
TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.1

Benchmarking FAAS Applications

Fundamental Cloud Architectures

Wes J. Lloyd
School of Engineering and
Technology
University of Washington - Tacoma

TCSS 562:
SOFTWARE ENGINEERING
FOR CLOUD COMPUTING

Class Presentations 11/28, 12/3, 12/5
Capstone/Thesis Presentations 12/5
12.20pm-2:40pm, WPH, Jane Russell Commons

 Feedback from 11/19

Benchmarking for Term Projects
 Final presentation and report specification posted

soon

 Fundamental Cloud Architectures
(Ch. 11, Thomas Erl)

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.2

OBJECTIVES

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.2

 Wednesday November 28

 1. Team 6 (Rahul , Poornima, Sowmya) Azure Cosmo DB

 2. Team 1 (Tanner, Al i , Khanh) AWS Cloud Formation

 Monday December 3rd

 1. Team 2 (Derek, Mi lad) Paper:
Serverless Computing: Design, Implementation, and Performance

 2. Team 7 (Xiaodong, Moran, Zac) Google BigQuery

 3. Team 3 (Feng, J iaqi , Xiaola) Azure Functions

 Wednesday December 5th

 1. Team 5 (Rober t C. , Jared, Raymond) Google Cloud Functions

 2. Team 4 (Rober t B. , Jef f , Daylen) MongoDB Atlas

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.3

CLASS PRESENTATIONS

 How can containers be helpful for developers?

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.4

FEEDBACK – 11/19

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.3

 What should the structure of the “Query” service of the “ETL”
pipeline be? How is data aggregated? fi ltered?

 For aggregation support GROUP BY for one or more columns

 Columns not in the “group by” expression must be aggregated
using a function

select [Item Type], avg([Units Sold]), avg([Total
Revenue]), avg([Total Cost]), avg([Total Profit])

from [Sales]

group by [Item Type];

 Query outputs a list of items:
 Average # of units sold, total revenue, total cost, and total profit

 Aggregates 4 columns

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.5

FEEDBACK - 2

 Can devise a scheme with the JSON request object to allow
aggregation and fi ltering to be fairly dynamic

 Fields in the JSON object can be added directly to the SQL
Select statement to produce interesting dynamic queries
(e.g. not hard coded)

 Up to groups to come up with specific approaches/schemes

 Goal is to support group by/aggregation on at least one
column and fi ltering on at least one column

 Stack overflow post on multiple column Group By:

 https://stackoverflow.com/questions/2421388/using-group-
by-on-multiple-columns

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.6

FEEDBACK - 3

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.4

BENCHMARKING FAAS
APPLICATIONS

November 26, 2018
TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington -
Tacoma

L17.7

 Average Turnaround Time
 Client’s perspective: time delta before call until result

 Server’s perspective: time delta from function entry point to end

 Compute time: CPU usage

 Measured on the server side – Java
long cputime0 = ManagementFactory.getThreadMXBean().
getThreadCpuTime(java.lang.Thread.currentThread().getId());
long cputime1 = ManagementFactory.getThreadMXBean().
getThreadCpuTime(java.lang.Thread.currentThread().getId());
Long cputimedelta = (cputime1-cputime0)/1000000;

 How do these times relate to billed function time in
CloudWatch log messages?

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.8

SERVICE PERFORMANCE MEASUREMENT

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.5

 Latency

 Formally means time between request and response

 Typical to qualify the type of latency: “network latency”

 Time request/response message is in transit

 Estimate: Client’s Turnaround Time – Server’s Turnaround
Time

 Difference estimates round trip latency (both ways)

 Divide by two for estimate of one-way latency

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.9

SERVICE PERFORMANCE - 2

 Latency cont’d

 Other approach: Network time protocol (NTP)

 Service for synchronizing Linux system time

 Synchronize VM times (EC2 instances) …good for clients

 Research Question: How synchronized are AWS Lambda
clocks?

