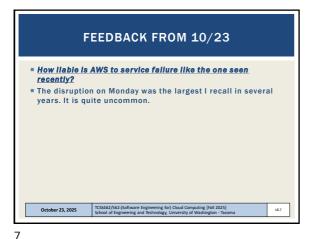
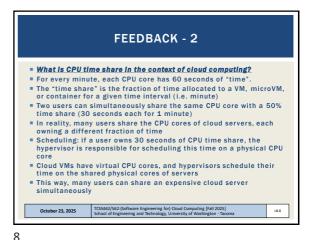


OFFICE HOURS - FALL 2025 Thursdays: 6:00 to 7:00 pm - CP 229 & Zoom Friday - *** THIS WEEK *** ■12:30 pm to 1:30 pm - ONLINE via Zoom ■Or email for appointment Office Hours set based on Student Demographics survey feedback * - Friday office hours may be adjusted or canceled due meeting conflicts or other obligations. Adjustments will be announced via Canvas. October 23, 2025 L8.2


ONLINE DAILY FEEDBACK SURVEY Daily Feedback Quiz in Canvas - Take After Each Class 1-point
 Extra Credit for completing online Class Activity 1 - Implicit vs. Explicit Parallelism
Available until Oct 11 at 11:59pm | Due Oct 7 at 7:50pm | -2-points Extra Credit for completing in-person in class 36 points possible 2 5% added to final course grade for TCSS 562 - Online Daily Feedback Survey - 9/30 (36/36) TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacor October 23, 2025 L8.4


3

MATERIAL / PACE Please classify your perspective on material covered in today's class (38 respondents, 26 in-person, 12 online): ew, 10-mostly new ■ Average - 7.32 (↑ - previous 7.00) Please rate the pace of today's class: ■ 1-slow, 5-just right, 10-fast Average - 5.24 (↓ - previous 5.44) October 23, 2025 L8.6

6

FEEDBACK - 3

When working on tutorial 3, I created instance but didn't connect to it. After a while the instance was gone w/o any action. Is that normal?

The AWS console shows there's no running instance and it can't find the instance created in "instances" section

For spot instances, when the cloud region and instance type is in demand, it is typical that the instance can be reclaimed within a few hours to a day

The positive here is the charges stop, once the instance terminates

FEEDBACK - 4

- How can the "garbage collection" of AWS Lambda function Instances be avoided?

- In 2018, working with a UWT MSCSS Capstone student, we wrote a paper that investigated alternatives to "keeping alive" function instances by pinging them at different intervals

- Paper: https://faculty.washington.edu/wiloyd/papera/wosc.camera_ready.pdf

- Afterwards AWS Lambda introduced "provisioned concurrency".

- Users can pay to keep a set number of function instances in the warm state.

- Charges for provision concurrency (x86_64 INTEL):

- \$0.0000041667 for every GB-second (WARM)

- \$0.000097222 for every GB-second (COMPUTE - this is discounted)

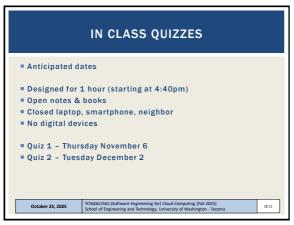
- Example 100 function instances @ 1.5 GB for 8 hours:

- 8 hours * 3600 seconds/hour = 28,800 seconds

- 100 function instances * 1.5 GB = 150 GB

- 150 GB * 28,800 seconds = 4,320,000 GB-seconds

- 4,320,000 * \$0.000041667 - \$18


- BONUS: ON EC2, what is the 8-hr coast for an Instance w/ 150B& -100 vCPUS?

- Cotober 23, 2025

- Cotober 23, 2025

- Cotober 23, 2025

9

OBJECTIVES - 10/23

* Questions from 10/21

* Tutorials Questions

* Tutorial 4 - to be posted...

