
TCSS 562: Software Engineering for Cloud Computing – Fall 2018
School of Engineering and Technology
University of Washington – Tacoma
http://faculty.washington.edu/wlloyd/courses/tcss562      
Instructor: Wes Lloyd

Term Project – Serverless Cloud Native Application
Version 0.1

Project Proposal Due Date: Friday October 19th, 2018 @ 11:59 pm
Project Presentation Date: Wednesday December 12, 11:00am – 1:05pm
Project Final Due Date: Friday December 14 @ 11:59 pm

Teams
TCSS 562 Term Projects will typically be conducted in 3-person teams.  The 
team should submit a single proposal.

Objective
To goal  for  the TCSS562 term project is  to  implement a serverless cloud native
application using the AWS Lambda serverless computing platform.  A predefined
project has been provided as an example.  Groups are free to adopt the predefined
project, or are welcome to propose their own serverless Lambda project that meets
the project criteria below.  In addition, groups may propose a Term Project that is not
related to building a serverless application as long as it involves prototyping design
alternatives  of  cloud  systems  and  includes  a  cost  and  performance  evaluation.
Project proposals are ultimately approved by the instructor.  Groups not planning to
implement the predefined project should plan to meet and discuss project ideas
with the instructor to ensure approval.

Project Criteria:

Projects should implement a cloud application using AWS Lambda.  The application
should  support  a  case  study  on  one  or  more  of  the  following:   Service
Composition/Architecture, “Switchboard” Architecture, Application Flow Control, or
Data Provisioning.   The goal of the case study is to contrast performance and cost
implications  of  serverless  application  implementation  alternatives  using  specific
input  data  as  examples.   Groups  may  implement  Lambda  applications  in  Java,
Node.JS, Python, or any language desired that is supported by the platform.
 
Types of applications may include:
*  Data transformation (as in the predefined project)
*  Statistics / Data Aggregation / Graph Generation
*  Image Processing / Transformation / Filtering
*  Machine Learning: For example, build an application using:

https://cs.stanford.edu/people/karpathy/convnetjs/ 

Service  Composition:  For  projects  that  investigate  service  composition,  the
application should have at least three separate services that perform a series of
operations on input data.  Individual Lambda functions serve to split operations into

Page 1 of 7

https://cs.stanford.edu/people/karpathy/convnetjs/
http://faculty.washington.edu/wlloyd/courses/tcss562


separate  stages.   At  least  one  stage  (service)  of  the  computation  must  take  a
significant  amount  of  time  to  compute  for  at  least  one  example  input  (~60-
seconds).  Ideally, the runtime of all services combined would exceed five minutes,
though this  may be  difficult  to  achieve.   It should  be  possible  to  compose  the
application in alternate ways:

Composition #1:  Service-A     Service-B     Service-C
Composition #2:  Service-A+Service-B-combo     Service-C
Composition #3:  Service-A     Service-B+Service-C-combo
Composition #4:  Service-A+Service-B+Service-C-combo

Service-A probably can’t be composed directly with Service-C because of the expected 
sequence of operations...Service-C would typically only operate on the output of Service-B…

“Switchboard” Architecture: In addition to combining service code, the notion of
a  “switchboard”  architecture  as  in  Composition  #4  can  be  explored.   For  a
“Switchboard” architecture, all service code is combined into a single deployment
package.  However, individual calls are made to perform function A, function B, and
function  C.   The  switchboard  architecture  minimizes  the  number  of  service
deployment packages by bundling all source code together into a single Lambda
function.  “Switchboard” code at the front of the service then map the inputs to
perform the requested processing using internal classes/methods.  Minimizing the
number of deployment packages is likely to alter the overall cost and performance
because of the serverless infrastructure freeze/thaw cycle.

Serverless Infrsatructure Freeze/Thaw:
We will talk about this later, but see this paper, section I. B. for a discussion:
http://faculty.washington.edu/wlloyd/papers/KeepAlive_submitted.pdf

Application Flow Control:  A case study on application flow control will compare
alternate methods to implement a sequence of service calls and their subsequent
data exchange for composition #1 above.

With a laptop-client:  The laptop calls all services synchronously and is responsible
for moving data to and from each of them:  A, then B, then C

Within Lambda:  A client makes an asynchronous call to Lambda Service A. Service
A then either calls Service B (1)  directly,  via the (2)  Simple Notification Service
(SNS) or using the (3) Simple Queueing Service (SQS) to trigger then next call.  At
the end of the calling sequence final results are retrieved by the original client from
the Simple Storage Service (S3) or an alternate location such as the Simple Queuing
Service (SQS). 
 
With AWS Step Functions:   AWS provides Step functions to define a workflow of
serverless functions.  A state machine is defined to capture the flow of execution
across a set of functions.

