TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

TCSS 562:
SOFTWARE ENGINEERING ,
FOR CLOUD COMPUTING _I

Containerization

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

Credit: some content based on Salman A. Baset, [BM: WOC 2 E — Container Security

4/26/2018

FEEDBACK - 11/16

= Kernel Based Virtual Machines
= Integrate the virtualization hypervisor directly into the Linux kernel
= Allows host machine to boot a real 0S directly
= Host OS is no longer a virtualized guest (domO XEN)
® Interrupts and Timers
= Last aspect to have HW level support to virtualization

= Paper: “Achieving High Resolution Timer Events in Virtualized
Environment” Plos One Journal article (2014)
= https://journals.plos.org/plosone/article/file?id

one.0130887&type=printable

= Describes problems with achieving reliable timer emulation with
virtual machines

TCSS562: i ing for Cloud C i 2018]
R T L 2005 e S BT T N e o e ; T

= 0S: Linux Gentoo 3.17.8 host & guest 0S

= Tested hypervisors:
= VMWare Player 6.0
= Virtual Box 4.3.18 (2018 release is at 5.2)
= KVM with Linux 3.17.8 kernel PLOS o
= Xen 4.5

ACHIEVING HIGH RESOLUTION TIMER
EVENTS IN VIRTUALIZED ENVIRONMENT

= HW: Intel E5645 2.4 GHz (old 2010 CPU, circa 15t/2"¥ gen EC2)

TCS5562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineeri iversi i it

November 19, 2018
chnology, y

TIMER INTERRUPTS VIRTUALIZATION O/H

= Experiments to establish stability of timer events .
Mean Std. De! Emulation

timer setting = 100ps idle system VMWare is slow
VirtualBox
Qemu
KVM 114,087 0753
native Xen 100.221 0339
new timers 100.074 0118
Linux keme 100,103 Q070
= With 1/0 load (shows isolation) Mean Std. De Isolation
timer sefting = 100us system with VMWare 485 224 T Is poor
ey VirtualBox 156717 13723
Qemu 77905, 80585
KM 119.712 9.869
native Xen 105312 17797
new fimers 100.151 0.168
Linux kamel 101.454 8340

= Suspect XEN is using paravirtual timer interrupts (2014)

TCSS562: i ing for Cloud C i 2018]
R Sehoslof Enineenng andTechnokoeyjUnvesH ; Tecoma

OBJECTIVES

=Term project questions
= Tutorial #6 - Serverless Database

= Containerization

= Tutorial #7 - Intro to Docker Containerization

TCS5562: Software Engineering for Cloud Computing [Fall 2018]
e Fl ‘

November 19, 2018
chnology, y

Tacoma

uss

CONTAINERIZATION

TCS8562: Software Engineering for Cloud Computing [Fall 2018]
e School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

L15.1

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-

Tacoma

4/26/2018

MOTIVATION FOR CONTAINERIZATION

= Containers provide “light-weight” alternative to full 0S
virtualization provided by a hypervisor

= Containers do not provide a full “machine”

= Instead use operating system constructs to provide “sand
boxes” for execution

= Linux cgroups, namespaces, etc.
= Containers can run on bare metal, or atop of VMs

e CEEEE /m
ofofojofo] oo e
ninjninininin H M| |V /

nfnlnininn/s ‘ :"?,I“. VNN \rMW 'I\ppln.muu

Host OS's bins/libs, —‘7 [H)pcrvlam mgmc]

Containers engine [Hardware

[Host0s . Type 1

L™ | Containers ¥
Hardware

Host 08
Hardware

Hypervisor/VM Type2

TCS5562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

November 19, 2018 | 1s7 ‘

CONTAINER PERFORMANCE

- LU FACTORIZATION PERFORMANCE

Performance data from IC2E 2015:
= Solve linear equations - matrix algebra | Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

30

528

MPFlops (higher is better)

NATIVE osv

Fig. 4. The value of Linpack results on each platform over 15 runs. This is
the particular case of N=1000.

November 19, 2018 TCSS562: ineering for Cloud C¢ i 2018] | Lss |

School of Engineering and Technology, University of Washington - Tacoma

CONTAINER PERFORMANCE

- Y-CRUNCHER: Pl CALCULATOR

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
S :

1800
GRKVM ‘ APer

17501 lapocker

1700 | |BLXC =

ENATIVE

1400

1350

1300
Computation Time Total Time

November 19, 2018 TCSS562: Soft‘ware.Engineering for Cloud Fom?u(ing [Fall 2018]
school of chnology, y Tacoma

CONTAINER PERFORMANCE - BONNIE++

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
250000 | A Performance Comparison

BKVM EDOCKER BLXC ENATIVE |

K]

f 150000

H

E 100000 N

£ NN

¥ N

H N

£ s ;s..,'\

E NN
N

77

L]
Block Output Block Input

Fig. 6. Disk Throughput achieved by running Bonnie+ (test file of 25 GiB)
Results for sequential writes and sequential read are shown,

TCSS562: ing for Cloud C 2018)
School of Engineering and Technology, University of Washington - Tacoma

us.10

November 19, 2018

WHAT IS A CONTAINER?