* From: Cloud Computing Concepts, Technology & Architecture: Chapter 4: Cloud Computing Concepts and Models:

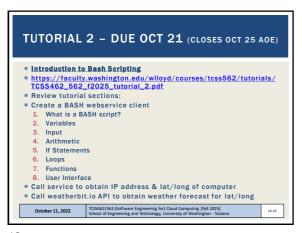
* Cloud computing delivery models

* Cloud deployment models

* AWS Overview and demo

* 2nd hour:

* Activity 2 - Intro to EC2


* Term Project Planning

October 23, 2025

**TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

11 12

Slides by Wes J. Lloyd L8.2

TUTORIAL 0

Getting Started with AWS

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_0.pdf

Create an AWS account

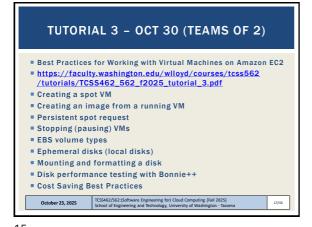
Create account credentials for working with the CLI

Install awsconfig package

Setup awsconfig for working with the AWS CLI

October 23, 2025

ITCSS42/562/Software Engineering for Cloud Computing [Fall 2025]

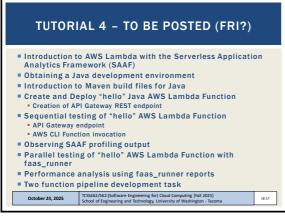

School of Engineering and Technology, University of Washington - Tacoma

ITCSS42/562/Software Engineering for Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma

ITCSS42/562/Software Engineering for Cloud Computing [Fall 2025]

13 14

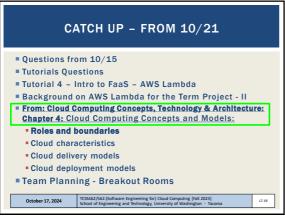


OBJECTIVES - 10/23

Questions from 10/21
Tutorials Questions
Tutorial 4 - to be posted...
From: Cloud Computing Concepts, Technology & Architecture:
Chapter 4: Cloud Computing Concepts and Models:
Cloud computing delivery models
Cloud deployment models
AWS Overview and demo
AWS Overview and demo
Titoshapping
Titoshapping
Titoshapping
Titoshapping
October 23, 2025

Titoshapping
Ti

15

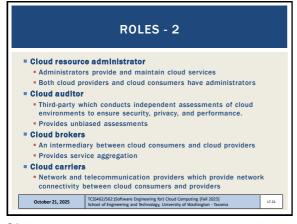

CLOUD COMPUTING:
CONCEPTS AND MODELS

Cotober 21, 2025

Cotober 21

17 18

Slides by Wes J. Lloyd L8.3


Cloud provider
 Organization that provides cloud-based resources
 Responsible for fulfilling SLAs for cloud services
 Some cloud providers "resell" IT resources from other cloud providers
 Example: Heroku sells PaaS services running atop of Amazon EC2

Cloud consumers
 Cloud users that consume cloud services

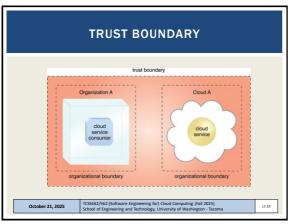
Cloud service owner
 Both cloud providers and cloud consumers can own cloud services
 A cloud service owner may use a cloud provider to provide a cloud service (e.g. Heroku)

Ctober 21, 2025

19

Organization A

Cloud A


cloud service

organizational boundary

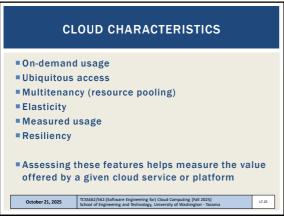
October 21, 2025

TCS462/SG2:Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

21

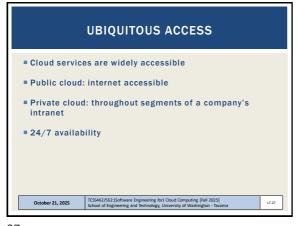
OBJECTIVES - 10/21

Questions from 10/16
Tutorials Questions
Tutorial 4 - Intro to FaaS - AWS Lambda
Background on AWS Lambda for the Term Project - II
From: Cloud Computing Concepts, Technology & Architecture:
Chapter 4: Cloud Computing Concepts and Models:
Roles and boundaries
Cloud characteristics
Cloud delivery models
Cloud deployment models
Team Planning - Breakout Rooms


