

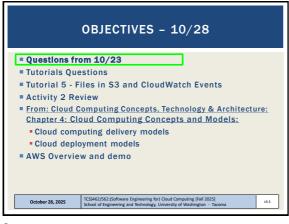
Thursdays:

- 6:00 to 7:00 pm - CP 229 & Zoom

Friday - *** THIS WEEK ***

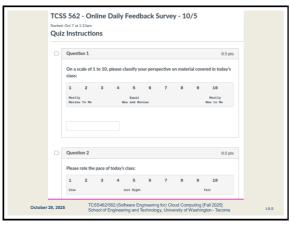
- 11:00 am to 12:00 pm - ONLINE via Zoom

Or email for appointment


Office Hours set based on Student Demographics survey feedback

- *- Friday office hours may be adjusted or canceled due meeting conflicts or other obligations. Adjustments will be announced via Canvas.

October 28, 2025

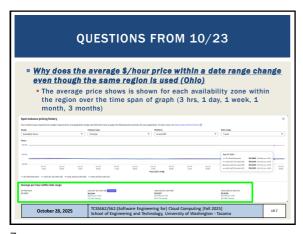

TCSG462/562:Software Engineering for Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

 $\mathbf{1}$

■ Daily Feedback Quiz in Canvas - Take After Each Class
■ Extra Credit
for completing
Analysements
Discussions
Zoon
Godes
Propit
Propi

3

5


MATERIAL / PACE

■ Please classify your perspective on material covered in today's class (43 respondents, 25 in-person, 18 online):
■ 1-mostly review, 5-equal new/review, 10-mostly new
■ Average - 7.19 (↓ - previous 7.32)

■ Please rate the pace of today's class:
■ 1-slow, 5-just right, 10-fast
■ Average - 5.49 (↑ - previous 5.24)

October 28, 2025

| TCSS462/562-(Software Engineering for) Cloud Computing (Fall 2025)
| School of Engineering and Technology, University of Washington - Taxoma

FEEDBACK - 2

Least clear point: With more VMs running, the multi-tenancy drops despite best efforts at isolation

The graph shows increasing multi-tenancy from left to right more VMs running...

What drops is the performance of our 4 benchmarking applications: sysbench (prime number gen), y-cruncher, pgbench, and iperf

TCSS42/562/567/bave Engineering for Cloud Computing [fall 2025] School of Engineering and Technology, University of Washington - Tacoma

7

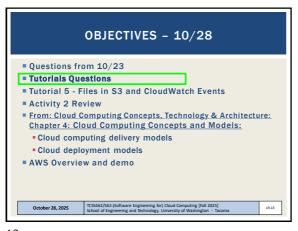
FEEDBACK - 3 What is "session state" in a client/server application? AWS Lambda functions are considered "stateless" ■ What is "stateless"? Each time a client calls an AWS Lambda function, requests are routed to a random function instance (worker) to process the call If a client makes multiple calls, there is no guarantee it will run in the same function instance each time AWS Lambda functions feature static global memory, but if client calls do not return to the same function instance, this memory can't be used to store session state Key Design Issue With Serverless Applications: How do you persist session state on AWS Lambda? October 28, 2025 L9.9 PRACTICE QUESTION 1

Which of the following can lead to performance problems for application hosting on cloud platforms?

A. Resource sharing/contention
B. Cloud consumer under-provisioning
C. Heterogeneous hardware
D. Cloud provider over-provisioning
E. All of the above

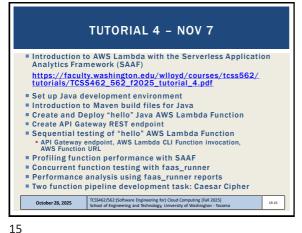
TCSS62/562/56/Worker Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

9


PRACTICE QUESTION 2

Which cloud computing delivery model often requires manual configuration to provide resource elasticity?

A. Platform-as-a-Service
B. Infrastructure-as-a-Service
C. Serverless Database
D. Function-as-a-Service
E. All of the above

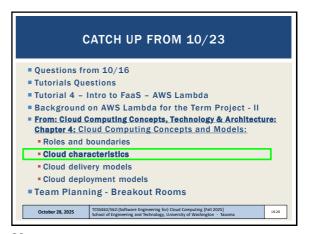

11 12

Slides by Wes J. Lloyd L9.2

TUTORIAL 3 - OCT 30 (TEAMS OF 2) Best Practices for Working with Virtual Machines on Amazon EC2 https://faculty.washington.edu/wlloyd/courses/tcss562 /tutorials/TCSS462_562_f2025_tutorial_3.pdf Creating a spot VM Creating an image from a running VM Persistent spot request Stopping (pausing) VMs ■ EBS volume types Ephemeral disks (local disks) Mounting and formatting a disk ■ Disk performance testing with Bonnie++ Cost Saving Best Practices October 28, 2025

13 14

OBJECTIVES - 10/28 Questions from 10/23 ■ Tutorials Questions Tutorial 5 - Files in S3 and CloudWatch Events Activity 2 Review From: Cloud Computing Concepts, Technology & Architecture: **Chapter 4: Cloud Computing Concepts and Models:** Cloud computing delivery models Cloud deployment models AWS Overview and demo October 28, 2025 L9.16


