTURE - 4

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.30

 If we have two identical storage devices that internally feature
redundant disk arrays based on RAID 1, how many copies of
the data exist?

 Besides disk space, what else does thin provisioning save?

 In addition to data redundancy, what else is gained from
having multiple copies of our data?

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.59

CLOUD STORAGE QUESTIONS

 Workload distribution architecture: load balancing

 Resource pooling architecture: resource pools

 Dynamic scalability architecture: auto-scaling

 Elastic resource scalability architecture: vertical scaling

 Service load balancing architecture: load balancing for
cloud/web services

 Cloud bursting architecture: hybrid cloud

 Elastic disk provisioning architecture: thin vs. thick disk
provisioning

 Redundant storage architecture: duplicate storage devices
across data centers

November 28, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.60

FUNDAMENTAL
CLOUD ARCHITECTURES SUMMARY

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.31

QUESTIONS

November 28, 2018
TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L17.61