Data Provisioning:  Data can be provided to a Lambda Function as a standard 
payload (limited to 6MB), or via an alternate cloud service such as the Simple 
Storage Service (S3), or alternate cloud services such as Dynamo DB, Amazon 

Page 2 of 7

http://faculty.washington.edu/wlloyd/papers/KeepAlive_submitted.pdf


Aurora, Amazon RDS, etc.  The goal of a data provisioning case study is to examine 
implications for data transfer (up and down) when large data sizes are involved for 
serverless applications.  Projects in this category are likely to explore data transfer 
sizes exceeding 6MB.  

Predefined Project:
AWS Lambda ETL (Extract, Transform, Load) Data Pipeline

The  predefined  project  is  to  implement  a  multi-stage  ETL  pipeline  as  a  set  of
independent AWS Lambda services.  Those performing the predefined project will
then  specify  which  case  study  they  will  perform  such  as:   Service
Composition/Architecture, “Switchboard” Architecture, Application Flow Control, or
Data Provisioning.

Sales Database

Sales Data will be provided in CSV format.  As sample input we have versions up to
1.5 million rows and 179 MB uncompressed.  Data columns include:
Region text
Country text
Item Type text
Sales Channel text
Order Priority text
Order Date date
Order ID integer
Ship Date data
Units Sold integer
Unit Price float
Unit Cost float
Total Revenue float
Total Cost float
Total Profit float

Service 1 Data Transformations:

Service 1 includes either the CSV data directly, or a pointer to a CSV file in S3.

Service 1 retrieves CSV data from S3, or directly if provided in the data payload
(e.g. REST multipart), and performs transformations on the data.  

Service 1 transform and load:
1. Add column [Order Processing Time] column that stores an integer value 

representing the number of days between the [Order Date] and [Ship Date]
2. Transform [Order Priority] column:

L to “Low”
M to “Medium”
H to “High”
C to “Critical”

Page 3 of 7



3. Add a [Gross Margin] column.   The Gross Margin Column is a percentage 
calculated using the formula: [Total Profit] /  [Total Revenue].  It is stored as a 
floating point value (e.g 0.25 for 25% profit).

4. Remove duplicate data identified by [Order ID].  Any record having an a 
duplicate [Order ID] that has already been processed will be ignored.

Non-Switchboard Architecture:  Transformed data should be written out in CSV 
format and stored in Amazon S3 for retrieval by Service 2.

“Switchboard” Architecture:  Transformed data should be: (1) persisted locally as a 
CSV file under /tmp, (2) stored in memory, and (3) persisted to Amazon S3.  With 
the “Switchboard” Architecture all services share the same infrastructure.  When 
Service 2 is called, it may find the cached data in memory or under /tmp leftover 
from Service 1.  If the data is unavailable, it is requested from Amazon S3.  See 
article regarding data caching on AWS Lambda: 
https://medium.com/@tjholowaychuk/aws-lambda-lifecycle-and-in-memory-caching-
c9cd0844e072 

Scaling Scenario: If there is just 1 call to Service 1 to transform the data, but 10 
calls to Service 2 to load the data, with the “Switchboard” Architecture 1 call would 
find the data locally, and 9 calls will need to request the data from Amazon S3.  

Service 2 Data Load:

Service 2 requests include a pointer to the transformed CSV data in S3. 

Service 2 loads the data from the CSV file into a single table relational database.  
The table is keyed by the [Order ID] field which must be unique.  Duplicate rows 
should have been already filtered out by Service 1. 

Database:

There are several options for a “data” tier for our serverless application.  

Amazon Aurora is Amazon’s serverless database service.  Both a MySQL and 
PostgreSQL versions are supported.  Our ETL pipeline will perform an initial data 
transformation (S1), create a relational representation (S2), and then allow multiple 
read-only queries to be performed (S3).   Since queries in S3 are read-only, using an
external data service is not required.  

The instructor plans to investigate the use of a local database (Derby DB or SQLite) 
and provide example code if this works out.  The advantage is elimination of a 
dependency for an external data service for read-only queries.  This will keep 
everyone’s costs down.  The instructor will also/alternately provide Aurora example 
code of Lambda.  

Java’s Derby DB:
https://db.apache.org/derby/integrate/plugin_help/derby_app.html 

Page 4 of 7

https://medium.com/@tjholowaychuk/aws-lambda-lifecycle-and-in-memory-caching-c9cd0844e072
https://medium.com/@tjholowaychuk/aws-lambda-lifecycle-and-in-memory-caching-c9cd0844e072
https://db.apache.org/derby/integrate/plugin_help/derby_app.html


Groups can propose and adopt alternate backend database approaches and 
technologies for data storage and query processing here as part of their proposed 
case study.  Design of a serverless application’s data tier is likely to have a 
significant impact on overall performance and hosting costs.

For  using  a  local  file-based database  with  the  “Switchboard”  Architecture,  once
Service 2 loads data into a database, such as Derby-DB, the file can be (1) persisted
locally under /tmp in the serverless container for later use by Service 3.  For non-
switchboard architectures, Service 2, exports the Derby DB file to Amazon S3 for
retrieval and replication by Service 3.

Service 3 Filtering and Aggregation:

Service 3 requests will be in JSON format.  