With synchronized clocks, can capture system event times:

 CLIENT_REQ_SENT, SERVER_REQ_RCVD to server 

 SERVER_RESP_SENT, CLIENT_RESP_RCVD  from server

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.10

SERVICE PERFORMANCE - 3

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.6

 Measure per formance behavior of standalone services
 Similar to stress testing
 Sequential tests: one client, repeat test many times

(callservice.sh)
 Establishes how service performs running in one environment
 One VM, one container, no scaling

 Takes longer to collect a lot of samples
 May be more consistent as a single environment may perform

more consistently than many parallel environments

 Research Question: Which type of FAAS testing provides more
stable results (sequential vs. parallel)?
 Stability measured by: standard deviation, variance

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.11

SERVICE PERFORMANCE MEASUREMENT:
SEQUENTIAL

 Concurrent tests: many clients in parallel (par test.sh)

 Concurrent tests collect performance data for many
deployments in parallel

 Supports collecting a lot of data, FAST!

 Samples how “provisioning variation” impacts performance

 Example: run 1 test, 100 times with short delay between tests

 Problem: Only measures one VM, one “container”

 Fix: Run 100 tests, 1 time in parallel

 Measures many VMs, and 100 “containers”…

 Research Question: How does provisioning variation of FAAS
infrastructure impact service performance?

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.12

SERVICE PERFORMANCE MEASUREMENT:
PARALLEL

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.7

 Client must be capable of generating load

 All requests must overlap to force creation of infrastructure

 Approaches:

 (1) Make service time long – can use a laptop for 100 requests

 (2) Use a very powerful client machine – fast CPU & network

 (3) Use synchronized clients – separate VMs with time
synchronization (optional tutorial 9)

 HYBRID- Do both…

 Run 10x-100x batches of 100 with short delay

 Research Question: How does performance vary when running
on one-set of infrastructure?

 Measures warm performance

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.13

SERVICE PERFORMANCE MEASUREMENT:
PARALLEL - 2

 Run 10x-100x batches of 100 with LONG delay…
 Long delay is to ensure infrastructure goes COLD and is

reprovisioned from scratch

 Provides a realistic test

 In the wild, functions will go dormant, and new infrastructure will be
dynamically created on-the-fly

 We are interested in understanding how performance might vary
each time this happens

 Application based testing – AWS Lambda
 Observed ~34% performance variance for various memory settings

from 128MB to 512MB of different “generations” of infrastructure

 An infrastructure generation is one set created in response to
service demand

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.14

SERVICE PERFORMANCE MEASUREMENT:
PARALLEL - 3

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.8

 Possible approaches – best to worst

1. Wait ~45 minutes: all infrastructure (VMs & containers) are
deprecated, new ones are created

2. Change VPCs / Availability Zones: forces function to be
deployed to new location
 Can run out of AZs

3. Change a parameter: (e.g. memory allocation, max runtime)
– container is destroyed, but host/VM remains the same
 Not a true cold performance test

4. Redeploy new version of code: container is destroyed (?), but
host/VM remain the same

5. Larger parallel request: forces creation of new infrastructure
 Old infrastructure remains

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.15

FORCING COLD INFRASTRUCTURE

16

RQ-4:
Lambda

Container
Recycling

Lambda
Virtual Machine

Recycling

Tests from 2017

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.9

 What does “average” look l ike for
the service?

 One “sample” could be perfectly
sunny, or very rainy

 How does service perform overall ?

 Many requests may have similar
performance, a few are slow…
(skewed to the r ight -hand s ide o f the graph)

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.17

ESTABLISHING PERFORMANCE BEHAVIOR

Performance may be
“log normal”

 Need to run multiple tests to “sample” how the system
responds

 Goal: obtain performance measurements which compare
apples-to-apples scenarios

 It is easy to find a pear…

 LAMBDA PEARS:

 Must consider state: VM-cold, Container-cold, warm

 Must consider server location: which availability zone (AZ)?
 Can “pin” functions to a specific AZ by running in a VPC

 Use of VPCs add initialization overhead

 Lambdas must negotiate private IP address on VPC (one time)

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.18

ESTABLISHING PERFORMANCE BEHAVIOR - 2

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.10

 PEARS cont’d

 Client location – Starbucks? At home? At UWT?