According to NIST (National Institute of Standards Technology)
= Virtualization: the simulation of the software and/or hardware
upon which other software runs. (800-125)

= System Virtual Machlne: A System Virtual Machine (VM) is a
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800-180 draft)

Operating System Virtualization (aka OS Container): Provide
multiple virtualized OSes above a single shared kernel (800-
190). E.g., Solaris Zone, FreeBSD Jails, LXC

= Application Virtuallzatlon (aka Application Containers): Same
shared kernel is exposed to multiple discrete instances (800-
180 draft). E.g., Docker (containerd), rkt

TCS5562: Software Engineering for Cloud Computing [Fall 2018] st
School of Engineeri iversi i T

November 19, 2018
Technology, y acoma

OPERATING SYSTEM CONTAINERS

= Virtual environments: share the host kernel

= Provide user space isolation

= Replacement for VMs: run multiple processes, services
= Mix different Linux distros on same host

Host OS
= Examples: LXC,
Ubuntu Ubuntu Ubuntu Ubuntu
OpenVZ, 14,04 14,04 404 14.04
. Container Container Container Container c Container
Linux Vserver,
BSD Jails,

Solaris zones

Ubuntu 14,04 image

Ubuntu 14,04 image

Identical OS containers Different flavoured OS containers

= Credit: https://bl oper,

TCSS562: ing for Cloud C 2018)
School of Engineering and Technology, University of Washington - Tacoma

November 19, 2018 us.12

Slides by Wes J. Lloyd

L15.2

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

APPLICATION CONTAINERS

= Designed to package and run a single service

= All containers share host kernel

= Subtle differences from operating system containers
= Examples: Docker, Rocket

= Docker: runs a single process on creation

= 0S containers: run many OS services, for an entire 0S

= Supports a micro-services architecture

application containers
= Supports horizontal and vertical scaling

= Create application containers for each component of an app

= DevOPS: developers can package their own components in

4/26/2018

TCS5562: Software Engineering for Cloud Computing [Fall 2018]

il e 2 AT 1 T RS o T e T o T

APPLICATION CONTAINERS - 2

= Container images are “layered”

= Base image: common for all components

= Add layers that are specific
for components, services teferences
as needed parent

= Layering promotes reuse image

= Reduces duplication of
data across images

TCSS562: i 2018)
School of Engineering and Technology, University of Washington - Tacoma

November 19, 2018 [EERTY

AUFS

= Union file system
= Copy-on-write

" https://medium.com/@nagarwal/docker-containers-
filesystem-demystified-b6ed8112a04a

= https://www.slideshare.net/jpetazzo/scalellx-Ixc-talk-1,

THREE-TIER ARCHITECTURE

Node.js
Postgres
* Node.js Nginx
* Postgres
+ Nginx

OS containers

* Meant to used as an OS - run multiple
services

+ No layered filesystems by default

« Built on cgroups, namespaces, native

App containers

+ Meant to run for a single service
+ Layered filesystems

« Built on top of OS container technologies
+ Examples - Docker, Rocket

TCS5562: Software Engineering for Cloud Computing [Fall 2018]

e SehoololEnsineerr s endlechnolo syl nvers Y iNes hinetonETecome

process resource isolation
+ Examples - LXC, OpenVZ, Linux VServer,
BSD Jails, Solaris Zones

TCSS562: ineering for Cloud C 2018)
School of Engineering and Technology, University of Washington - Tacoma

November 19, 2018 11516

CONTAINER ISOLATION

= |s the host isolated from application containers?

= Are application containers isolated from each

other?
Application
containers

Application
App | App containers
gins/is | Bins/tis

App | App
Container =
runtime Bins/libs. Bins/libs.

runtime

TCSS562: Software Engineering for Cloud Computing [Fall 2018]

sl e 2 | Sehoolof Engineern s andiechnolosyilnvers Y ciWes hinetonETecoms

LXC (LINUX CONTAINERS)

= QOperating system level virtualization

" Run multiple isolated Linux systems on a host
using a single Linux kernel

= Control groups(cgroups)
=Including in Linux kernels => 2.6.24

=Limit and prioritize sharing of CPU, memory,
block/network 1/0

ELinux namespaces
= Docker initially based on LXC

TCSS562: ineering for Cloud C 2018)
School of Engineering and Technology, University of Washington - Tacoma