October 21, 2025

TCSS462/S621/Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

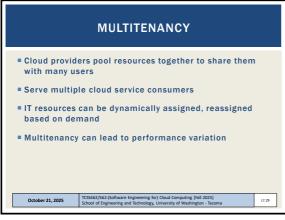
23 24


Slides by Wes J. Lloyd L8.4

20

25 26

CLOUD CHARACTERISTICS


On-demand usage
Ubiquitous access
Multitenancy (resource pooling)
Elasticity
Measured usage
Resiliency

Assessing these features helps measure the value offered by a given cloud service or platform

October 17, 2024

TCSS462/562/567/source Engineering for) Cloud Computing [rall 2025]
School of Engineering and Technology University of Vesibington-Tacoma

27

SINGLE TENANT MODEL

Cloud
Service
Service
Consumer

> Isolation <

Cloud
Service
B

Cloud
Service
Service
B

Cloud
Service
Service
B

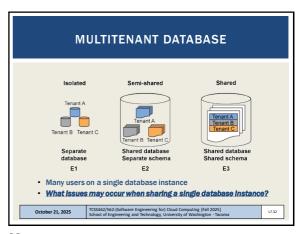
Cloud
Service
Service
Service
Service
Storage
Device A

Cloud
Service
Service
Storage
Device B

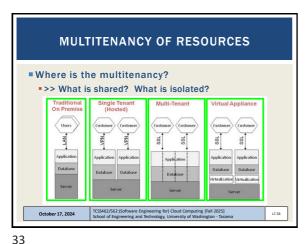
Cloud
Service
Storage
Device B

Cloud
Service
Storage
Storage
Device B

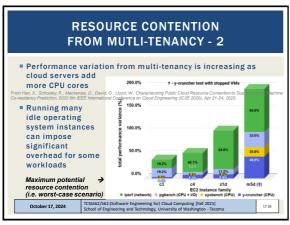

Cloud
Service
Storage
Storage
Device B


Cloud
Service
Service
Storage
Storage
Device B

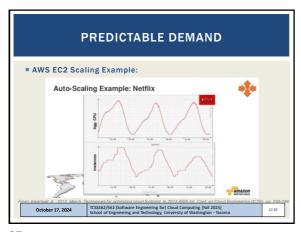
Cloud
Service
Storage
Storage
Device B


29 30

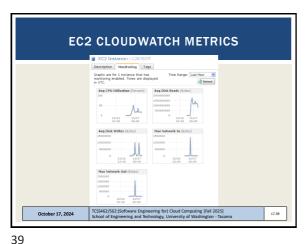
Slides by Wes J. Lloyd L8.5



31 32


RESOURCE CONTENTION FROM MUTLI-TENANCY Despite best efforts at isolation, co-resident VMs on a single cloud server running identical benchmarks simultaneously do not perform equally. Up to 48 VMs sharing same server!! October 17, 2024

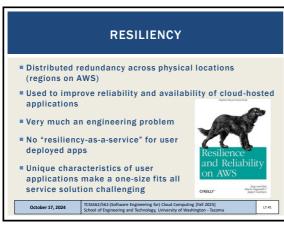
34



ELASTICITY Automated ability of cloud to transparently scale resources Scaling based on runtime conditions or pre-determined by cloud consumer or cloud provider Threshold based scaling CPU-utilization > threshold_A, Response_time > 100ms Application agnostic vs. application specific thresholds • Why might an application agnostic threshold be non-ideal? ■ Load prediction Historical models Real-time trends TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tac October 17, 2024

