TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-

Tacoma

TCSS 562:
SOFTWARE ENGINEERING ,
FOR CLOUD COMPUTING _

Containerization

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

Credit: some content based on Salman A. Baset, IBM: WOC 2018 @ IC2E — Container Security

FEEDBACK - 11/16

= Kernel Based Virtual Machines
= Integrate the virtualization hypervisor directly into the Linux kernel
= Allows host machine to boot a real OS directly
= Host OS is no longer a virtualized guest (domO XEN)
® |[nterrupts and Timers
= Last aspect to have HW level support to virtualization

= Paper: “Achieving High Resolution Timer Events in Virtualized
Environment” Plos One Journal article (2014)

= https://journals.plos.org/plosone/article/file?id=10.1371/journal.p
one.0130887&type=printable

= Describes problems with achieving reliable timer emulation with
virtual machines

TCSS562: Software Engineering for Cloud Computing [Fall 2018] 152
School of Engineering and Technology, University of Washington - Tacoma i

November 19, 2018

Slides by Wes J. Lloyd

4/26/2018

L15.1

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-

Tacoma

ACHIEVING HIGH RESOLUTION TIMER

EVENTS IN VIRTUALIZED ENVIRONMENT

® OS: Linux Gentoo 3.17.8 host & guest 0S

= HW: Intel E5645 2.4 GHz

= Tested hypervisors:
= VMWare Player 6.0

(old 2010 CPU, circa 1st/2"9 gen EC2)

® Virtual Box 4.3.18 (2018 release is at 5.2)

® KVM with Linux 3.17.8 kernel

® Xen 4.5

BIPLOS o

“““““““

November 19, 2018

School of Engineering and Technology, University of Washington - Tacoma

L15.3

TIMER INTERRUPTS VIRTUALIZATION O/H

timar sotting = 100us idle system

= With 1/0 load (shows isolation)

timer setting = 100us system with
heavy 10

ViMWare
VirtualBox
Camu
KM A
native Xen 100.221 0339
new timers 100.074 o118
Linux kemel 100,103 0070

Isolation
is poor

VMWara
VirtualBox
Cemu
KVM
native Xen
new timars 100.151 0.168
Linux kermel 101.454 B.340

® Suspect XEN is using paravirtual timer interrupts (2014)

November 19, 2018

TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.4

Slides by Wes J. Lloyd

4/26/2018

L15.2

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-

Tacoma

OBJECTIVES

®Term project questions
mTutorial #6 - Serverless Database
mTutorial #7 - Intro to Docker Containerization

® Containerization

TCSS562: Software Engineering for Cloud Computing [Fall 2018]

Rorembegi2els School of Engineering and Technology, University of Washington - Tacoma

L15.5

CONTAINERIZATION

TCSS562: Software Engineering for Cloud Computing [Fall 2018]

Rcvembepibi20is School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

4/26/2018

L15.3

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-

Tacoma

MOTIVATION FOR CONTAINERIZATION

® Containers provide “light-weight” alternative to full OS
virtualization provided by a hypervisor

® Containers do not provide a full “machine”

® [nstead use operating system constructs to provide “sand
boxes” for execution

= Linux cgroups, namespaces, etc.
® Containers can run on bare metal, or atop of VMs

E

M|(VMm VM

{ypervisor engine

crercrererclc Container P ; ~
ofollo/e|lo|o|o | o k
/ v pplication
O = (Y 0T
Host OS's bins/libs _— al :

Hypervisor engine | ™.
|

Containers engine Host OS

Host OS Containers Type 1 Hardware

Hypervisor'VM .2

TCSS562: Software Engineering for Cloud Computing [Fall 2018]

L15.7
School of Engineering and Technology, University of Washington - Tacoma

November 19, 2018

CONTAINER PERFORMANCE

- LU FACTORIZATION PERFORMANCE

Performance data from IC2E 2015:

= Solve linear equations - matrix algebra | Hypervisors vs. Lightweight Virtualization:

A Performance Comparison

530

A
%

T

.

o
-
ey

DA\

MFlops (higher is beiter)

7
7

50

518

727

516

KVM LXC NATIVE 0sy

Fig. 4. The value of Linpack results on each platform over 15 runs. This is
the particular case of N=1000.

