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Benchmarking FAAS Applications

Fundamental Cloud Architectures

Wes J. Lloyd
School of Engineering and 
Technology
University of Washington - Tacoma

TCSS 562: 
SOFTWARE ENGINEERING 
FOR CLOUD COMPUTING

Class Presentations 11/28, 12/3, 12/5
Capstone/Thesis Presentations 12/5 
12.20pm-2:40pm, WPH, Jane Russell Commons

 Feedback from 11/19

Benchmarking for Term Projects
 Final presentation and report specification posted 

soon

 Fundamental Cloud Architectures 
(Ch. 11, Thomas Erl)
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 Wednesday November 28

 1. Team 6 (Rahul ,  Poornima,  Sowmya) Azure Cosmo DB

 2. Team 1 (Tanner,  Al i ,  Khanh) AWS Cloud Formation

 Monday December 3rd

 1. Team 2 (Derek,  Mi lad) Paper: 
Serverless Computing: Design, Implementation, and Performance

 2. Team 7 (Xiaodong,  Moran, Zac) Google BigQuery

 3. Team 3 (Feng,  J iaqi ,  Xiaola) Azure Functions

 Wednesday December 5th

 1. Team 5 (Rober t C. ,  Jared,  Raymond) Google Cloud Functions

 2. Team 4 (Rober t B. ,  Jef f ,  Daylen) MongoDB Atlas

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.3

CLASS PRESENTATIONS

 How can containers be helpful for developers?
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FEEDBACK – 11/19
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 What should the structure of the “Query” service of  the “ETL” 
pipeline be?  How is data aggregated? fi ltered? 

 For aggregation support GROUP BY for one or more columns

 Columns not in the “group by” expression must be aggregated 
using a function

select [Item Type], avg([Units Sold]), avg([Total 
Revenue]), avg([Total Cost]), avg([Total Profit])

from [Sales]

group by [Item Type];

 Query outputs a list of items:
 Average # of units sold, total revenue, total cost, and total profit

 Aggregates 4 columns
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FEEDBACK - 2

 Can devise a scheme with the JSON request object to allow 
aggregation and fi ltering to be fairly dynamic

 Fields in the JSON object can be added directly to the SQL 
Select statement to produce interesting dynamic queries 
(e.g. not hard coded)

 Up to groups to come up with specific approaches/schemes

 Goal is to support group by/aggregation on at least one 
column and fi ltering on at least one column

 Stack overflow post on multiple column Group By:

 https://stackoverflow.com/questions/2421388/using-group-
by-on-multiple-columns

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.6

FEEDBACK - 3



TCSS 562: SE for Cloud Computing [Fall 2018]  
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.4

BENCHMARKING FAAS
APPLICATIONS

November 26, 2018
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 Average Turnaround Time
 Client’s perspective: time delta before call until result

 Server’s perspective: time delta from function entry point to end

 Compute time: CPU usage 

 Measured on the server side – Java
long cputime0 = ManagementFactory.getThreadMXBean(). 
getThreadCpuTime(java.lang.Thread.currentThread().getId());
long cputime1 = ManagementFactory.getThreadMXBean(). 
getThreadCpuTime(java.lang.Thread.currentThread().getId());
Long cputimedelta = (cputime1-cputime0)/1000000;

 How do these times relate to billed function time in 
CloudWatch log messages?
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SERVICE PERFORMANCE MEASUREMENT
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 Latency

 Formally means time between request and response

 Typical to qualify the type of latency: “network latency”

 Time request/response message is in transit

 Estimate: Client’s Turnaround Time – Server’s Turnaround 
Time

 Difference estimates round trip latency (both ways)

 Divide by two for estimate of one-way latency

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.9

SERVICE PERFORMANCE - 2

 Latency cont’d

 Other approach: Network time protocol (NTP)

 Service for synchronizing Linux system time

 Synchronize VM times (EC2 instances) …good for clients

 Research Question: How synchronized are AWS Lambda 
clocks?