 Best client is an EC2 instance in an unchanging availability
zone (AZ)
 ssh to the instance from anywhere, run tests via the cloud

 Concurrent tests – Changing infrastructure
 100 parallel requests: can receive different distributions of

containers-to-VMs

 Each infrastructure-set can exhibit different performance
characteristics depending on the workload

 Resource Contention from co-located users
 May vary due to time of day

 How can these conditions be replicated?

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.19

ESTABLISHING PERFORMANCE BEHAVIOR - 3

 How does per formance change when increasing the number of
concurrent clients?

 What is the “STEP” of the scale-up?

 STEP by 1 – add 1 new client each round

 STEP by 10 –
add 10 new clients
each round

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.20

SCALE-UP PERFORMANCE

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.11

 CPU power (% allocation) on
AWS Lambda is coupled to
memory reservation size

 Performance is always better at
with higher RAM, but how much?

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.21

MEMORY VS. PERFORMANCE

Performance boost is
based on how CPU-bound
the function is…

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.22

MEMORY VS. COST

 AWS Lambda performance is based on memory reservation
size and run time

 Changing memory reservation size increases CPU power

 Once memory vs. per formance is established can calculated
memory reservation size
to optimize cost

 Estimate cost for a
fictional large workload
e.g. 1 ,000,000 requests

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.12

 Transform Service

 Can calculate data processing throughput: rows per second

 Given dif ferent fi le sizes (e.g. 100, 1000 10000 rows) what is
the throughput?

 Research Question: How does the size of the cl ient data
payload related to data processing throughput? (rows/second)

 Are smaller or larger fi les faster to process?

 E.g. what is the price per ounce? (gram)

 Load Service

 What is the data throughput (rows/second) in loading SQL
backend with data?

 How does load per formance relate to transformation speed?

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.23

ETL PIPELINE SPECIFICS

 Query Service

 To benchmark query service performance, should select a few
standard queries, and repeat them using dif ferent sizes of
databases

 Aggregation queries: GROUP BY to sum(), average(), count()

 Filter queries: WHERE [column] = (value)

 Filtering is fast

 Aggregation can be slower

 Joining is slower, but not really applicable for our 1-table ETL
database

 Nested query (select * from (select * from …))

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.24

ETL - 2

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.13

 Comparisons of interest

 Service composition: T-Transform L-Load Q-Query
 Fully decomposed, fully composed, others:
 [T] [L] [Q], [T L] [Q], [T] [L Q], [T L Q]

 Application flow control
 Alternate forms: laptop controller, Lambda controller sync, Lambda

async, Step function

 Database backend
 Amazon Aurora RDS, vs. SQLite

 How does these alternate configurations impact performance
(sequential, parallel, scale-up), application hosting costs?

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.25

ETL - 3

 At the end, groups should have implemented a multi -service
mini-application

 There should be at least:
 The base implementation (akin to the “control” group)

 EXAMPLE: [TRANSFROM] [LOAD] [QUERY] as separate services

 Then there should be a comparison implementation

 Research Question:
 What is the performance and cost implications for the competing

implementations? How did performance/cost change? Any why if it
is clear?

 Performance measures: turnaround time, compute time, throughput
(rows/sec), latency

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.26

PROJECT CONCLUSIONS

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.14

 For performance tests, reports should describe the test
configurations

 Availability zones, client type (VM, ec2 instance type), # of
requests, # of batches

 Try to capture every detail so the test could be replicated to
confirm results

 Developing test scripts makes it easy to replicate experiments
exactly

 Can include “practical” perspectives

 Lessons learned from building the applications and
implementing the tests

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.27

PROJECT CONCLUSIONS - 2

FUNDAMENTAL CLOUD
ARCHITECTURES

November 26, 2018 L17.28

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.15

 Common foundational cloud architectural models

 Exemplify common configurations of cloud-based
application deployments

 Architectures describe cloud provisioning of:
Compute, disk, and network resources