35 36

37 38



EC2 CLOUDWATCH METRICS

ON Museum Proved

Data Read Dynasis St. Data St. Da

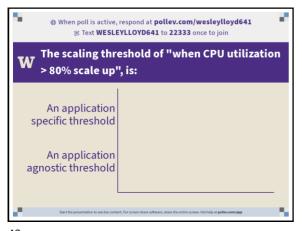
13

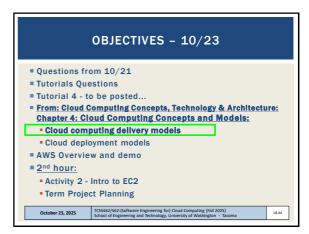
Elasticity is often provided using threshold based scaling. When can threshold based scaling (i.e. CPU utilization > 80%) under or over provision resources?

When the application is primarly 10 bound, a CPU threshold may merel be met, or he met too lide to scale up.
When the current resource utilization does not reflect future system demand.
When the current resource utilization (e.g. CPU) is temporally increased as a result of edernal factors i.e. resource contention from other teachs but does not correctle to system demand.

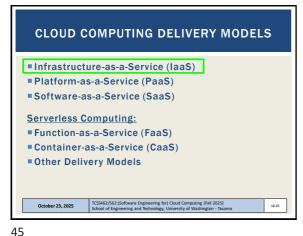
When an application will soon complete a parallel faste, before executing a largely sequential phase.

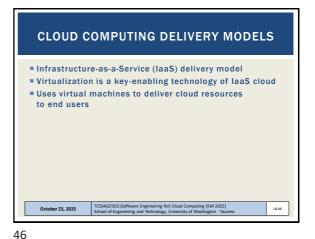
All of the above

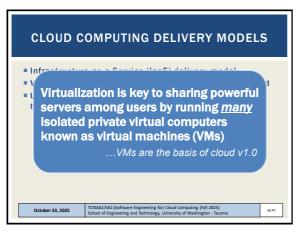

TCSS4627662_(Software Engineering for) Cloud Computing (Fail 2025)

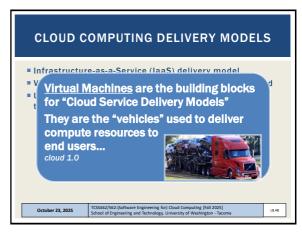

Cctober 24, 2816

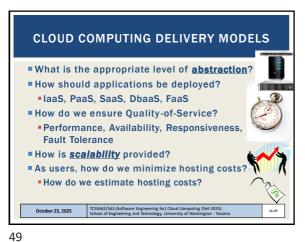
TCSS4627662_(Software Engineering for) Cloud Computing (Fail 2025)