With synchronized clocks, can capture system event times:

 CLIENT_REQ_SENT, SERVER_REQ_RCVD  to server 

 SERVER_RESP_SENT, CLIENT_RESP_RCVD  from server
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SERVICE PERFORMANCE - 3
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 Measure per formance behavior of standalone services
 Similar to stress testing
 Sequential tests: one client, repeat test many times 

(callservice.sh)
 Establishes how service performs running in one environment
 One VM, one container, no scaling

 Takes longer to collect a lot of samples
 May be more consistent as a single environment may perform 

more consistently than many parallel environments

 Research Question: Which type of FAAS testing provides more 
stable results (sequential vs. parallel)?
 Stability measured by: standard deviation, variance
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SERVICE PERFORMANCE MEASUREMENT:
SEQUENTIAL

 Concurrent tests: many clients in parallel (par test.sh)

 Concurrent tests collect performance data for many 
deployments in parallel

 Supports collecting a lot of data, FAST!

 Samples how “provisioning variation” impacts performance

 Example: run 1 test, 100 times with short delay between tests

 Problem: Only measures one VM, one “container”

 Fix: Run 100 tests, 1 time in parallel

 Measures many VMs, and 100 “containers”…

 Research Question: How does provisioning variation of FAAS 
infrastructure impact service performance?
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SERVICE PERFORMANCE MEASUREMENT:
PARALLEL
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 Client must be capable of generating load

 All requests must overlap to force creation of infrastructure

 Approaches:

 (1) Make service time long – can use a laptop for 100 requests

 (2) Use a very powerful client machine – fast CPU & network

 (3) Use synchronized clients – separate VMs with time
synchronization (optional tutorial 9)

 HYBRID- Do both…

 Run 10x-100x batches of 100 with short delay

 Research Question: How does performance vary when running 
on one-set of infrastructure?

 Measures warm performance
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SERVICE PERFORMANCE MEASUREMENT:
PARALLEL - 2

 Run 10x-100x batches of 100 with LONG delay…
 Long delay is to ensure infrastructure goes COLD and is 

reprovisioned from scratch

 Provides a realistic test

 In the wild, functions will go dormant, and new infrastructure will be 
dynamically created on-the-fly

 We are interested in understanding how performance might vary
each time this happens

 Application based testing – AWS Lambda
 Observed ~34% performance variance for various memory settings 

from 128MB to 512MB of different “generations” of infrastructure

 An infrastructure generation is one set created in response to
service demand
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SERVICE PERFORMANCE MEASUREMENT:
PARALLEL - 3
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 Possible approaches – best to worst

1. Wait ~45 minutes: all infrastructure (VMs & containers) are 
deprecated, new ones are created

2. Change VPCs / Availability Zones: forces function to be 
deployed to new location
 Can run out of AZs

3. Change a parameter: (e.g. memory allocation, max runtime) 
– container is destroyed, but host/VM remains the same
 Not a true cold performance test

4. Redeploy new version of code: container is destroyed (?), but 
host/VM remain the same

5. Larger parallel request: forces creation of new infrastructure
 Old infrastructure remains
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FORCING COLD INFRASTRUCTURE

16

RQ-4:
Lambda

Container
Recycling

Lambda
Virtual Machine

Recycling

Tests from 2017
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 What does “average” look l ike for
the service?

 One “sample” could be perfectly
sunny, or very rainy

 How does service perform overall ?

 Many requests may have similar 
performance, a few are slow…
( skewed to  the r ight -hand s ide o f  the graph)
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ESTABLISHING PERFORMANCE BEHAVIOR

Performance may be 
“log normal”

 Need to run multiple tests to “sample” how the system 
responds

 Goal: obtain performance measurements which compare 
apples-to-apples scenarios

 It is easy to find a pear…

 LAMBDA PEARS:

 Must consider state: VM-cold, Container-cold, warm

 Must consider server location: which availability zone (AZ)?
 Can “pin” functions to a specific AZ by running in a VPC

 Use of VPCs add initialization overhead

 Lambdas must negotiate private IP address on VPC (one time)
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ESTABLISHING PERFORMANCE BEHAVIOR - 2
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 PEARS cont’d

 Client location – Starbucks? At home? At UWT?