TCSS562: Software Engineering for Cloud Computing [Fall 2018]

L15.8
School of Engineering and Technology, University of Washington - Tacoma

November 19, 2018

Slides by Wes J. Lloyd

4/26/2018

L15.4

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-

Tacoma

CONTAINER PERFORMANCE

- Y-CRUNCHER: Pl CALCULATOR

1800

1750

1700

1650

1600

1550

Seconds (smaller is better)

1400

1350

1300

Performance data from IC2E 2015:

BKVM A Performance Comparison

Hypervisors vs. Lightweight Virtualization:

BDOCKER
BLXC
BENATIVE

1500 -

1450

A

Computation Time Total Time

November 19, 2018

TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.9

CONTAINER PERFORMANCE - BONNIE++

Performance data from IC2E 2015:

250000

200000

150000

L0000

S0000

Disk Throughput (Khis - higher is better)

A Performance Comparison

Hypervisors vs. Lightweight Virtualization:

EKVM EDOCKER BLXC ENATIVE

ZN =
Block Output Block Input

Fig. 6. Disk Throughput achieved by running Bonnie++ (test file of 25 GiB).
Results for sequential writes and sequential read are shown,

November 19, 2018

TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.10

Slides by Wes J. Lloyd

4/26/2018

L15.5

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-

Tacoma

WHAT IS A CONTAINER?

According to NIST (National Institute of Standards Technology)

= Virtualization: the simulation of the software and/or hardware
upon which other software runs. (800-125)

= System Virtual Machine: A System Virtual Machine (VM) is a
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800-180 draft)

= Operating System Virtualization (aka OS Container): Provide
multiple virtualized OSes above a single shared kernel (800-
190). E.g., Solaris Zone, FreeBSD Jails, LXC

= Application Virtualization (aka Application Containers): Same
shared kernel is exposed to multiple discrete instances (800-
180 draft). E.g., Docker (containerd), rkt

TCSS562: Software Engineering for Cloud Computing [Fall 2018]

115.11
School of Engineering and Technology, University of Washington - Tacoma

November 19, 2018

OPERATING SYSTEM CONTAINERS

® Virtual environments: share the host kernel

® Provide user space isolation

® Replacement for VMs: run multiple processes, services
® Mix different Linux distros on same host

Host OS Host OS
® Examples: LXC,
Ubuntu Ubuntu Ubuntu Ubuntu RHEL CentOS
OpenVZ, 14.04 14.04 14.04 14.04 7 6.6

Container Container Container Container Container Container

Linux Vserver,
BSD Jails,
Solaris zones

CentOS 6.6 image

RHEL 7 image

Ubuntu 14.04 image Ubuntu 14.04 image

Identical OS containers Different flavoured OS containers

= Credit: https://blog.risingstack.com/operating-system-containers-vs-application-containers/

TCSS562: Software Engineering for Cloud Computing [Fall 2018]

L15.12
School of Engineering and Technology, University of Washington - Tacoma

November 19, 2018

Slides by Wes J. Lloyd

4/26/2018

L15.6

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-

Tacoma

APPLICATION CONTAINERS

® Desighed to package and run a single service

= All containers share host kernel

® Subtle differences from operating system containers

= Examples: Docker, Rocket

® Docker: runs a single process on creation

® OS containers: run many OS services, for an entire 0S

® Create application containers for each component of an app
® Supports a micro-services architecture

® DevOPS: developers can package their own components in
application containers

® Supports horizontal and vertical scaling

TCSS562: Software Engineering for Cloud Computing [Fall 2018]

115.13
School of Engineering and Technology, University of Washington - Tacoma

November 19, 2018

APPLICATION CONTAINERS - 2

® Container images are “layered”
®m Base image: common for all components

®m Add layers that are specific
for components, services . referancas
as needed parent

= Layering promotes reuse Image

® Reduces duplication of
data across images

TCSS562: Software Engineering for Cloud Computing [Fall 2018]

L15.14
School of Engineering and Technology, University of Washington - Tacoma

November 19, 2018

Slides by Wes J. Lloyd

4/26/2018

L15.7

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

® Union file system
= Copy-on-write

" https://medium.com/@nagarwal/docker-containers-
filesystem-demystified-b6ed8112a04a

= https://www.slideshare.net/jpetazzo/scalelix-Ixc-talk-1/

TCSS562: Software Engineering for Cloud Computing [Fall 2018]