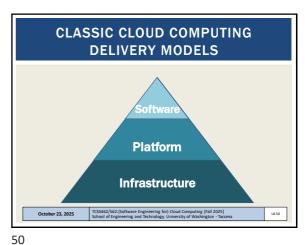

41 42

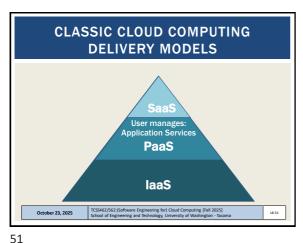

Slides by Wes J. Lloyd L8.7

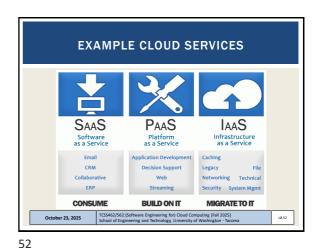


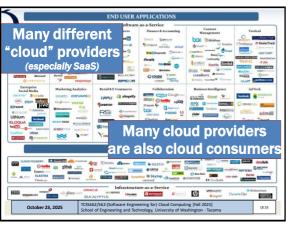

43 44

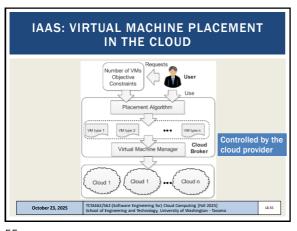


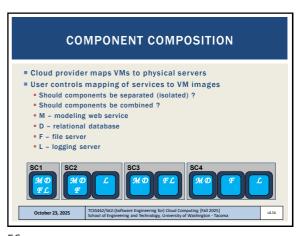

+3

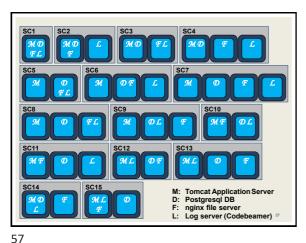


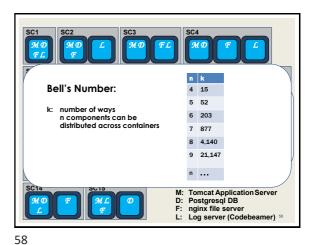


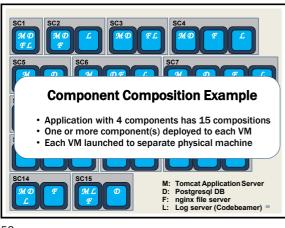

47 48

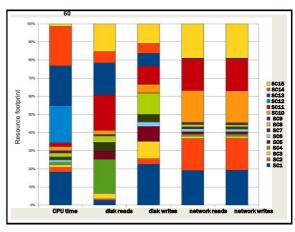




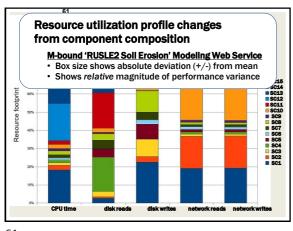

INFRASTRUCTURE-AS-A-SERVICE Compute resources, on demand, as-a-service Generally raw "IT" resources Hardware, network, containers, operating systems Typically provided through virtualization Generally, not-preconfigured Administrative burden is owned by cloud consumer Best when high-level control over environment is needed Scaling is generally not automatic... Resources can be managed in bundles AWS CloudFormation: Scripts to specify creation of cloud infrastructures using JSON/YAML for app deployment October 23, 2025

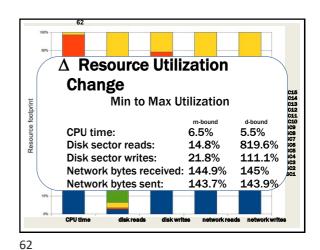

53 54





55 56



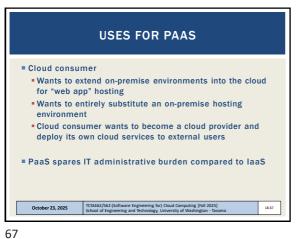


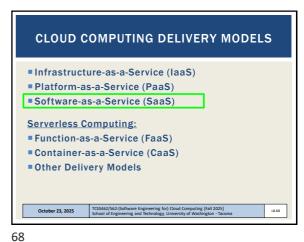
59 60

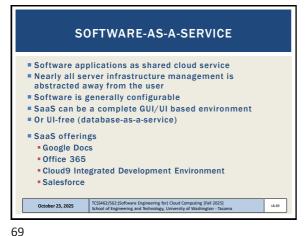
61

PERFORMANCE IMPLICATIONS OF APPLICATION DEPLOYMENTS Slower deployments **Faster deployments** sc1 sc2 sc3 sc4 sc5 sc6 sc7 sc8 sc9 sc10sc11sc12sc13sc14sc15

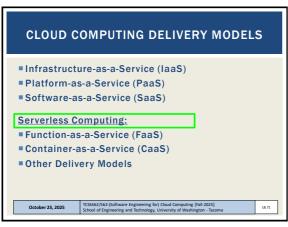
PERFORMANCE IMPLICATIONS OF APPLICATION DEPLOYMENTS **△ Performance Change:** Min to max performance Sid 14% M-bound: 25.7% D-bound: F sc1 sc2 sc3 sc4 sc5 sc6 sc7 sc8 sc9 sc10sc11sc12sc13sc14sc15