November 19, 2018 11518

Slides by Wes J. Lloyd

L15.3

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-

Tacoma

LINUX KERNEL NAMESPACES

= Partitions kernel resources

= Processes see only their set of resources

= Provides isolation

= Namespaces are hierarchical

= Parent processes can see down the hierarchy
= 7 namespaces in Linux (cgroups not shown)

= Each process can only see resources associated
with the namespace, and descendent namespaces

TCS5562: Software Engineering for Cloud Computing [Fall 2018]

il e 2 AT 1 T RS o T e T o T

4/26/2018

NAMESPACES - 2 ‘ ey

PID USER PR NI VIAT _ RES _ SHA S KCPU SNEW _ TINE:

= Provides Isolatlon of 0S
entities for containers
= mnt: separate filesystems
= pild: independent PIDs; first process in container is PID 1
= jpc: prevents processes in different IPC
namespaces from being able to establish shared
memory. Enables processes in different containers
to reuse the same identifiers without conflict.
... provides expected VM like isolation...
= yser: user identification and privilege isolation
among separate containers
= net: network stack virtualization. Multiple loopbacks (lo)

= UTS (UNIX time sharlng): provides separate host and domain

TCSS562: i 2018)
School of Engineering and Technology, University of Washington - Tacoma

November 19, 2018 115.20

CONTROL GROUPS (CGROUPS)

= Collection of Linux processes
= Group-level resource allocation: CPU, memory, disk I/0, network I/0
" Resource limiting
= Memory, disk cache
= Prloritizatlion
= CPU share
= Disk I/0 throughput
" Accounting
= Track resource utilization
= For resource management and/or billing purposes
= Control
= Pause/resume processes
= Checkpointing > Checkpoint/Restore in Userspace (CRIU)
= https://criu.org

TCS5562: Software Engineering for Cloud Computing [Fall 2018]

e SehoololEnsineerr s endlechnolo syl nvers Y iNes hinetonETecome

CGROUPS - 2

= Control groups are hierarchical

= Groups inherent limits from parent groups

= Linux has multiple cgroup controllers (subsystems)
= |s /proc/cgroups

= “memory” controller limits memory use

™ ucpuacctn Controller accounts Eﬁ:]suirj!s name | hierarchy | num_cgroups | enabled
for CPU usage -
puace
blkio
memory B
= cgroup filesystem: pces
reezer
= /sys/fs/cgroup 'xﬁf_ce‘iem Z
= Can browse resource utilization ':_et_r%'
. ugel
of containers... pios it 98
TCSS562: i ing for Cloud C 2018]
R lSehoallof Engineenng andTech nology/Unrversity ofWashinaton i Tacoma ts22

2016 DOCKER SURVEY

= Docker application containers
= Leading containerization vehicle

80% <

o,

plan to us Dosker
migrate workloags

oy
4%
‘want application
porahiy sctoss
o

to
o cloud

b docker

62: ineering for Cloud C ing [Fall 2018]

Bt
otembe ROt School of Engineering and Technology, University of Washington - Tacoma

DOCKER EXECUTION ENVIRONMENTS

= (1) Original default Docker execution enviornment: LXC
= (2) Docker v0.9: libcontainer introduced (~2014)

= (3) Now runc (2015) .

= Provides Docker access to Linux Docker
container APIs B | | |
f f bvire e systemd-
= Execution drivers concept: l l mTwn

= Enable docker to leverage many 0S
containers as the exec environment
= OpenVZ, system-nspawn, libvirt-Ixc,

libvirt-sandbox, gemu/kvm,

selinux netfiker (8
capabilities —
BSD Jails, Solaris Zones, and chroot i

Linux

cgroups namespaces netlink

TCSS562: ineering for Cloud C 2018)
School of Engineering and Technology, University of Washington - Tacoma

November 19, 2018 11524

Slides by Wes J. Lloyd

L15.4

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-

Tacoma

4/26/2018

DOCKER

= Docker daemon “dockerd”
= Provides docker services to Linux

= Docker 1.11+ g

= Open Container Initiative

® June 2015: Industry standard s
; =

for container runtimes and
formats

= Ensure containers are portable
among different execution
environments (engines) &

Docker Crens
Docker Client-Server Architecture

= Credit: hitps://hack 55426

TCS5562: Software Engineering for Cloud Computing [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L

November 19, 2018

DOCKER - 2

R e T

Docker CLIUI

Runc and other OCI runtimes

Containerd Integration Architecture

= Docker CLI: interfaces with dockerd daemon

= Docker engine: dockerd daemon, interfaces with Containerd

= Containerd: simple daemon, interfaces with runc to manage
containers; CRUD interface for containers, images, volumes,
networks, builds; HTTP APl > Google RPC (gRPC) interface;

= runc: lightweight command-line tool for running containers;
Interfaces with Linux cgroups, namespaces; Runs an OCI
container

TCSS562: i 2018)
School of Engineering and Technology, University of Washington - Tacoma

526

November 19, 2018

DOCKER - 3

= Other Docker tools:
automatically provision
FEEEE) =]
docker hosts to
form a cluster

= Docker Swarm: Clusters multiple docker hosts together to
manage as a cluster.