TUTORIAL 5 - TO BE POSTED Introduction to Lambda II: Working with Files in S3 and CloudWatch Events Customize the Request object (add getters/setters) • Why do this instead of HashMap ■ Import dependencies (jar files) into project for AWS S3 ■ Create an S3 Bucket Give your Lambda function(s) permission to work with S3 ■ Write to the CloudWatch logs Use of CloudTrail to generate S3 events Creating CloudWatch rule to capture events from CloudTrail Have the CloudWatch rule trigger a target Lambda function with a static JSON input object (hard-coded filename) Optional: for the S3 PutObject event, dynamically extract the name of the file put to the S3 bucket for processing TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022] School of Engineering and Technology, University of Washington - Tar October 27, 2022

OBJECTIVES - 10/28 Questions from 10/23 ■ Tutorials Questions ■ Tutorial 5 - Files in S3 and CloudWatch Events From: Cloud Computing Concepts, Technology & Architecture: **Chapter 4: Cloud Computing Concepts and Models:** Cloud computing delivery models Cloud deployment models AWS Overview and demo October 28, 2025

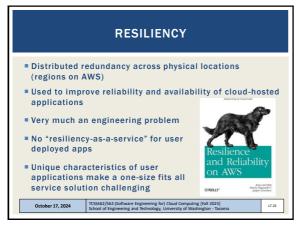
17 18

Slides by Wes J. Lloyd L9.3

20

CLOUD CHARACTERISTICS On-demand usage ■ Ubiquitous access ■ Multitenancy (resource pooling) Elasticity Measured usage ■ Resiliency Assessing these features helps measure the value offered by a given cloud service or platform October 17, 2024 L7.21

MEASURED USAGE Cloud platform tracks usage of IT resources ■ For billing purposes ■ Enables charging only for IT resources actually used Can be time-based (millisec, second, minute, hour, day) Granularity is increasing... Can be throughput-based (data transfer: MB/sec, GB/sec) Can be resource/reservation based (vCPU/hr, GB/hr) Not all measurements are for billing Some measurements can support auto-scaling ■ For example CPU utilization October 17, 2024 L7.22


21

EC2 CLOUDWATCH METRICS October 17, 2024

EC2 CLOUDWATCH METRICS October 17, 2024

23 24

Slides by Wes J. Lloyd L9.4

Elasticity is often provided using threshold based scaling. When can threshold based scaling (i.e. CPU utilization > 80%) under or over provision resources?

When the application is primarily (10 based, a CPU threshold into primarily income the met, to be into too lart to scaling.

When the current resource utilization (e.g. CPU) is temporarily honeaced as a result of exhaust factor (i.e. recover contention from what the table that does not contention to system demand.

When the current resource utilization (e.g. CPU) is temporarily honeaced as a result of exhaust factor (i.e. recover contention from what the table that does not content to system demand.

When an application will soon complet a parallel phase, before executing a largely a septemble phase.

All of the above

TCSS482/582 (Schhaure Engineering for) Cloud Computing [Fall 2025]

October 24, 2016.

25

When poll is active, respond at pollev.com/wesleytloyd641

EX Text WESLEYLLOYD641 to 22333 once to join

The scaling threshold of "when CPU utilization

> 80% scale up", is:

An application specific threshold

An application agnostic threshold

Start the presentation to see the content. For screen where submare, where the entire screen. Get help at paths accompany

OBJECTIVES - 10/28

Questions from 10/23
Tutorials Questions
Tutorial 5 - Files in S3 and CloudWatch Events
Activity 2 Review
From: Cloud Computing Concepts, Technology & Architecture: Chapter 4: Cloud Computing Concepts and Models:
Cloud computing delivery models
Cloud deployment models
AWS Overview and demo

27

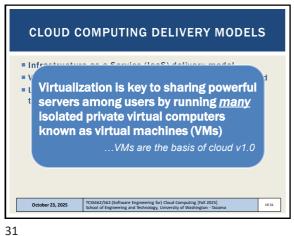
29

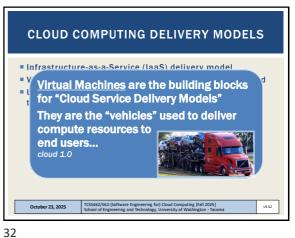
CLOUD COMPUTING DELIVERY MODELS

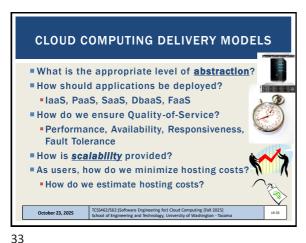
Infrastructure-as-a-Service (IaaS)
Platform-as-a-Service (PaaS)
Software-as-a-Service (SaaS)
Serverless Computing:
Function-as-a-Service (FaaS)
Container-as-a-Service (CaaS)
Other Delivery Models

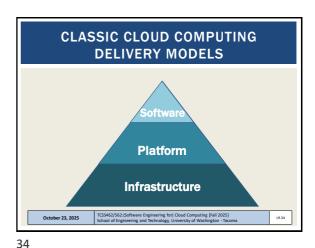
TSS462/562/567/Service/FaaS for Computing [Fail 2025]
About of Engineering for Cloud Computing [Fail 2025]
About of Engineering and Technology, University of Vacabungton - Paccons