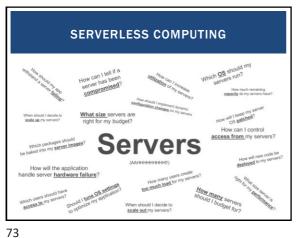

63

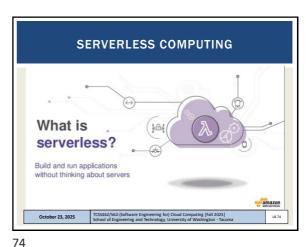

CLOUD COMPUTING DELIVERY MODELS ■Infrastructure-as-a-Service (IaaS) ■ Platform-as-a-Service (PaaS) ■ Software-as-a-Service (SaaS) **Serverless Computing:** ■ Function-as-a-Service (FaaS) ■ Container-as-a-Service (CaaS) Other Delivery Models October 23, 2025 L8.65 65

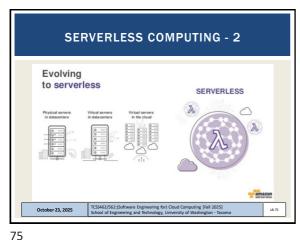

PLATFORM-AS-A-SERVICE Predefined, ready-to-use, hosting environment Infrastructure is further obscured from end user Scaling and load balancing may be automatically provided and automatic Variable to no ability to influence responsiveness Examples: ■ Google App Engine ■ Heroku ■ AWS Elastic Beanstalk AWS Lambda (FaaS) October 23, 2025 TCSS462/562:(S School of Engine

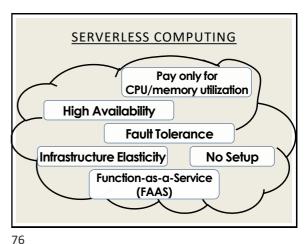
66

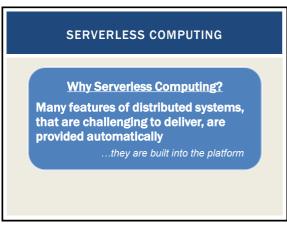

Slides by Wes J. Lloyd L8.11

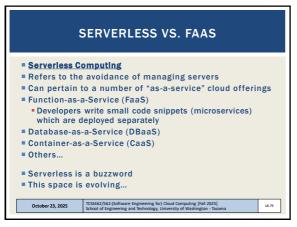

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacom

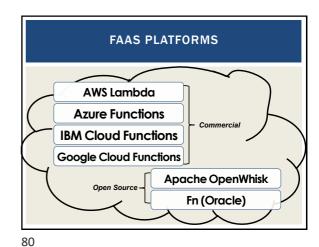



SERVERLESS COMPUTING **Introducing Cloud 2.0** Serverless Computing Deploy Applications Without Fiddling With Servers


71 72


Slides by Wes J. Lloyd L8.12





CLOUD COMPUTING DELIVERY MODELS ■Infrastructure-as-a-Service (IaaS) ■ Platform-as-a-Service (PaaS) ■ Software-as-a-Service (SaaS) **Serverless Computing:** ■ Function-as-a-Service (FaaS) ■ Container-as-a-Service (CaaS) Other Delivery Models October 23, 2025

77 78

79

AWS LAMBDA Using AWS Lambda Bring your own code Simple resource model Node.js, Java, Python, C# Select power rating from 128 MB to 3 GB Bring your own libraries (even native ones) CPU and network allocated proportionately Flexible use Flexible authorization Securely grant access to resources and VPCs · Synchronous or asynchrono Integrated with other Fine-grained control for voking your functions

FAAS PLATFORMS - 2

New cloud platform for hosting application code

Every cloud vendor provides their own:

AWS Lambda, Azure Functions, Google Cloud Functions, IBM OpenWhisk

Similar to platform-as-a-service

Replace opensource web container (e.g. Apache Tomcat) with abstracted vendor-provided black-box environment