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.29

FUNDAMENTAL CLOUD ARCHITECTURES

 Workload distribution architecture: load balancing

 Resource pooling architecture: resource pools

 Dynamic scalability architecture: auto-scaling

 Elastic resource scalability architecture: vertical scaling

 Service load balancing architecture: load balancing for
cloud/web services

 Cloud bursting architecture: hybrid cloud

 Elastic disk provisioning architecture: thin vs. thick disk
provisioning

 Redundant storage architecture: duplicate storage devices
across data centers

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.30

FUNDAMENTAL
CLOUD ARCHITECTURES - 2

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.16

 Horizontally scaled IT resources

 Add/remove resources per tier

 Load balancer distributes workload among providers

 Goal is to reduce IT resource:
 Over-utilization
 Under-utilization

 Sophisticated load balancing algorithms / run-time logic
 Support resource management
Workload distribution

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.31

WORKLOAD DISTRIBUTION
ARCHITECTURE

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.32

WORKLOAD DISTRIBUTION
ARCHITECTURE - 2

Redundant copies of the Cloud Service are implemented on both Virtual
Servers. The load balancer intercepts service requests and directs them
to either virtual server to ensure even workload distribution.

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.17

 Can be applied to any IT resource
 Virtual servers
 Cloud storage devices
 Cloud services

 Specializations of this architecture
 Service load balancing (upcoming…)
 Load balanced virtual server architecture

balancing # of VMs per host…
 Load balanced virtual switches architecture

Increasing virtual network bandwidth w/ additional
physical uplinks

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.33

WORKLOAD DISTRIBUTION
ARCHITECTURE - 3

 Does this architecture encapsulate high availability?
 Redundancy

 Fault tolerant

 Fail-over

 Is the load balancer
fault tolerant?

 How could the load balancer be made fault tolerant?

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.34

WORKLOAD DISTRIBUTION
ARCHITECTURE - 4

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.18

 Active / passive mode
 Pair of load balancers are configured

 Primary load balancer distributes traffic

 Second load balancer operates in listening mode

 Secondary load balancer step-ins in if primary fails

 Achieves high availability

 Active / active mode
 Two or more servers aggregate traffic load at the same time

 User sessions are “locked” to one load balancer

 Session is cached, requests are routed to same resource provider

 If user request goes to other load balancer, it doesn’t know how to
route request – would need to query other load balancer… slow!

 If one LB fails, is the other sufficient to route traffic?

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.35

HIGH AVAILABILITY LOAD BALANCING

 Other common elements of this architecture:

 Audit monitor: logs user requests as needed

 Cloud usage monitor: logs server utilization

 Hypervisor: virtual machines may need to be distributed

 Logical network perimeter: workloads distributed within

 Resource cluster: compute cluster resources to
implement architecture

 Resource replication: concept of generating new
resources in response to demand

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.36

WORKLOAD DISTRIBUTION
ARCHITECTURE - 5

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.19

 Identical IT resources are grouped and maintained

 System ensures they remained synchronized

 EXAMPLE: Hyper-converged server infrastructure

 Nutanix: https://www.nutanix.in/hyperconverged-
infrastructure/

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.37

RESOURCE POOLING ARCHITECTURE

 Resource Pools:

 Physical server pool / Vir tual server pool
 Preconfigured with OS/applications, ready for immediate use

 Storage pool
 File-based, block-storage entities, with or without data, ready for use

 Network pool
 Virtual firewall devices or network switches for redundant

connectivity, load balancing, link aggregation

 CPU pool, Memory pool
 Allocated to virtual servers

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.38

RESOURCE POOLING ARCHITECTURE - 2

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.20

 Resources pools can be used to provide vir tual devices
 Vir tual server(s)
 Consumes CPU and memory from pool

 Vir tual disk(s)
 Aggregate “just a bunch of disks” (JBoD) to provide disk(s) with required

capacity, IOPS requirements, latency
 Vir tual network
 Aggregate physical network resources to provide virtual network devices

which are isolated, with necessary bandwidth, and capacity

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.39

SAMPLE RESOURCE POOL

 Nested pools:
Use same resources,
but in different
quantities.