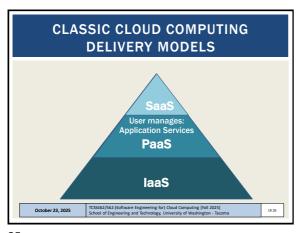
CLOUD COMPUTING DELIVERY MODELS

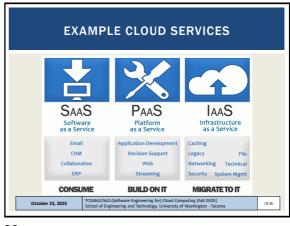

Infrastructure-as-a-Service (laaS) delivery model
Virtualization is a key-enabling technology of laaS cloud
Uses virtual machines to deliver cloud resources
to end users

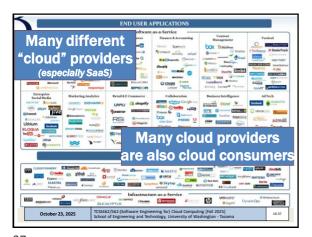

TCS5467/562:[Software Engineering for] Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Taccoma

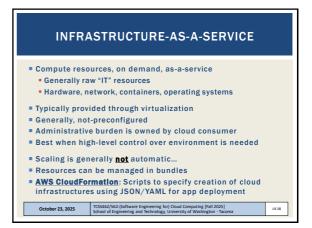

Slides by Wes J. Lloyd

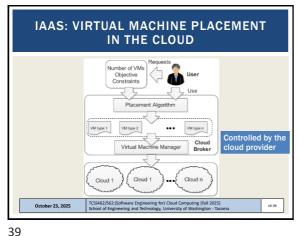

30

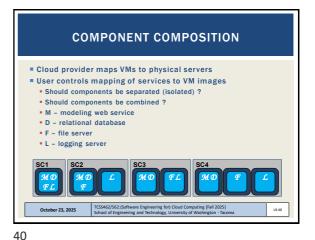

26

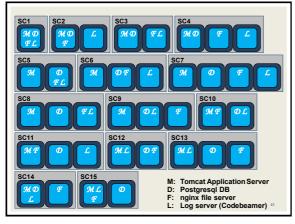


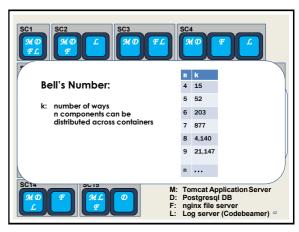




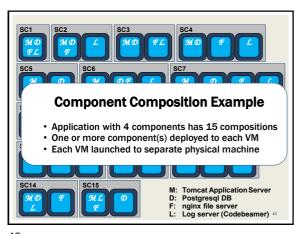


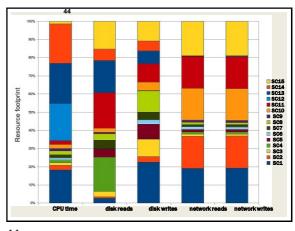

35 36

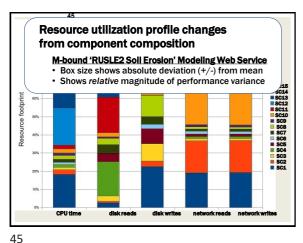


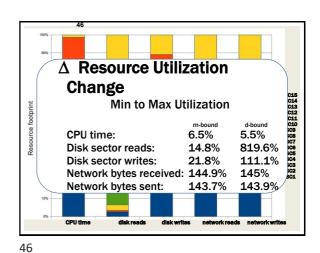


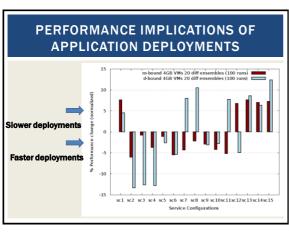
37 38

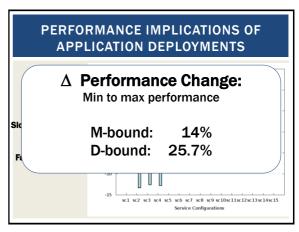


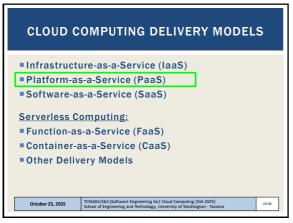


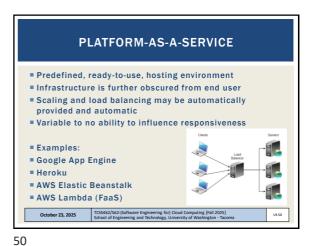


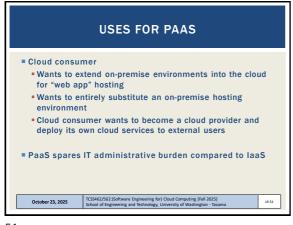

41 42




43 44




+3



47 48

49

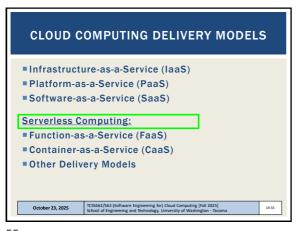
CLOUD COMPUTING DELIVERY MODELS

Infrastructure-as-a-Service (IaaS)
Platform-as-a-Service (PaaS)
Software-as-a-Service (SaaS)
Serverless Computing:
Function-as-a-Service (FaaS)
Container-as-a-Service (CaaS)
Other Delivery Models

ICSS462/562:Software Engineering for Coud Computing [Fall 2025]
School of Engineering and Technology, University of Washington-Tacoma