115.15
School of Engineering and Technology, University of Washington - Tacoma

November 19, 2018

THREE-TIER ARCHITECTURE

Node.js
Postgres
Nginx

OS containers App containers

Meant to used as an OS - run multiple
services
No layered filesystems by default

* Built on cgroups, namespaces, native
process resource isclation

* Examples - LXC, OpenVZ, Linux VServer,
BSD Jails, Solaris Zones

Meant to run for a single service
Layered filesystems

Built on top of OS container technologies
Examples - Docker, Rocket

« s s w

TCSS562: Software Engineering for Cloud Computing [Fall 2018]

L15.16
School of Engineering and Technology, University of Washington - Tacoma

November 19, 2018

Slides by Wes J. Lloyd

4/26/2018

L15.8

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-

Tacoma

CONTAINER ISOLATION

®|s the host isolated from application containers?

= Are application containers isolated from each

other?

Application
containers

Application
App | App containers
Bins/libs. Bins/libs

App App

Bins/libs Bins/libs

Container
runtime

runtime

TCSS562: Software Engineering for Cloud Computing [Fall 2018]

115.17
School of Engineering and Technology, University of Washington - Tacoma

November 19, 2018

LXC (LINUX CONTAINERS)

®m QOperating system level virtualization

® Run multiple isolated Linux systems on a host
using a single Linux kernel

= Control groups(cgroups)
"|Including in Linux kernels => 2.6.24

=Limit and prioritize sharing of CPU, memory,
block/network I/0

® Linux namespaces
= Docker initially based on LXC

TCSS562: Software Engineering for Cloud Computing [Fall 2018]

L15.18
School of Engineering and Technology, University of Washington - Tacoma

November 19, 2018

Slides by Wes J. Lloyd

4/26/2018

L15.9

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-

Tacoma

LINUX KERNEL NAMESPACES

® Partitions kernel resources
® Processes see only their set of resources
® Provides isolation

® Namespaces are hierarchical

® Parent processes canh see down the hierarchy
® 7 namespaces in Linux (cgroups not shown)

® Each process can only see resources associated
with the namespace, and descendent hamespaces

TCSS562: Software Engineering for Cloud Computing [Fall 2018]

November 19, 2018 School of Engineering and Technology, University of Washington - Tacoma

L15.19

root@35bfc3dfoc3e: /
top - 08:34:29 up 6:24, sers, load average: 0.00, 0.00, 0.00
4 total, ing, 3 sleeping, 0 stopped, 0 zombie
0.0 us, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st

M : 3853100 total, 2798844 free, 157568 used, 896688 buff/cache
—J i : 0 total, 0 free, 0 used. 3500784 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %l
1 root 20 0 8 3032 2780 S 0.8
5 root 20 © 4 764 764 5 0.0 .
6 root 20 0 18508 3476 3064 5 0.0

14 root 200 © 36596 3228 2796 R 0.0

® Provides isolation of OS
entities for containers

® mnt: separate filesystems
® pid: independent PIDs; first process in container is PID 1

® jpc: prevents processes in different IPC
namespaces from being able to establish shared
memory. Enables processes in different containers
to reuse the same identifiers without conflict.
... provides expected VM like isolation...

m yser: user identification and privilege isolation
among separate containers

® net: network stack virtualization. Multiple loopbacks (lo)
= UTS (UNIX time sharing): provides separate host and domain

TCSS562: Software Engineering for Cloud Computing [Fall 2018]

November 19, 2018 School of Engineering and Technology, University of Washington - Tacoma

L15.20

Slides by Wes J. Lloyd

4/26/2018

L15.10

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-

Tacoma

Slides by Wes J. Lloyd

CONTROL GROUPS (CGROUPS)

Collection of Linux processes
Group-level resource allocation: CPU, memory, disk 1/0, network 1/0

Resource limiting
= Memory, disk cache

Prioritization

= CPU share

= Disk I/0 throughput

Accounting

= Track resource utilization

= For resource management and/or billing purposes

Control

= Pause/resume processes
= Checkpointing > Checkpoint/Restore in Userspace (CRIU)
= https://criu.org

