Google Cloud Functions

Group 5

Introduction

"Google Cloud Functions is a lightweight compute solution for developers to
create single-purpose, stand-alone functions that respond to Cloud events without
the need to manage a server or runtime environment.”

Google Cloud Functions is a Function as a Service (FaaS) computing platform
similar to AWS Lambda.

History: Who

Google is one of the largest internet-based companies with many innovations
under its belt, including:

PageRank, algorithm for meaningful web search

Translate, help people communicate

Maps, help people find their way

AutoComplete web search, only need to remember about half of what you're
looking for

Hown -

History: Why

Competition: Amazon has been the leader in Enterprise cloud solutions and
Google is attempting to gain market share.

Internet of Things: provide simple event-based computations for connected
devices with minimal power output.

Mobile Apps: provides scalable backend-support with optimization for Android
applications using Google Firebase.

History: How
e Betareleased March 2017 to compete against Amazon Lambda.
e General release was in July 2018.

The service evolved to support:

e Google Cloud storage Triggers
e Python (Originally only Node.js)
e Cloud SQL

Feature Summary

Google Cloud Functions is a FaaS platform.
FaaS provides a number of benefits over more traditional laaS platforms:

Allows you to easily deploy your code as single functions.
Infrastructure scaling is done automatically depending on demand.
No need to manage server software or virtual machines.

You are only charged when your functions are being used.

Other Features

Run functions in response to events
o Cloud Store: object creation, deletion, archiving and metadata updates.
o Firebase: DB, Storage, Analytics, Auth.
o Cloud Pub/Sub: Real time analytics and event processing.
o StackDriver Logging: Changes to logs can trigger functions.
Deploy function from Docker container with arbitrary runtime environment, dependencies
and Linux distribution.
Metrics for your functions can be viewed:
o Inthe GPC (General Compute Cluster) Console.
o Using StackDriver Monitoring.
o API Overview Page (basic call metrics).
StackDriver Debugger allows to inspect the state of a function.

Example Use Cases

Some use cases for Google Cloud Functions are:

Transform and aggregate data in response to storage events
Processing stream data with automatically scaling infrastructure
Batch jobs benefit from concurrent execution.

Use for backend services for mobile applications

Monitor Database changes to ensure quality standards

Tradition REST APls

Other Example Use Cases

Some more use cases for Google Cloud Functions include:

Sending notifications to users in your app without a server.
You can use to Google Cloud Functions in response to any Firebase events
which include: Databases, Messaging, and Crash Reporting.

e |OT sensors capable of sending events to a Google Cloud Function that sends

a text message to a homeowner if:
o The basement floods.
o A window is broken or a door is forced open.
o The smoke alarm goes off.

Technology Advantages

e Google Cloud Platform has a very well designed portal, this makes creating
and deploying functions easy.

e Integration with Firebase which is a popular web app and mobile deployment
platform.

e The Node.js Emulator allows developers to run, debug and deploy their
functions locally.

Technology Disadvantages

e |ate to market in March, 2017
o Compare this with November 2014 for Lambda and March 2016 for Azure Functions.

e Only supporting NodeJS and Python.
e Competitors offer support for many other languages.

Usability

e We all had very good first impressions.
o Creating and deploying a function was very easy.
m Creating “Hello World” takes only a few clicks.
o Google’s Cloud Console has an intuitive layout that looks good.
o No need to change the default permissions or create an API Gateway to use REST.

e Compared to using Java with AWS Lambda. Node.js is significantly simpler
and has fewer steps to get a function deployed and running.

Pricing Policy

Invocation
2 million free invocations.
$0.40 per million afterwards.

Memory Provision
400,000 GB-seconds free.

$0.0000025 per GB-s afterwards.

CPU Provision
200,000 GHz-seconds free.

$0.0000100 per GHz-s afterwards.

Provisioning Schemes

Memory CPU

128MB 200 MHz
256MB 400 MHz
512MB 800 MHz
1024MB 1.4 GHz
2048MB 2.4 GHz

Cost Example

Two instances running
continuously for 30 days
with a function execution
time of 100ms.

Calls: 51.84 million
Wall clock: 5,184,000 s

CPU: 0.8 GHz
Memory: 0.512 GB

CPU Consumption:

4,147,200 GHz-s

CPU Cost: $39.47

Memory Use: 2,654,208 GB-s
Memory Cost: $5.64
Invocations: 51,840,000 calls
Invocations Cost: $19.94

Total Cost: $ 65.04

Cost Comparison

Google Cloud Functions: 2 continuous threads for 30 days = $ 65.04
Google VM: 2-core VM continuous for 30 days = $ 47.88

e If your demand is sequential or continuous then the VM is cheaper.

e Cloud functions offer the benefit of horizontal scaling and no server
maintenance or downtime.

Conclusions

Google offers a very similar FaaS platform to AWS Lambda.
We found it to be easier to use compared to Lambda.