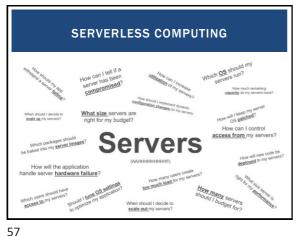
51

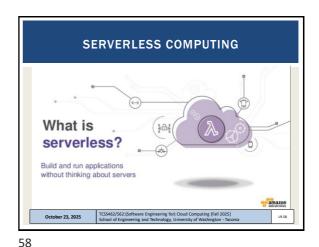
SOFTWARE-AS-A-SERVICE

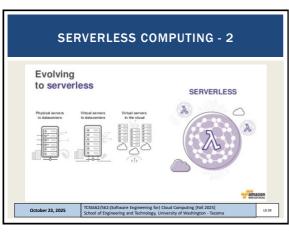

Software applications as shared cloud service
Nearly all server infrastructure management is abstracted away from the user
Software is generally configurable
SaaS can be a complete GUI/UI based environment
Or UI-free (database-as-a-service)

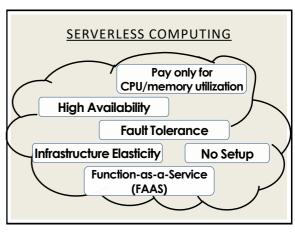
SaaS offerings
Google Docs
Goffice 365
Cloud9 Integrated Development Environment
Salesforce

Cloud Service Cloud Service Cloud Service Cloud Service Servic

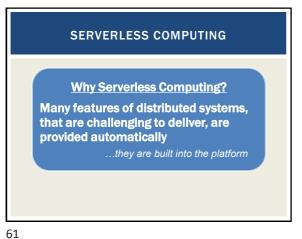

53 54

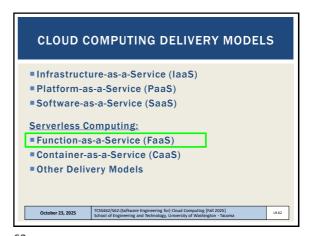

Slides by Wes J. Lloyd

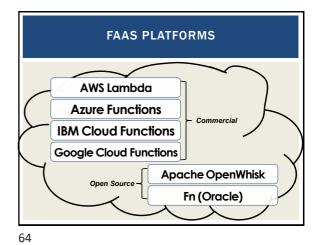


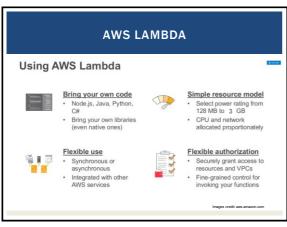


55 5

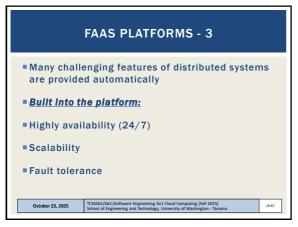


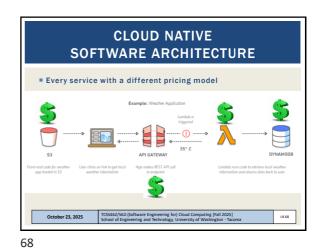



59 60



62





FAAS PLATFORMS - 2 New cloud platform for hosting application code Every cloud vendor provides their own: AWS Lambda, Azure Functions, Google Cloud Functions, IBM OpenWhisk Similar to platform-as-a-service Replace opensource web container (e.g. Apache Tomcat) with abstracted vendor-provided **black-box** environment TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Taco October 23, 2025

65 66

67

IAAS BILLING MODELS ■ Virtual machines as-a-service at ¢ per hour ■ No premium to scale: 1000 computers a 1 hour @ 1000 hours 1 computer Illusion of infinite scalability to cloud user ■ As many computers as you can afford ■ Billing models are becoming increasingly granular By the minute, second, 1/10th sec ■ Auction-based instances: Spot instances → October 23, 2025

PRICING OBFUSCATION

■ VM pricing: hourly rental pricing, billed to nearest second is intuitive...

■ FaaS pricing: non-intuitive pricing policies

■ FREE TIER:
first 1,000,000 function calls/month → FREE first 400,000 GB-sec/month → FREE

■ Afterwards: obfuscated pricing (AWS Lambda):
\$0.000002 per request
\$0.000002 bt rent 128MB / 100-ms
\$0.00001667 GB / second

69

CLOUD COMPUTING DELIVERY MODELS

Infrastructure-as-a-Service (IaaS)
Platform-as-a-Service (PaaS)
Software-as-a-Service (SaaS)
Serverless Computing:
Function-as-a-Service (FaaS)
Container-as-a-Service (CaaS)
October 22, 2004

ICCSMG2/S62/Scfothware Engineering End Choud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Taccoma

WEBSERVICE HOSTING EXAMPLE

ON AWS Lambda
 Each service call: 100% of 2 CPU-cores 100% of 4GB of memory
 Workload: uses 2 continuous threads
 Duration: 1 month (30.41667 days)

Duration: 1 month (30.41667 days)

ON AWS EC2: Amazon EC2 c5.large 2-vCPU VM x 4GB

 c5.large:
 8.5¢/hour, 24 hrs/day x 30.41667 days

 Hosting cost:
 \$62.05/month

How much would hosting this workload cost on AWS Lambda?