November 19, 2018

TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.21

CGROUPS - 2

Control groups are hierarchical
Groups inherent limits from parent groups

® Linux has multiple cgroup controllers (subsystems)
® |s /proc/cgroups
® “memory” controller limits memory use
“ » #subsys_name | hierarchy | num_cgroups | enabled
® “cpuacct” controller accounts et 2 > 2
for CPU usage cpu 5 97 1
Ccpuacct 7] 97 1
blkio 8 97 1
memory 9 218 1
m cgroup filesystem: devices 6 a7 1
lireezer 4 2 1
m /sys/fs/cgrou net_cls 2 2 1
/ y / / g P . i perf_event 10 2 1
® Can browse resource utilization net_prio 2 2 1
. hugetlb 7 2 1
of containers... oids T 98 1

November 19, 2018

TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.22

4/26/2018

L15.11

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-

Tacoma

2016 DOCKER SURVEY

® Docker application containers
= [eading containerization vehicle

80% <

say Docker is part
of cloud strategy

0,
° want application want to avoid
plan to use Docker to portability across cloud vendor

migrate workloads to cloud environments lock-in

& docker

TCSS562: Software Engineering for Cloud Computing [Fall 2018]

ezl 1), i School of Engineering and Technology, University of Washington - Tacoma

L15.23

DOCKER EXECUTION ENVIRONMENTS

® (1) Original default Docker execution enviornment: LXC
® (2) Docker v0.9: libcontainer introduced (~2014)

® (3) Now runc (2015) I

® Provides Docker access to Linux Docker
container APIs Iheoscaloes l 1 |
. f libvirt e systemd-
= Execution drivers concept: nspawn

= Enable docker to leverage many 0OS l . l
containers as the exec environment Linux

= OpenVZ, system-nspawn, libvirt-Ixc, Spmips AN onfler
libvirt-sandbox, gemu/kvm,
BSD Jails, Solaris Zones, and chroot

selinux netfilter

capabilities apparmor

|

TCSS562: Software Engineering for Cloud Computing [Fall 2018]

November 19, 2018 School of Engineering and Technology, University of Washington - Tacoma

L15.24

Slides by Wes J. Lloyd

4/26/2018

L15.12

TCSS 562: SE for Cloud Computing [Fall 2018] 4/26/2018
School of Engineering and Technology, UW-
Tacoma

DOCKER

® Docker daemon “dockerd”
= Provides docker services to Linux

= Docker 1.11+ jo3 it §
® Open Container Initiative
® June 2015: Industry standard @
for container runtimes and g
formats 1@
m Ensure containers are portable SRS
among different execution
environments (engines) 27

Docker Client-Server Architecture

Credit: https://hackernoon.com/docker-containerd-standalone-runtimes-heres-what-you-should-know-b834ef155426

TCSS562: Software Engineering for Cloud Computing [Fall 2018]

November 19, 2018 School of Engineering and Technology, University of Washington - Tacoma

L15.25

DOCKER - 2

———, —
H}: Docker Engine Containerd
 — L
Docker CLIUI
Runc and other OCI runtimes
Containerd Integration Architecture
= Docker CLI: interfaces with dockerd daemon

® Docker engine: dockerd daemon, interfaces with Containerd

Containerd: simple daemon, interfaces with runc to manage
containers; CRUD interface for containers, images, volumes,
networks, builds; HTTP APl > Google RPC (gRPC) interface;

runc: lightweight command-line tool for running containers;
Interfaces with Linux cgroups, namespaces; Runs an OCI
container

TCSS562: Software Engineering for Cloud Computing [Fall 2018]

November 19, 2018 School of Engineering and Technology, University of Washington - Tacoma

L15.26

Slides by Wes J. Lloyd L15.13

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-

Tacoma

DOCKER - 3

® Docker architecture:

containerd

= Other Docker tools:
= Docker Machine: _ _ : _
) .. containerd-shim containerd-shim
automatically provision ‘
ond manage ccts of U QR (RN
docker hosts to
form a cluster

® Docker Swarm: Clusters multiple docker hosts together to
manage as a cluster.