 Best client is an EC2 instance in an unchanging availability 
zone (AZ)
 ssh to the instance from anywhere, run tests via the cloud

 Concurrent tests – Changing infrastructure
 100 parallel requests: can receive different distributions of 

containers-to-VMs

 Each infrastructure-set can exhibit different performance 
characteristics depending on the workload

 Resource Contention from co-located users
 May vary due to time of day

 How can these conditions be replicated?
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ESTABLISHING PERFORMANCE BEHAVIOR - 3

 How does per formance change when increasing the number of 
concurrent clients?

 What is the “STEP” of the scale-up?

 STEP by 1 – add 1 new client each round

 STEP by 10 –
add 10 new clients
each round
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SCALE-UP PERFORMANCE
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 CPU power (% allocation) on
AWS Lambda is coupled to
memory reservation size

 Performance is always better at
with higher RAM, but how much?
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MEMORY VS. PERFORMANCE

Performance boost is
based on how CPU-bound 
the function is…
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MEMORY VS. COST

 AWS Lambda performance is based on memory reservation 
size and run time

 Changing memory reservation size increases CPU power

 Once memory vs. per formance is established can calculated 
memory reservation size 
to optimize cost

 Estimate cost for a 
fictional large workload
e.g. 1 ,000,000 requests
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 Transform Service

 Can calculate data processing throughput: rows per second

 Given dif ferent fi le sizes (e.g. 100, 1000 10000 rows) what is 
the throughput?

 Research Question: How does the size of the cl ient data 
payload related to data processing throughput? (rows/second)

 Are smaller or larger fi les faster to process?

 E.g. what is the price per ounce? (gram)

 Load Service

 What is the data throughput (rows/second) in loading SQL 
backend with data?

 How does load per formance relate to transformation speed?
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ETL PIPELINE SPECIFICS

 Query Service

 To benchmark query service performance, should select a few
standard queries, and repeat them using dif ferent sizes of
databases

 Aggregation queries: GROUP BY to sum(), average(), count()

 Filter queries: WHERE [column] = (value)

 Filtering is fast

 Aggregation can be slower

 Joining is slower, but not really applicable for our 1-table ETL 
database

 Nested query (select * from (select * from …))
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ETL - 2
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 Comparisons of interest

 Service composition: T-Transform L-Load Q-Query
 Fully decomposed, fully composed, others:
 [T] [L] [Q], [T L] [Q], [T] [L Q], [T L Q]

 Application flow control
 Alternate forms: laptop controller, Lambda controller sync, Lambda 

async, Step function

 Database backend
 Amazon Aurora RDS, vs. SQLite

 How does these alternate configurations impact performance 
(sequential, parallel, scale-up), application hosting costs?
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ETL - 3

 At the end, groups should have implemented a multi -service
mini-application

 There should be at least:
 The base implementation (akin to the “control” group)

 EXAMPLE:  [TRANSFROM] [LOAD] [QUERY] as separate services

 Then there should be a comparison implementation

 Research Question:
 What is the performance and cost implications for the competing

implementations? How did performance/cost change?  Any why if it 
is clear?

 Performance measures: turnaround time, compute time, throughput 
(rows/sec), latency
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PROJECT CONCLUSIONS
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 For performance tests, reports should describe the test 
configurations

 Availability zones, client type (VM, ec2 instance type), # of 
requests, # of batches

 Try to capture every detail so the test could be replicated to 
confirm results

 Developing test scripts makes it easy to replicate experiments
exactly

 Can include “practical” perspectives

 Lessons learned from building the applications and 
implementing the tests
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PROJECT CONCLUSIONS - 2

FUNDAMENTAL CLOUD 
ARCHITECTURES

November 26, 2018 L17.28
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 Common foundational cloud architectural models

 Exemplify common configurations of cloud-based 
application deployments

 Architectures describe cloud provisioning of:
Compute, disk, and network resources
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FUNDAMENTAL CLOUD ARCHITECTURES