October 22, 2024

 TCSM62/362:Software Engineering for) Cloud Computing [Fall 2025]

| TCSM62/362:Software Engineering for) Cloud Computing [Fall 2025]

72

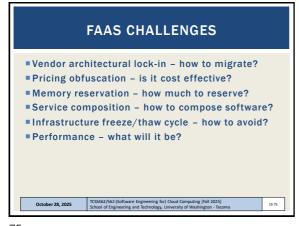
70

71 72

FAAS PRICING

Break-even point is the point where renting VMs or deploying to a serverless platform (e.g. Lambda) is exactly the same.

Our example is for one month


Could also consider one day, one hour, one minute

What factors influence the break-even point for an application running on AWS Lambda?

October 28, 2025

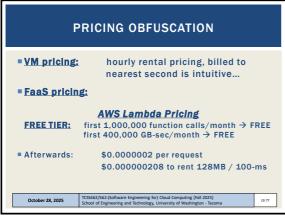
TCCS462/562/Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

73

VENDOR ARCHITECTURAL LOCK-IN

■ Cloud native (FaaS) software architecture requires external services/components

Example: Weather Application
Client


Lambda in Engaged

APP DATEWAY

Frent-end code for weather application and return date for weather application and return date for weather application and returns date load to user local to endoord.

Increased dependencies → increased hosting costs

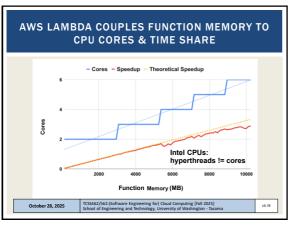
75

MEMORY RESERVATION
QUESTION...

Lambda memory
reserved for functions

UI provides text box
formerly "slider bar" to
set function's memory

Resource capacity (CPU,
disk, network) coupled to
slider bar:
"every doubling of memory,
doubles CPU..."


But how much memory do FaaS functions require?

ICSS467/562/Soft/swee Engineering fool Coud Computing (Fall 2025)
School of Engineering and Technology, University of Washington - Tacona

77 78

Slides by Wes J. Lloyd L9.13

74

SERVICE COMPOSITION

How should application code be composed for deployment to serverless computing platforms?

Client flow control, 4 functions 3 functions 3 functions

Recommended practice:
Decompose into many microservices

Platform limits: code + libraries ~250MB Performance

How does composition impact the number of function invocations, and memory utilization?

9

79

Unused infrastructure is deprecated
 But after how long? (varies by platform)

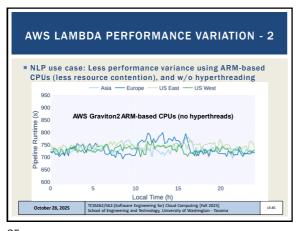
Infrastructure: microVMs (on AWS Lambda), containers on some platforms

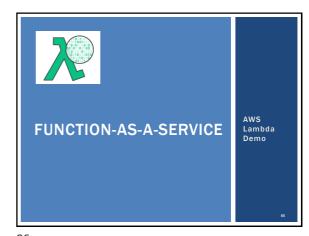
COLD
 Code image - built/transferred to physical host & cached

WARM
 Host has local code cache - create function instance (microVM) on host

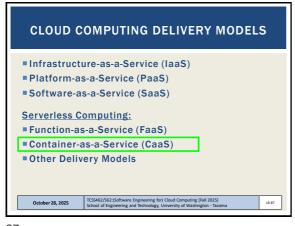
HOT
 Function instance ready to use

81


FACTORS IMPACTING PERFORMANCE OF FAAS COMPUTING PLATFORMS


Infrastructure scaling/elasticity
Resource contention (CPU, network, memory caches)
Hardware heterogeneity (CPU types, hyperthread, etc)
Load balancing / provisioning variation
Infrastructure retention: COLD vs. WARM
Infrastructure freeze/thaw cycle
Function memory reservation size
Application service composition

83 84

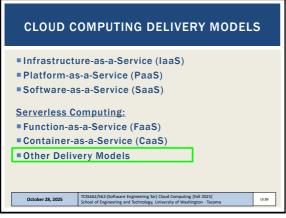

Slides by Wes J. Lloyd

80

85 86

CONTAINER-AS-A-SERVICE

Cloud service model for deploying application containers (e.g. Docker containers) to the cloud

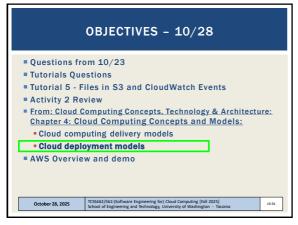

Deploy containers without worrying about managing infrastructure:
Servers (virtual machines)
Or container orchestration platforms
Container platform examples: Kubernetes, Docker swarm, Apache Mesos/Marathon, Amazon Elastic Container Service
Container platforms support creation of container clusters on the using cloud hosted VMs

CaaS Examples:
AWS Fargate
Google Cloud Run
Azure Container Instances

Cotober 28, 2025

TESS462/5621/Software Engineering for Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

87



OTHER CLOUD SERVICE MODELS

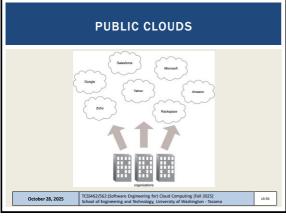
IlaaS
Storage-as-a-Service
PaaS
Integration-as-a-Service
SaaS
Database-as-a-Service
Testing-as-a-Service
Model-as-a-Service
Model-as-a-Service
Integration-as-a-Service
Testagrafication-as-a-Service
Testagrafication-as-a-Service
Testagrafication-as-a-Service
Testagrafication-as-a-Service
Integration-as-a-Service
Testagrafication-as-a-Service
Testagrafication-as-a-Service
Testagrafication-as-a-Service