 Allow rapid
instantiation of
resources with
identical
configurations

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.40

RESOURCE POOLING ARCHITECTURE - 2

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.21

 Audit monitor: monitor usage to ensure legal use

 Cloud usage monitor: runtime tracking and synchronization to
support management of resource pools

 Pay -per-use monitor: collects usage and bil ling information on
how individual cloud users allocate and use resources

 Remote administration system: inter faces with backend
systems to provide administration support

 Resource management system: supports administering
resource pools

 Hypervisor, Logical network perimeter, Resource replication

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.41

RESOURCE POOLING MECHANISMS

 Uses predefined scaling conditions to trigger “dynamic
allocation” of IT resources from pools

 Resource allocation is adjusted dynamically based on
demand

 Unnecessary resources are automatically

 Automated scaling listener

Monitors workload thresholds to determine when new
resources should be added / removed using a scaling
policy

 Scaling policy – defines specifics of the scaling thresholds

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.42

DYNAMIC SCALABILITY ARCHITECTURE

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.22

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.43

DYNAMIC SCALABILITY ARCHITECTURE - 2

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.44

DYNAMIC SCALABILITY ARCHITECTURE - 3

Automatic scaling listener triggers creation of additional cloud service
instances, which are added to pool for load balancing. Automated scaling
listener resumes monitoring and adds and subtracts resources as required.

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.23

 Example: AWS -Elastic Load Balancer (ELB)

 Classic load balancer: application agnostic distribution of
traffic across nodes

 Uses cloud watch metrics …

 Application load balancer: distributes traffic while
considering unique content of requests enabling advanced
routing capabilities

 ELB integrates with AWS auto scaling to dynamically
provision +/- resources in response to demand

 Load balancer configuration automatically adjusted

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.45

DYNAMIC SCALABILITY ARCHITECTURE - 4

 Why should load balancers / scaling listeners reroute
subsequent requests for TCP sessions to the same
server?

 How could “sticky” sessions impact load balancing?

 What are the advantages of classic (application agnostic)
load balancing?

 For an “application load balancer” supporting “advanced
routing”, what features and capabilities are required of
the load balancer?

 Which is more performant? Software or hardware load
balancer?

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.46

DYNAMIC SCALABILITY
ARCHITECTURE QUESTIONS

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.24

 Supports dynamic provisioning of virtual servers

 Feature of public/private infrastructure-as-a-service
(IaaS) clouds

 Enables reprovisioning CPUs and RAM (*vertical scaling*)
to change the SIZE of a live virtual machine
 Container platforms

 Ability to interact with the hypervisor and
vir tual infrastructure manager (VIM) to manage resources
– **at runtime**

 Virtual server is monitored to increase capacity from a
resource pool when thresholds are met.

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.47

ELASTIC ‘RESOURCE CAPACITY’
ARCHITECTURE

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.48

ELASTIC RESOURCE CAPACITY
ARCHITECTURE - 2

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.25

 Virtual servers may require rebooting for the changes in
memory and CPU to take effect

 VIMs may automatically redistribute RAM & CPUs to VMs
based on demand if rebooting is not required

 Not all Cloud VIMs or Container orchestration frameworks
support/expose this feature

 Features are accessible at the hypervisor level

 Can resize # of CPUs and RAM of VMs on-the-fly by
interacting directly with XEN/KVM hypervisors
– via the CLI !
 Its preferable to recreating the VM entirely

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.49

ELASTIC RESOURCE CAPACITY
ARCHITECTURE - 3

 Workload distribution architecture: load balancing

 Resource pooling architecture: resource pools

 Dynamic scalability architecture: auto-scaling

 Elastic resource scalability architecture: vertical scaling

 Service load balancing architecture: load balancing for
cloud/web services

 Cloud bursting architecture: hybrid cloud

 Elastic disk provisioning architecture: thin vs. thick disk
provisioning

 Redundant storage architecture: duplicate storage devices
across data centers

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.50

FUNDAMENTAL
CLOUD ARCHITECTURES

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.26

 A specialized variation of the
workload distribution
architecture

 Redundant deployments of
cloud services are created,
and load balancer distributes
workloads

 The architecture we configure
in tutorial #2 !