Service 3 consumes the Derby DB (or Amazon Aurora) and performs meaningful 
queries to produce output in JSON array format.  Each row will be represented as a 
single JSON object in an array.  

Filtering and aggregation can be supported using SQL queries.

Each call to Service 3 will specify 1 or more columns to aggregate data on (GROUP 
BY), and 0 to many filters which involve including a WHERE clause to an SQL query 
to specfy column matching requests.  Aggregation involves adding a GROUP BY 
clause to an SQL query and using a function such as SUM(), AVG(), MIN(), MAX(), 
and COUNT().

If using a local DB, Service 3 begins by checking if there is a local Derby DB file 
saved.  If no file exists the master copy produced by Service 2 can be downloaded 
from Amazon S3 and cached to support Service 3 requests.

Service 3 will accept requests to filter the full data set by column:
- [Region]=“Australia and Oceania”   (example)
- [Item Type]=”Office Supplies”  (example)
- [Sales Channel]=”Offline”  (example)
- [Order Priority]=”Medium”  (example)
- [Country]=”Fiji”  (example)

Service 3 will support the following data aggregations by column.  
- Average [Order Processing Time] in days
- Average [Gross Margin] in percent
- Average [Units Sold]
- Max [Units Sold]
- Min [Units Sold]
- Total [Units Sold]
- Total [Total Revenue]
- Total [Total Profit]
- Number of Orders

Page 5 of 7



Service 3 outputs each row of output from a relational database query as a separate
JSON object in a JSON array.  The JSON objects include the data aggregation(s) 
based on specified filters.

For other project ideas, consult the TCSS 562 slides or instructor.

1  Project Proposal Requirements

[5% of project grade]

The following are key requirements of the project proposal:

Each team will submit a 1 to 2 page short project proposal description.

The proposal must identify:

1. The member names of the project group.
2. The name of the group project coordinator.  The project coordinator will be

responsible for scheduling and arranging group meetings and work sessions,
creating agendas for project check-ins for TCSS 562, and ensuring that tasks
are assigned to group members.

3. A description of the proposed project.  If conducting the predefined project,
this can simply be: “Our team will complete the predefined project.”.  If an
alternate serverless development project is proposed, a project description
should be included which describes how the project  will  meet  the project
criteria and serve as a good project for one of the proposed case studies:
Service  Composition/Architecture,  “Switchboard”  Architecture,  Application
Flow Control, or Data Provisioning.   If the project is not a serverless project,
the project description should describe the cloud systems evaluation that will
be performed involve a study of performance and cost.

4. The  proposal  should  then  list  which  case  study  is  planned  and  a  brief
description of how the work will be done.  Groups may list more than one
case study if planning to evaluate multiple design trade-offs.  Case studies
include  but  are  not  limited  to:   Service  Composition/Architecture,
“Switchboard” Architecture, Application Flow Control, or Data Provisioning.   

Serverless project implementations will be evaluated by the project group(s) using
the following evaluation criteria:

• average service turnaround (execution) time for each individual services
• average workflow turnaround time (seconds) for the complete sequence of

services: a→b→c
• hosting cost of processing a batch of requests for individual services
• hosting cost of processing a batch of requests for the complete sequence of

services: a→b→c
• scalability: performance with an increasing number of concurrent clients from

1 to 100 for example
• cold service performance: performance of service(s) on initial call after 45-

minutes of inactivity
• warm service performance: performance of service(s) that have been actively

used within the last 5-minutes

Page 6 of 7



If  available,  include  at  the  end of  your  proposal  any  references  to  websites  of
interest, or research papers that may help or relate to your proposed project.

Research paper searches can be supported using https://scholar.google.com.

2  Future Deliverables

The  final  project  will  involve  a  short  group  project  presentation  (5-10  minutes)
during the final exam session on Wednesday December 12th.  Requirements of the
final project presentation will be provided later on.

The final project will also involve a written report in the IEEE conference format.  In
the  project  report,  groups  will  describe  their  project  and  the  alternate  design
explored for the case study.  The report will describe benchmark testing results for
evaluation criteria listed above, and provide a cost / performance comparison for
performing batches of service calls (e.g. 1,000, 1,000,000 etc.)  Project reports will
also include a background and related work section to describe cloud technology
used and any relevant comparison studies.  Additional details and requirements for
the final project report will be provided later on.  

3  Project Check-ins  (10% of the TCSS 562 course grade)

There will be two or three “written” project check-ins throughout the quarter roughly
at two/three-week intervals. The project-checkins are grouped in the same category
as activities and quizzes for TCSS 562.  Groups are encouraged to meet with the
instructor before/after class, during office hours, or by scheduling an appointment to
seek clarification and for assistance.  

4  Submission Deadline

Project  proposals  should  be  submitted  in  PDF  format  on  Canvas  no  later  than
11:59pm on Friday October 19th.  Projects proposals will be approved or revisions
requested by class on Wednesday October 24th.  

Change History

Version Date Change
0.1 10/07/2018 Original Version

Page 7 of 7

https://scholar.google.com/