= Docker Compose: Config file (YAML) for multi-container
application; Describes how to deploy and configure multiple
containers

= Docker architecture:

TCS5562: Software Engineering for Cloud Computing [Fall 2018]

e SehoololEnsineerr s endlechnolo syl nvers Y iNes hinetonETecome | us27

CONTAINER ORCHESTRATION

FRAMEWORKS

= Framework(s) to deploy multiple containers
= Provide container clusters using cloud VMs
ESimilar to “private clusters”

" Reduce VM idle CPU time in public clouds

= Better leverage “sunk cost” resources

= Compact multiple apps onto shared public cloud
infrastructure

= Generate to cost savings
" Reduce vendor lock-in

TCSS562: ineering for Cloud C 2018)
School of Engineering and Technology, University of Washington - Tacoma

November 19, 2018 11528

KEY ORCHESTRATION FEATURES

= Management of container hosts
® Launching set of containers
= Rescheduling failed containers
= Linking containers to support workflows
= Providing connectivity to clients outside the container cluster
= Firewall: control network/port accessibility
= Dynamic scaling of containers: horizontal scaling
= Scale in/out, add/remove containers
= Load balancing over groups of containers
= Rolling upgrades of containers for application

TCSS562: Software Engineering for Cloud Computing [Fall 2018]

Sehoolof Engineern s andiechnolosyilnvers Y ciWes hinetonETecoms | 12

November 19, 2018

CONTAINER ORCHESTRATION

FRAMEWORKS - 2

= Docker swarm
= Apache mesos/marathon
= Kubernetes

= Many public cloud provides moving to offer Kubernetes-as-
a-service

= Amazon elastic container service (ECS)
= Apache aurora

= Container-as-a-Service
= Serverles containers without managing clusters
= Azure Container Instances, AWS Fargate...

TCSS562: ineering for Cloud C 2018)
School of Engineering and Technology, University of Washington - Tacoma

1530

November 19, 2018

Slides by Wes J. Lloyd

L15.5

TCSS 562: SE for Cloud Computing [Fall 2018]
School of Engineering and Technology, UW-
Tacoma

4/26/2018

TUTORIAL #7

DOCKER, CGROUPS,
RESOURCE ISOLATION

TCSS562: Software Engineering for Cloud Computing [Fal
November 19, 2018 School of Engineering and Technology, University of Wast
Tacoma

DOCKER CLI

Docker CLI > Docker Englner (dockerd) > contalnerd - runc

Docker installation
Docker file

Docker run

Docker ps

Docker exec -it
Docker stop

November 19, 2018 1532

TCSS562: i for Cloud Computi 2018)
School of Engineering and Technology, University of Washington - Tacoma

attach Attach local standard input, output, and error streams to a running container

build Build an image from a Dockerfile
commit Create a new image from a container's changes

Copy files/folders between a container and tl

Create a new container

Deploy a new stack or update an existing stack

Inspect changes to files or directories on a container's filesysten

Get real time events from the rver

Run a command in a running container

Export a container's filesystem as a tar archive

show the history of an image

contents from a tarball to create a filesystem image
stem-wide information

Return low-level information on Docker objects

Kill one or more running containers

Load an image from a tar archive or STDIN

Log in to a Docker reg

Log out from a Docker re

Fetch the logs of a container

Pause all processes within one or more containers

List port mappings or a ific mapping for the container

List containers

Pull an image or a repository from a registry

Push an image or a repository to a registry

Rename a container

Restart one or more containers

Remove one or more contai

Remove one or more images

n a command in a new container

Save one or more images to a tar archive (streamed to STDOUT by default)

arch the Doc
Start one or more stopped containers
Display a live stream of container(s) resource usage statistics
Stop one or more running containers
Create a tag TARGET_IMAGE that r rs to SOURCE_IMAGE
Display the running processes of a container
Unpause all processes within one or more containers
of one or more containers
on information
Block until one or more containers stop, then print their

TUTORIAL 7

Linux performance benchmarks

stress-ng
100s of CPU, memory, disk, network stress tests

Sysbench
Used in tutorial for memory stress test

November 19, 2018 11534

TCSS562: i for Cloud Computi 2018)
School of Engineering and Technology, University of Washington - Tacoma

QUESTIONS

TCSS562: Software Engineering for Cloud Computing [Fall 2018]
School of Engineering and Technology, University of Washington -

November 19, 2018

Slides by Wes J. Lloyd

L15.6