89 90

Slides by Wes J. Lloyd L9.15

CLOUD DEPLOYMENT MODELS

Distinguished by ownership, size, access


Four common models
Public cloud
Community cloud
Hybrid cloud
Private cloud

Cotober 28, 2025

TCSS462/562:[Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

91

91

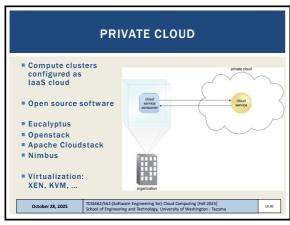
COMMUNITY CLOUD

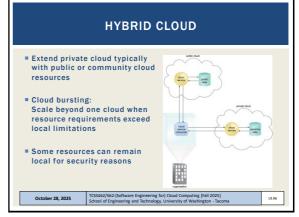
Specialized cloud built and shared by a particular community

Leverage economies of scale within a community

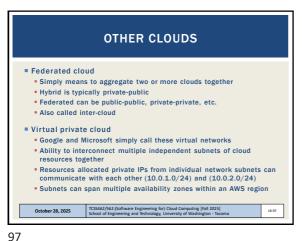
Research oriented clouds

Examples:
Bionimbus - bioinformatics
Chameleon
CloudLab

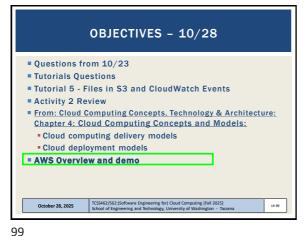

October 28, 2025


CSS62/S62/Scholure Engineering for Courd Computing [End 2025] school of Engineering and Technology, University of Washington - Taxoma

93


94

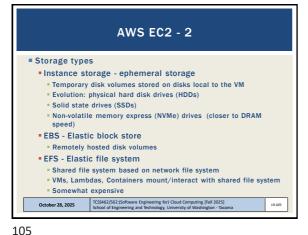
92



95 96

WE WILL RETURN AT 4:50 PM

98


LIST OF TOPICS AWS Management Console (VM) Instance Actions Elastic Compute Cloud (EC2) ■ EC2 Networking ■ EC2 Instance Metadata Instance Storage: Virtual Disks on VMs Service ■ Simple Storage Service (S3) ■ Elastic Block Store: AWS Command Line Interface (CLI) Virtual Disks on VMs ■ Elastic File System (EFS) ■ Legacy / Service Specific Amazon Machine Images (AMIs) ■ AMI Tools ■ EC2 Paravirtualization ■ Signing Certificates ■ EC2 Full Virtualization Backing up live disks Cost Savings Measures ■ EC2 Virtualization Evolution October 28, 2025 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

101 102

AWS EC2 ■ Elastic Compute Cloud ■ Instance types: https://ec2instances.info On demand instance – full price Reserved Instance – contract based where customer guarantees VM rental for a fixed period of time (e.g. 1 year, 3 years, etc.) Deeper discounts with longer term commitments Spot Instance – portion of cloud capacity reserved for low cost instances, when demand exceeds supply instances are randomly terminated with 2 minute warning Users can make diverse VM requests using different types, zones, regions, etc. to minimize instance terminations Developers can design for failure because often only 1 or 2 VMs in a cluster fail at any given time. They then need to be replaced. Dedicated host - reserved private HW (server) Instance families -General, compute-optimized, memory-optimized, GPU, etc. TCSS462/562: School of Eng October 28, 2025 oftware Engineering for) Cli eering and Technology, Univ L9.104

103 104

INSTANCE STORAGE Also called ephemeral storage Persisted using images saved to S3 (simple storage service) - ~2.3¢ per GB/month on S3 5GB of free tier storage space on S3 Requires "burning" an image Multi-step process: Create image files Upload chunks to S3 Register image Launching a VM Requires downloading image components from S3, reassembling them... is potentially slow VMs with instance store backed root volumes not pause-able Historically root volume limited to 10-GB max- faster imaging. October 28, 2025

103

ELASTIC BLOCK STORE ■ EBS provides 1 drive to 1 virtual machine (1:1) (not shared) EBS cost model is different than instance storage (uses S3) - ~10¢ per GB/month for General Purpose Storage (GP2) ~8¢ per GB/month for General Purpose Storage (GP3) • 30GB of free tier storage space ■ EBS provides "live" mountable volumes Listed under volumes **Data volumes:** can be mounted/unmounted to any VM, dynamically at Root volumes: hosts OS files and acts as a boot device for VM • In Linux drives are linked to a mount point "directory" Snapshots back up EBS volume data to S3 Enables replication (required for horizontal scaling) EBS volumes not actively used should be snapshotted, and deleted to save EBS costs... TCSS462/S62:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tac October 28, 2025

EBS VOLUME TYPES - 2

* Metric: I/O Operations per Second (IOPS)

* General Purpose 2 (GP2)

* 3 IOPS per GB, min 100 IOPS (<34GB), max of 16,000 IOPS

* 250MB/sec throughput per volume

* General Purpose 3 (GP3 - new Dec 2020)