 Workload distribution architecture: load balancing

 Resource pooling architecture: resource pools

 Dynamic scalability architecture: auto-scaling

 Elastic resource scalability architecture: vertical scaling

 Service load balancing architecture: load balancing for 
cloud/web services

 Cloud bursting architecture: hybrid cloud

 Elastic disk provisioning architecture: thin vs. thick disk 
provisioning

 Redundant storage architecture: duplicate storage devices 
across data centers
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FUNDAMENTAL 
CLOUD ARCHITECTURES - 2
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 Horizontally scaled IT resources

 Add/remove resources per tier

 Load balancer distributes workload among providers

 Goal is to reduce IT resource:
 Over-utilization
 Under-utilization

 Sophisticated load balancing algorithms / run-time logic 
 Support resource management 
Workload distribution

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.31

WORKLOAD DISTRIBUTION 
ARCHITECTURE
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WORKLOAD DISTRIBUTION 
ARCHITECTURE - 2

Redundant copies of the Cloud Service are implemented on both Virtual
Servers. The load balancer intercepts service requests and directs them
to either virtual server to ensure even workload distribution.
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 Can be applied to any IT resource
 Virtual servers
 Cloud storage devices
 Cloud services

 Specializations of this architecture
 Service load balancing (upcoming…)
 Load balanced virtual server architecture 

balancing # of VMs per host…
 Load balanced virtual switches architecture

Increasing virtual network bandwidth w/ additional 
physical uplinks
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WORKLOAD DISTRIBUTION 
ARCHITECTURE - 3

 Does this architecture encapsulate high availability?
 Redundancy 

 Fault tolerant

 Fail-over

 Is the load balancer 
fault tolerant?

 How could the load balancer be made fault tolerant?
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WORKLOAD DISTRIBUTION 
ARCHITECTURE - 4
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 Active / passive mode
 Pair of load balancers are configured

 Primary load balancer distributes traffic

 Second load balancer operates in listening mode

 Secondary load balancer step-ins in if primary fails  

 Achieves high availability

 Active / active mode
 Two or more servers aggregate traffic load at the same time

 User sessions are “locked” to one load balancer

 Session is cached, requests are routed to same resource provider

 If user request goes to other load balancer, it doesn’t know how to 
route request – would need to query other load balancer… slow!

 If one LB fails, is the other sufficient to route traffic?
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HIGH AVAILABILITY LOAD BALANCING

 Other common elements of this architecture:

 Audit monitor: logs user requests as needed

 Cloud usage monitor: logs server utilization

 Hypervisor: virtual machines may need to be distributed

 Logical network perimeter: workloads distributed within

 Resource cluster: compute cluster resources to 
implement architecture

 Resource replication: concept of generating new 
resources in response to demand
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WORKLOAD DISTRIBUTION 
ARCHITECTURE - 5
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 Identical IT resources are grouped and maintained

 System ensures they remained synchronized

 EXAMPLE: Hyper-converged server infrastructure

 Nutanix: https://www.nutanix.in/hyperconverged-
infrastructure/
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RESOURCE POOLING ARCHITECTURE

 Resource Pools:

 Physical server pool / Vir tual server pool
 Preconfigured with OS/applications, ready for immediate use

 Storage pool
 File-based, block-storage entities, with or without data, ready for use

 Network pool
 Virtual firewall devices or network switches for redundant 

connectivity, load balancing, link aggregation

 CPU pool, Memory pool
 Allocated to virtual servers
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RESOURCE POOLING ARCHITECTURE - 2
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 Resources pools can be used to provide vir tual devices
 Vir tual server(s)
 Consumes CPU and memory from pool

 Vir tual disk(s)
 Aggregate “just a bunch of disks” (JBoD) to provide disk(s) with required 

capacity, IOPS requirements, latency
 Vir tual network
 Aggregate physical network resources to provide virtual network devices 

which are isolated, with necessary bandwidth, and capacity
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SAMPLE RESOURCE POOL

 Nested pools:
Use same resources,
but in different 
quantities.

