
TCSS 562
Paper Presentation

Derek Chen, Milad Fotouhi
December 3, 2018

1

Background
● Serverless Computing: Design, Implementation, and Performance

○ 2017 IEEE international Conference on Distributed Systems
○ By: Paul R. Brenner, Garrett McGrath

● Main Goals
○ Benchmark performance of serverless platforms
○ Build a prototype that achieves best performance

● Related works
○ Serverless Computation with OpenLambda
○ Similarities in Design: Event driven, containers, dockers, handler,

lambda store, etc.
○ Differences in Design: Linux base, support python, focused on

scalability and flexibility

2

Motivation

● Growth of serverless
○ Event driven foundations
○ Cost of serverless
○ Scaling advantages

● Key Players:
○ Azure Functions
○ AWS Lambda
○ Google Cloud Functions
○ Apache OpenWhisk platform

● Major Developments
○ IOT applications: AWS Lambda@Edge
○ Single programming model across IOT

and Lambda: AWS Greengrass
○ Management of a large array of functions: AWS Step Functions

3

● Goal: improve the performance of serverless platforms and explore
platform designs while maintaining a simple implementation.

● The platform is implemented in .NET
○ Deployed to Microsoft Azure

● Components of implementation:
○ web service which exposes the platform’s public REST API
○ worker service which manages and executes function containers

● General Methodology
○ Web service discovers available workers through a messaging layer
○ Function metadata is stored in Azure Storage tables
○ Function code is stored in Azure Storage blobs

 Prototype Results LimitationsContainer

4

Serverless Prototype

Motivation

Prototype Design

 Prototype Results LimitationsContainer

5

Function Metadata

Function metadata is the source of truth and is defined by four fields:

1. Function Identifier - randomly generated GUID
2. Language Runtime - specifies the language of the function’s code.
3. Memory Size - The CPU cores assigned to a function’s container is set

proportionally to its memory size.
4. Code Blob URI - copied and zipped

then stored inside the blob

 Prototype Results LimitationsContainer

6

Function Execution
● Functions are executed by calling an ”/invoke” route off of

function resources on the REST API
● Execution begins in the web service which receives the

invocation calls and subsequently retrieves function
metadata from table storage

● Interaction between the web and worker services is
controlled through a shared messaging layer (cold queue,
warm queue)

● The web service first tries to dequeue a message from a
function’s warm queue

● If all workers are fully allocated with running containers,
the cold queue will be empty

 Prototype Results LimitationsContainer

7

● Workers manage unallocated memory
● When memory is reserved, a container name is

generated
● Each message in the queues is uniquely identifiable

and can be associated with a specific memory
reservation within a worker service instance

● How memory is allocated conservatively ?

 Prototype Results LimitationsContainer

Container Allocation

8

● How a container can be removed ?
○ When a function is deleted,
○ Is idle for an arbitrarily set period of 15 minutes,

removed and its memory reclaimed
● Worker services send new container allocations to the cold

queue if their unused memory exceeds the maximum
function memory size.

● Container expiration has implication
○ It is possible to dequeue an expired container from a

function’s warm queue
○ When web service sends the request, worker service

will return HTTP 404

 Prototype Results LimitationsContainer

Container Removal

9

● Platform uses Docker to run Windows Nano Server containers
○ Communicates with the Docker service through the Docker Engine API

● Custom containers are not built for each function in the platform, instead they
attach a read-only volume containing function code when starting the container

● Why this design has been chosen ?
○ Simpler to only manage a single image, attaching volumes is a fast

operation
○ Windows Nano Server container images are significantly larger than

lightweight Linux images
○ Affects both storage costs and start-up times

● Container’s execution handler
○ How it works

 Prototype Results LimitationsContainer

Container Image

10

● Evaluation
○ Measure the overhead introduced by the platforms
○ Performance tool deploys a Node.js test function to the different

services using the Serverless Framework
○ Invoke synchronously with HTTP events/triggers as supported by

the various platforms
○ Deployed within Microsoft Azure, with all platform tables,

queues, and blobs reside in a single Azure storage account
● Two Key Tests

1. Concurrency
2. Backoff

 Prototype Results LimitationsContainer

Performance Tests

11

● Measure performance of serverless platforms to
invoke a function at scale

○ Initially perform a single call
○ Every 10 seconds add an additional

concurrent call, up to a maximum of 15
concurrent requests

○ Count responses received per second, which
should increase with the level of concurrency

○ Repeat 10 times on each of the platforms
● The prototype demonstrates near-linear scaling

between concurrency levels 1 and 14, but sees a
performance drop at 15 concurrent requests.

 Prototype Results LimitationsContainer

Concurrency Test

12

 Prototype Results LimitationsContainer

Backoff Test

● Study the cold start times and expiration
behaviors of function instances

● Sends single execution requests to the test
functions at increasing intervals, ranging from
one to thirty minutes

○ Function containers expire after 15 minutes
of unuse

○ Execution latencies after 15 minutes show
the cold start performance of our prototype

● AWS Lambda and Google Cloud Functions
appear largely unaffected by function idling

○ Possible cause could be extremely fast container
start times or preallocation of containers

13

 Prototype Results LimitationsContainer

Limitations

Worker
Utilization

● Problem: over-allocation of worker resources
● Solution: increased transparency and methods

of synthesizing serverless computing loads

Asynchronous
Execution

● Problem: only support synchronous invocation
● Solution: store active executions in a set of

queues, add third service responsible for
monitoring status to guarantee execution

Warm Queues
● Problem: warm queue is a FIFO queue, which

is problematic for container expiration
● Solution: warm stacks w/ LIFO queue or cache

14

 Prototype Results LimitationsContainer

Future Work

Performance
Measures

● Problem: limited tests and metrics available
● Solution: better handling of network latencies,

clocking considerations, and runtimes

Security
● Problem: intersection of remote procedure

calls and general container security is risky
● Solution: assess the attack surface carefully

Windows
Containers

● Problem: doesn’t support Linux operations of
resource updating and container pausing

● Solution: perform updates on the function
rather than the container as a whole

15

Conclusion

● Growing adoption of serverless applications warrants the evaluation of
platform quality and the development of new techniques to maximize
potential of serverless computing

● Performance results are encouraging
○ Most platforms except Apache OpenWhisk show decent

concurrency
○ AWS Lambda and Google Cloud Functions demonstrated

excellent performance for the Backoff test
● Numerous limitations, but also promising avenues of future work

○ Language Runtime
○ Risks and Benefits

16

Q&A

Thanks!

17