* Max 16,000 IOPS, Default 3,000 IOPS

* GP2 requires creating a 1TB volume to obtain 3,000 IOPS

* GP3 all volumes start at 3000 IOPS and 125 MB/s throughput

* 1000 additional IOPS beyond 3000 is \$5/month up to 16000 IOPS

* 125 MB/s additional throughput is \$5/month up to 1000 MB/s throughput

* October 28, 2025

**CCS462/562/Software Engineering for) Cloud Computing [Fall 2025]

**School of Engineering and Technology, University of Washington - Tacoma

**ID-1000 IOPS

**TCS462/562/Software Engineering for) Cloud Computing [Fall 2025]

**School of Engineering and Technology, University of Washington - Tacoma

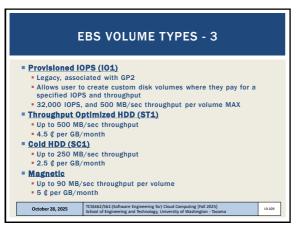
**ID-1000 IOPS

**TCS462/562/Software Engineering for) Cloud Computing [Fall 2025]

**School of Engineering and Technology, University of Washington - Tacoma

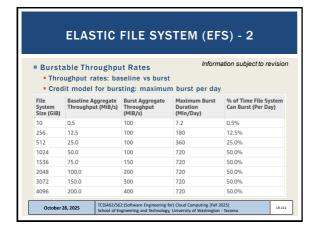
**ID-1000 IOPS

**TCS462/562/Software Engineering for) Cloud Computing [Fall 2025]

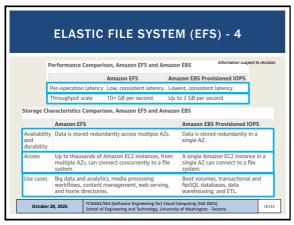

**School of Engineering and Technology, University of Washington - Tacoma

**ID-1000 IOPS

**TCS462/562/Software Engineering for) Cloud Computing [Fall 2025]


107 108

Slides by Wes J. Lloyd L9.18

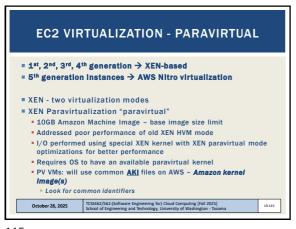

ELASTIC FILE SYSTEM (EFS) Network file system (based on NFSv4 protocol) Shared file system for EC2, Fargate/ECS, Lambda Enables mounting (sharing) the same disk "volume" for R/W access across multiple instances at the same time Different performance and limitations vs. EBS/Instance store Implementation uses abstracted EC2 instances ~ 30 ¢ per GB/month storage - default burstable throughput Throughput modes: Can modify modes only once every 24 hours Burstable Throughput Model: Baseline - 50kb/sec per GB Burst - 100MB/sec pet GB (for volumes sized 10GB to 1024 GB) Credits - .72 minutes/day per GB October 28, 2025 TCSS462/562: School of Eng L9.110

109 110

ELASTIC FILE SYSTEM (EFS) - 3 Information subject to revision Throughput Models Provisioned Throughput Model For applications with: high performance requirements, but low storage requirements Get high levels of performance w/o overprovisioning capacity ■ \$6 MB/s-Month (Virginia Region) Default is 50kb/sec for 1 GB, .05 MB/s = 30 ¢ per GB/month If file system metered size has higher baseline rate based on size, file system follows default Amazon EFS Bursting Throughput model No charges for Provisioned Throughput below file system's entitlement in Bursting Throughput mod Throughput entitlement = 50kb/sec per GB TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Taci October 28, 2025 L9.112

111

AMAZON MACHINE IMAGES


AMIS
Unique for the operating system (root device image)
Two types
Instance store
Elastic block store (EBS)
Deleting requires multiple steps
Deregister AMI
Delete associated data - (files in S3)
Forgetting both steps leads to costly "orphaned" data
No way to instantiate a VM from deregistered AMIS
Data still in S3 resulting in charges

Cotober 28, 2025

TICSS62/S62/S61/Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

113 114

Slides by Wes J. Lloyd L9.19

EC2 VIRTUALIZATION - HVM

**XEN HVM mode

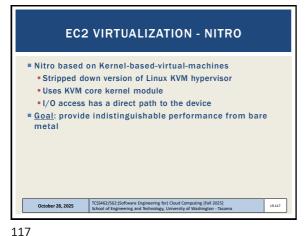
**Full virtualization - no special OS kernel required

**Computer entirely simulated

**MS Windows runs in "hvm" mode

**Allows work around: 10GB instance store root volume limit

**Kernel is on the root volume (under /boot)


**No AKIs (kernel images)

**Commonly used today (EBS-backed instances)

**TCSS42/562/56fware Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma

115 116

EVOLUTION OF AWS VIRTUALIZATION

From: http://www.brendangregs.com/blog/2017-13-29/aws-ec2-virtualization-2017.html

AWS EC2 Virtualization Typos

Index of the professional August Internation

Optional August Internation

Optional August Internation

Total Typos

Tot

117

INSTANCE ACTIONS

Stop
Costs of "pausing" an instance
Terminate
Reboot

Image management
Creating an image
EBS (snapshot)
Bundle image
Instance-store

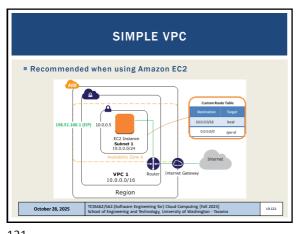
TCSS462/562/Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