 Focuses on scaling cloud
service implementations

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.51

SERVICE LOAD BALANCING
ARCHITECTURE

 Service redistributes
request to the proper server

 “Shard” is a segment of
a database hosted on a
single server

 Sharding enables horizontal
scaling of datasets by
distributing rows across
multiple servers

 Data fetch with sharding:
Request is processed by
application server to route
request to server hosting
the shard

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.52

REQUEST REDISTRIBUTION

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.27

 Burst beyond on-premise IT resources to use public cloud
when predefined capacity thresholds are surpassed

 Cloud resources are pre-deployed, but in inactive state until
cloud bursting occurs

 Once cloud resources
are no longer needed,
they are released

 Automated scaling
l istener is used

 Latency to the cloud
should be considered

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.53

CLOUD BURSTING ARCHITECTURE

 When is vertical scaling preferable to horizontal scaling
of cloud resources?

 Is cloud bursting vertical or horizontal scaling?

 Consider a private cloud with 5 host servers. What types
of scaling is likely to be more important to the system
administrator: horizontal or vertical scaling? Why?

 Can Docker container orchestration frameworks support
horizontal scaling?

 Vertical scaling?

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.54

SCALING QUESTIONS

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.28

 Static allocations of fixed amounts of cloud disk space
are expensive

 Example:
Provision virtual Windows Server with 450GB disk

 Before OS is installed: 0 GB is used

 After OS is installed: <100 GB is used

 Customer is charged for: 450GB

 Elastic disk provisioning establishes a dynamic storage
provisioning system to granularly bill a user for storage
actually used…

 Based on “thin-provisioning” of storage

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.55

ELASTIC DISK PROVISIONING
ARCHITECTURE

 Thin Provisioning

 Only allocate storage space as it is used

 Increases potential for sharing the disk

 Introduces problem of over-provisioning : allocate more
virtual disk space than actually exists

 Thick Provisioning

 Statically allocate all requested disk space

 A single user can provision the whole disk rendering it
unusable by others !

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.56

THIN VS. THICK PROVISIONING

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.29

 Virtual box supports “thin provisioning” of virtual disks

 Disks have a maximize size, but only what is actually
used is provisioned allowing the volume to grow.

 Eucalyptus EBS volume implementation
 Disk volumes are thinly provisioned

 Threat of over provisioning

 Resizing volumes can be challenging

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.57

THIN PROVISIONING - EXAMPLE

 Provide fault tolerance and improved availability of cloud
storage devices

 Individual storage devices already have dual disk arrays
and redundant disk controllers

 We are talking about SANs, NASs

 The idea is to replicate storage
devices

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.58

REDUNDANT STORAGE ARCHITECTURE

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.30

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.59

REDUNDANT STORAGE ARCHITECTURE - 2These colored blocks represent user disks. They are
“Virtual” in the sense that the storage device abstracts
how they are implemented with physical disks…

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.60

REDUNDANT STORAGE ARCHITECTURE - 3

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.31

 Introduce a secondary duplicate cloud storage
device that synchronizes data with the primary
storage device

Storage gateway service routes requests to second
device when the primary device fails

Secondary storage devices may be located in
different physical locations

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.61

REDUNDANT STORAGE ARCHITECTURE - 4

 If we have two identical storage devices that internally feature
redundant disk arrays based on RAID 1, how many copies of
the data exist?

 Besides disk space, what else does thin provisioning save?

 In addition to data redundancy, what else is gained from
having multiple copies of our data?

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.62

CLOUD STORAGE QUESTIONS

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.32

 Workload distribution architecture: load balancing

 Resource pooling architecture: resource pools

 Dynamic scalability architecture: auto-scaling

 Elastic resource scalability architecture: vertical scaling

 Service load balancing architecture: load balancing for
cloud/web services

 Cloud bursting architecture: hybrid cloud

 Elastic disk provisioning architecture: thin vs. thick disk
provisioning

 Redundant storage architecture: duplicate storage devices
across data centers

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.63

FUNDAMENTAL
CLOUD ARCHITECTURES SUMMARY

QUESTIONS

November 26, 2018
TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L17.64