= Docker Compose: Config file (YAML) for multi-container
application; Describes how to deploy and configure multiple
containers

TCSS562: Software Engineering for Cloud Computing [Fall 2018]

115.27
School of Engineering and Technology, University of Washington - Tacoma

November 19, 2018

CONTAINER ORCHESTRATION

FRAMEWORKS

= Framework(s) to deploy multiple containers
= Provide container clusters using cloud VMs
mSimilar to “private clusters”

® Reduce VM idle CPU time in public clouds

= Better leverage “sunk cost” resources

= Compact multiple apps onto shared public cloud
infrastructure

= Generate to cost savings
® Reduce vendor lock-in

TCSS562: Software Engineering for Cloud Computing [Fall 2018]

L15.28
School of Engineering and Technology, University of Washington - Tacoma

November 19, 2018

Slides by Wes J. Lloyd

4/26/2018

L15.14

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-

Tacoma

KEY ORCHESTRATION FEATURES

® Management of container hosts
® Launching set of containers
®m Rescheduling failed containers
® Linking containers to support workflows
® Providing connectivity to clients outside the container cluster
® Firewall: control network/port accessibility
® Dynamic scaling of containers: horizontal scaling
= Scale in/out, add/remove containers
® Load balancing over groups of containers
® Rolling upgrades of containers for application

TCSS562: Software Engineering for Cloud Computing [Fall 2018]

115.29
School of Engineering and Technology, University of Washington - Tacoma

November 19, 2018

CONTAINER ORCHESTRATION

FRAMEWORKS - 2

® Docker swarm
B Apache mesos/marathon
® Kubernetes

= Many public cloud provides moving to offer Kubernetes-as-
a-service

B Amazon elastic container service (ECS)
® Apache aurora

®m Container-as-a-Service
= Serverles containers without managing clusters
= Azure Container Instances, AWS Fargate...

TCSS562: Software Engineering for Cloud Computing [Fall 2018]

L15.30
School of Engineering and Technology, University of Washington - Tacoma

November 19, 2018

Slides by Wes J. Lloyd

4/26/2018

L15.15

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-

Tacoma

DOCKER, CGROUPS,
RESOURCE ISOLATION

November 19, 2018

TUTORIAL #7

TCSS562: Software Engineering for Cloud Computing [Faje018]

Tacoma

School of Engineering and Technology, University of Wastgllgton -

DOCKER CLI

= Docker CLI > Docker Enginer (dockerd) 2> containerd 2 runc

B Docker installation

® Docker file
®E Docker run
® Docker ps

® Docker exec -it

® Docker stop

November 19, 2018

TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.32

Slides by Wes J. Lloyd

4/26/2018

L15.16

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

Attach local standard input, output, and error streams to a running container

Build an image from a Dockerfile
commit Create a new image from a container's changes
cp Copy files/folders between a container and the local filesystem
create Create a new container
deploy Deploy a new stack or update an existing stack
diff Inspect changes to files or directories on a container's filesystem
events Get real time events from the server
exec Run a command in a running container
export Export a container's filesystem as a tar archive
history Show the history of an image
images List images
import Import the contents from a tarball to create a filesystem image
info Display system-wide information
inspect Return low-level information on Docker objects
kill Kill one or more running containers
load Load an image from a tar archive or STDIN
login Log in to a Docker registry
logout Log out from a Docker registry
logs Fetch the logs of a container
pause Pause all processes within one or more containers
List port mappings or a specific mapping for the container
List containers
Pull an image or a repository from a registry
Push an image or a repository to a registry
Rename a container
restart Restart one or more containers
rm Remove one or more containers
rmi Remove one or more images
run Run a command in a new container

save Save one or more images to a tar archive (streamed to STDOUT by default)

search Search the Docker Hub for images

start Start one or more stopped containers

stats Display a live stream of container(s) resource usage statistics

stop Stop one or more running contailners

tag Create a tag TARGET_IMAGE that refers to SOURCE_IMAGE

top Display the running processes of a container

unpause Unpause all processes within one or more containers

update Update configuration of one or more containers

version Show the Docker version information

wailt Block until one or more containers stop, then print their exit codes

TUTORIAL 7

Linux performance benchmarks

® stress-ng
100s of CPU, memory, disk, network stress tests

Sysbench
Used in tutorial for memory stress test

TCSS562: Software Engineering for Cloud Computing [Fall 2018]

November 19, 2018 School of Engineering and Technology, University of Washington - Tacoma

L15.34

Slides by Wes J. Lloyd

4/26/2018

L15.17

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-

Tacoma

QUESTIONS

TCSS562: Software Engineering for Cloud Computing [Fall 2018]

povembergO2 0% School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

4/26/2018

L15.18