 Allow rapid 
instantiation of 
resources with 
identical 
configurations
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RESOURCE POOLING ARCHITECTURE - 2
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 Audit monitor: monitor usage to ensure legal use

 Cloud usage monitor: runtime tracking and synchronization to 
support management of resource pools

 Pay -per-use monitor: collects usage and bil ling information on 
how individual cloud users allocate and use resources

 Remote administration system: inter faces with backend 
systems to provide administration support

 Resource management system: supports administering 
resource pools

 Hypervisor, Logical network perimeter, Resource replication
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RESOURCE POOLING MECHANISMS

 Uses predefined scaling conditions to trigger “dynamic 
allocation” of IT resources from pools

 Resource allocation is adjusted dynamically based on 
demand

 Unnecessary resources are automatically

 Automated scaling listener

Monitors workload thresholds to determine when new 
resources should be added / removed using a scaling 
policy

 Scaling policy – defines specifics of the scaling thresholds

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.42

DYNAMIC SCALABILITY ARCHITECTURE



TCSS 562: SE for Cloud Computing [Fall 2018]  
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.22

November 26, 2018 TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.43

DYNAMIC SCALABILITY ARCHITECTURE - 2
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DYNAMIC SCALABILITY ARCHITECTURE - 3

Automatic scaling listener triggers creation of additional cloud service
instances, which are added to pool for load balancing. Automated scaling
listener resumes monitoring and adds and subtracts resources as required.
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 Example: AWS -Elastic Load Balancer (ELB)

 Classic load balancer: application agnostic distribution of 
traffic across nodes

 Uses cloud watch metrics …

 Application load balancer: distributes traffic while 
considering unique content of requests enabling advanced 
routing capabilities

 ELB integrates with AWS auto scaling to dynamically 
provision +/- resources in response to demand

 Load balancer configuration automatically adjusted
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DYNAMIC SCALABILITY ARCHITECTURE - 4

 Why should load balancers / scaling listeners reroute 
subsequent requests for TCP sessions to the same 
server?

 How could “sticky” sessions impact load balancing?

 What are the advantages of classic (application agnostic) 
load balancing?

 For an “application load balancer” supporting “advanced 
routing”, what features and capabilities are required of 
the load balancer?

 Which is more performant? Software or hardware load 
balancer?
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 Supports dynamic provisioning of virtual servers

 Feature of public/private infrastructure-as-a-service 
(IaaS) clouds

 Enables reprovisioning CPUs and RAM (*vertical scaling*)
to change the SIZE of a live virtual machine
 Container platforms

 Ability to interact with the hypervisor and 
vir tual infrastructure manager (VIM) to manage resources 
– **at runtime**

 Virtual server is monitored to increase capacity from a 
resource pool when thresholds are met.
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ELASTIC ‘RESOURCE CAPACITY’
ARCHITECTURE
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ELASTIC RESOURCE CAPACITY 
ARCHITECTURE - 2
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 Virtual servers may require rebooting for the changes in 
memory and CPU to take effect

 VIMs may automatically redistribute RAM & CPUs to VMs 
based on demand if rebooting is not required

 Not all Cloud VIMs or Container orchestration frameworks 
support/expose this feature

 Features are accessible at the hypervisor level

 Can resize # of CPUs and RAM of VMs on-the-fly by 
interacting directly with XEN/KVM hypervisors 
– via the CLI !
 Its preferable to recreating the VM entirely 
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ELASTIC RESOURCE CAPACITY 
ARCHITECTURE - 3

 Workload distribution architecture: load balancing

 Resource pooling architecture: resource pools

 Dynamic scalability architecture: auto-scaling

 Elastic resource scalability architecture: vertical scaling

 Service load balancing architecture: load balancing for 
cloud/web services

 Cloud bursting architecture: hybrid cloud

 Elastic disk provisioning architecture: thin vs. thick disk 
provisioning

 Redundant storage architecture: duplicate storage devices 
across data centers
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 A specialized variation of the
workload distribution 
architecture

 Redundant deployments of 
cloud services are created, 
and load balancer distributes
workloads

 The architecture we configure 
in tutorial #2 !