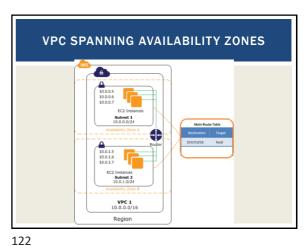
EC2 INSTANCE: NETWORK ACCESS

■ Public IP address
■ Elastic IPs
■ Costs: in-use FREE, not in-use ~12 €/day
■ Not in-use (e.g. "paused" EBS-backed instances)

■ Security groups
■ E.g. firewall

■ Identity access management (IAM)
■ AWS accounts, groups


■ VPC / Subnet / Internet Gateway / Router
■ NAT-Gateway


October 28, 2025

| ICSS462/562:Software Engineering for Cloud Computing [Fall 2025] | School of Engineering and Technology, University of Washington - Tacoma

119 120

Slides by Wes J. Lloyd L9.20

121 122

INSPECTING INSTANCE INFORMATION

EC2 VMs run a local metadata service
Can query instance metadata to self discover cloud configuration attributes

Find your instance ID:
cur1 http://169.254.169.254/
cur1 http://169.254.169.254/latest/
cur1 http://169.254.169.254/latest/
cur1 http://169.254.169.254/latest/meta-data/
cur1 http://169.254.169.254/latest/meta-data/
cur1 http://169.254.169.254/latest/meta-data/instance-id; echo

ec2-get-info command
Python API that provides easy/formatted access to metadata

October 28, 2025

INCS462/662/Software Engineering for) Cloud Computing [fail 2025]
School of Engineering and Technology, University of Washington - Tacoma

SIMPLE STORAGE SERVICE (S3)

**Key-value blob storage

**What is the difference vs. key-value stores (NoSQL DB)?

**Can mount an S3 bucket as a volume in Linux

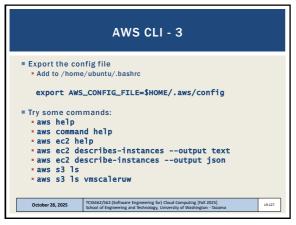
**Supports common file-system operations

**Provides eventual consistency

**Can store Lambda function state for life of container.

October 28, 2025

**TCSS62/SG2:Software Engineering for Cloud Computing [Fail 2025] School of Engineering and Technology, University of Washington - Tacoma


123

Creating access keys: IAM | Users | Security Credentials |
Access Keys | Create Access Keys

| Invasion | Invasion Company |

125 126

Slides by Wes J. Lloyd L9.21

127 128

AMI TOOLS Amazon Machine Images tools For working with disk volumes Can create live copies of any disk volume Your local laptop, ec2 root volume (EBS), ec2 ephemeral disk Installation: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ami-tools-commands.html AMI tools reference: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ami-tools-commands.html Some functions may require private key & certificate files October 28, 2025 Cicholof Engineering and Technology, University of Washington - Tacoma

Install openssl package on VM
generate private key file
\$openssl genrsa 2048 > mykey.pk
generate signing certificate file
\$openssl req -new -x509 -nodes -sha256 -days 36500 -key
mykey.pk -outform PEM -out signing.cert

Add signing.cert to IAM | Users | Security Credentials |
-- new signing certificate -
From: http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/setup-ami-tools.html?icmpid=docs_lam_console#ami-tools-createcertificate

| Cotaber 28, 2025 | TCSS462/562/Software Engineering for) Cloud Computing [Fall 2025]
| School of Engineering and Technology, University of Washington -Tacoma

129

PRIVATE KEY, CERTIFICATE FILE

These files, combined with your AWS_ACCESS_KEY and AWS_SECRET_KEY and AWS_ACCOUNT_ID enable you to publish new images from the CLI

Objective:
Configure VM with software stack
Burn new image for VM replication (horizontal scaling)

An alternative to bundling volumes and storing in S3 is to use a containerization tool such as Docker...

Create image script ...

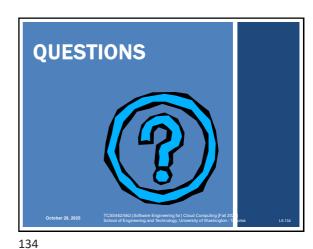
Create image script ...

INSERTIFICATE FILE

TO Decide Tension of the computing for a computing [stal 2025] | School of Engineering and Technology, University of Washington - Taccoma | 19.111

SCRIPT: CREATE A NEW INSTANCE STORE
IMAGE FROM LIVE DISK VOLUME

image=51
echo "surn image \$image"
echo "\$image" > image.id
mkdir /amr/tmp
AMS_KEY_DIR=/home/ubuntu/.aws
export EC2_UBL=http://ec2.amazonaws.com
export 53_UBL=http://ec2.amazonaws.com
export 53_UBL=http://ec2.amazonaws.com
export 53_UBL=http://ec2/.amazonaws.com
export 53_UBL=http://ec2/.amazonaws.com
export AMS_LEV_DIR_ID=/(pour account id)
export AMS_SCREFILEF*(pour account id)
export AMS_SCREFILEF*(pour aws access key)
export AMS_ACCESS_KEY*(pour access access k


131 132

Slides by Wes J. Lloyd L9.22

[Fall 2025]

TCSS 462: Cloud Computing TCSS 562: Software Engineering for Cloud Computing School of Engineering and Technology, UW-Tacoma

155