They give out $300 worth of credits to anyone who signs up so give it a try!

Demonstration: Google Cloud Console

@ console.cloud.google.com

@ Home - API Project - Google Cloud Platform

DASHBOARD

® Project info

Project name
API Project

Project ID

ACTIVITY

api-project-692688302945

Project number
692688302945

—> Goto project settings.

& Resources

(-+) Cloud Functions
4functions

= Trace

PI APIs H

Requests (requests/sec)

1AM

[d
api/request_count.consumed_api:REDUCE_SUM(api-
project-692688302945)

10017

- Goto APIs overview

/' CUSTOMIZE

& Google Cloud Platform status

Al services normal

-> Go'to Cloud status dashboard

Billing H

Estimated charges USD $0.00
For the billing period Nov 1 - 28,2018

> View detailed charges

@ Error Reporting H

No application errors in the last 24 hours

b3
5]

©

e <>lm
Google Cloud
Home

Cloud Functions

Source Repositories

‘@ App Engine

@ compueengine
@ Kubemetes Engine
() Cloud Functions
stomace

@ souble

% Duastore

© Home - A rfct - Gogle o

@0 e

© Google Cloud Platform status.
E—

5 Goto Coud staus dashbord
& Billing i
Estmated chages usosoon
Forthebtiogperiod Nov 1 28,2018
> View dested charges

@ Error Reporting g

Noapplcaton erors i heas 24 ours

Creating a Google Cloud Function

& console.cloud google.com ¢

) Cloud Functions - API Project - Google Cloud Platform i

=) Google Cloud Platform API Project v

& console.cloud.google.com

® Cloud Functions - AP Project - Gogle Cloud Pltform i

(] Cloud Functions

APIProject v Q & Create function

Google Cloud Platform

() Cloud Functions

© cassarcipher
@ functiont
© tunctionz

© helloword

Region
us contralt
s centralt
s centralt

r—

Overview
Tigger Runtme.
TP Nodejs6
HITP Nodejs 8 (Bets)
HITP Nodejs 8 (Bets)

wre

Nodejs 6

3 CREATE FUN

Memry allcated
256M8
256M8
256m8

256m8

CTION C REFRESH

Executed function
cacsarCipher
helloWord
helloword

helloWord

Lastdeployed
1126718, 1124 AM
11126718, 10:16 AM
1126718, 1159 A

126718, 1122 A

SHOW INFO PANEL
Name

‘ exampleFunction

Columns ~ Memory allocated

256 MB

Trigger
HTTP

URL
https://us-central1-api-project-
692688302945 cloudfunctions net/exampleFunction

Source code

@ Inline editor
2P upload
2ZIP from Cloud Storage
Cloud Source repository

Runtime

Nodejs 6

index s

package json

eve < [im} & console.cloud.google.com o

Writing and Deploying
your Function

[c3
=]

s

“ Responds to any HITP request.

* @param {!express:Request} req HITP request context.
* @param {lexpress:Response} res HITP response context.
“
! exports.caesarcipher = (req, res) => {

let message = req.body.message;
let offset = req.body.offset;

1 res.status(200).send(cipher(message, offset));

function cipher(text, offset) {

while (offset < 0) {
1 offset += 26;
¥

offset

£eset ¢ 26;
result

for (let i = 0; i < text.length; i++) {

2 let val = text.charCodert(i);
2

25 if (val >= 65 && val <= 90) {
2 val 4= offset;

7 if (val > 90) val = 26;
28)

2

30 if (val >= 97 && val <= 122) {
3 val 4= offset;

32 if (val > 122) val = 26;

)

result += String.fromCharCode(val);

return result;

Calling your Function =

Shell Script 3 B3 £ O 9 O
Language Run Stop Run Settings... View

callservice.sh il

eve < [is] & console.cloud google.com 2 o n|o

3 Cloud Functions - API Prject - Google Cloud Platform +

Google Cloud Platform

\P1 Project v Q @0 0 a

() Cloud Functions & Function details 7 e WOELETE @ CoPY VIEW LOGS

Tiggering event

ouput
Weat sttt o

Invoking Google Cloud Function

real 0me.157s
user 0mo.025s
sys 0mo.011s

CURL RESULT:
Mjqqt_Btwqi!

) Run Succeeded | Time 81 ms Symbol ¢ Tabs:4 ¢ | Line 13, Column 8

20

Google Cloud Shell

ece <] consale.cloud.google.com “ e o | a

@ Pt Prject - Google Cloud Plaiform

Google Cloud Platform

DASHBOARD ACTIVITY /' cusTOMIZE

Project info H I APls H & Google Cloud Platform status

oz|® |- x

(api-project-692688302945) 5 1

(api-project-692688302945)$ cd function:
£ (api-project-692688302945) 5 1

(api-project-692688302945)§ . /ca

(api-project-692688302945)§ [|

The Google Cloud Shell
can be used to work
with your functions.

Any Questions?