 Focuses on scaling cloud 
service implementations
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SERVICE LOAD BALANCING 
ARCHITECTURE

 Service redistributes
request to the proper server

 “Shard” is a segment of
a database hosted on a 
single server

 Sharding enables horizontal
scaling of datasets by 
distributing rows across 
multiple servers

 Data fetch with sharding:
Request is processed by 
application server to route
request to server hosting
the shard
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REQUEST REDISTRIBUTION
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 Burst beyond on-premise IT resources to use public cloud 
when predefined capacity thresholds are surpassed

 Cloud resources are pre-deployed, but in inactive state until  
cloud bursting occurs

 Once cloud resources
are no longer needed,
they are released

 Automated scaling 
l istener is used

 Latency to the cloud 
should be considered
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CLOUD BURSTING ARCHITECTURE

 When is vertical scaling preferable to horizontal scaling 
of cloud resources?

 Is cloud bursting vertical or horizontal scaling?

 Consider a private cloud with 5 host servers.  What types 
of scaling is likely to be more important to the system 
administrator: horizontal or vertical scaling?  Why?

 Can Docker container orchestration frameworks support 
horizontal scaling?

 Vertical scaling?
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 Static allocations of fixed amounts of cloud disk space 
are expensive

 Example: 
Provision virtual Windows Server with 450GB disk

 Before OS is installed: 0 GB is used

 After OS is installed: <100 GB is used

 Customer is charged for: 450GB

 Elastic disk provisioning establishes a dynamic storage 
provisioning system to granularly bill a user for storage 
actually used…

 Based on “thin-provisioning” of storage
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ELASTIC DISK PROVISIONING 
ARCHITECTURE

 Thin Provisioning

 Only allocate storage space as it is used

 Increases potential for sharing the disk

 Introduces problem of over-provisioning : allocate more 
virtual disk space than actually exists

 Thick Provisioning

 Statically allocate all requested disk space

 A single user can provision the whole disk rendering it 
unusable by others !
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THIN VS. THICK PROVISIONING
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 Virtual box supports “thin provisioning” of virtual disks

 Disks have a maximize size, but only what is actually 
used is provisioned allowing the volume to grow.

 Eucalyptus EBS volume implementation
 Disk volumes are thinly provisioned

 Threat of over provisioning 

 Resizing volumes can be challenging
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THIN PROVISIONING - EXAMPLE

 Provide fault tolerance and improved availability of cloud 
storage devices

 Individual storage devices already have dual disk arrays 
and redundant disk controllers 

 We are talking about SANs, NASs

 The idea is to replicate storage 
devices   
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REDUNDANT STORAGE ARCHITECTURE
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REDUNDANT STORAGE ARCHITECTURE - 2These colored blocks represent user disks. They are
“Virtual” in the sense that the storage device abstracts
how they are implemented with physical disks…
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REDUNDANT STORAGE ARCHITECTURE - 3



TCSS 562: SE for Cloud Computing [Fall 2018]  
School of Engineering and Technology, UW-
Tacoma

4/26/2018

Slides by Wes J. Lloyd L17.31

 Introduce a secondary duplicate cloud storage 
device that synchronizes data with the primary 
storage device

Storage gateway service routes requests to second 
device when the primary device fails

Secondary storage devices may be located in 
different physical locations
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REDUNDANT STORAGE ARCHITECTURE - 4

 If we have two identical storage devices that internally feature 
redundant disk arrays based on RAID 1, how many copies of 
the data exist?

 Besides disk space, what else does thin provisioning save?

 In addition to data redundancy, what else is gained from 
having multiple copies of our data?
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CLOUD STORAGE QUESTIONS
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 Workload distribution architecture: load balancing

 Resource pooling architecture: resource pools

 Dynamic scalability architecture: auto-scaling

 Elastic resource scalability architecture: vertical scaling

 Service load balancing architecture: load balancing for 
cloud/web services

 Cloud bursting architecture: hybrid cloud

 Elastic disk provisioning architecture: thin vs. thick disk 
provisioning

 Redundant storage architecture: duplicate storage devices 
across data centers
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FUNDAMENTAL 
CLOUD ARCHITECTURES SUMMARY

QUESTIONS
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