Cotober 23, 2025

TCSS62/562/562/Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

81

FAAS PLATFORMS - 3

Many challenging features of distributed systems are provided automatically

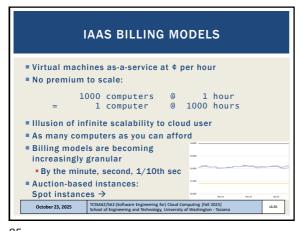
Built Into the platform:
Highly availability (24/7)
Scalability
Fault tolerance

October 23, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [fail 2025]
School of Engineering and Technology, University of Washington - Booms

11.53

CLOUD NATIVE SOFTWARE ARCHITECTURE

Every service with a different pricing model


Example: Weather Application
Lambda is Engaged
SS* C

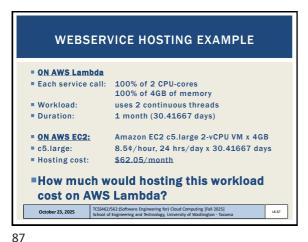
APP GATEMAY

APP And REST AP cell
Lambda is Engaged
Lambda is Engaged
Lambda is Engaged
APP Application
APP Application APP Color Colo

84

Slides by Wes J. Lloyd L8.14

PRICING OBFUSCATION


■ VM pricing: hourly rental pricing, billed to nearest second is intuitive...

■ FaaS pricing: non-intuitive pricing policies

■ FREE TIER:
first 1,000,000 function calls/month → FREE first 400,000 GB-sec/month → FREE

■ Afterwards: obfuscated pricing (AWS Lambda):
\$0.000002 per request
\$0.000002 per request
\$0.0000028 to rent 128MB / 100-ms
\$0.0001667 GB / second

85 86

PRICING OBFUSCATION

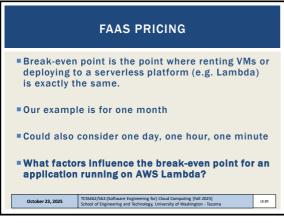
Assume 1 month = 30.41667 days (365d / 12)

Worst-case FaaS scenario = ~2.72x!

AWS EC2: \$62.05

AWS Lambda: \$168.91

Break Even: 3,702,459 GB-sec


@4GB ~10.71 days

BREAK-EVEN POINT: \$62.05 - \$0.33 (calls) = \$61.72

\$61.72/.00001867 GB-sec - ~3,702,459 GB-sec-mon/4GB/call
~925,614 sec or ~10.71 days

Point at which using FaaS costs the same as laas

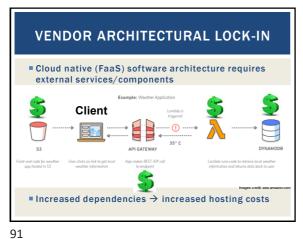
0/

FAAS CHALLENGES

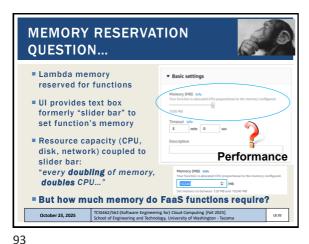
Vendor architectural lock-in – how to migrate?

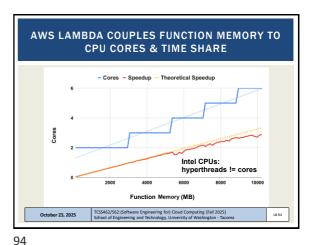
Pricing obfuscation – is it cost effective?

Memory reservation – how much to reserve?

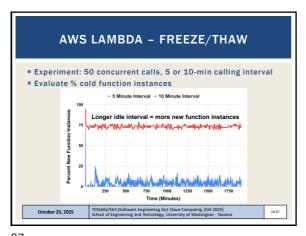

Service composition – how to compose software?

Infrastructure freeze/thaw cycle – how to avoid?


Performance – what will it be?


89 90

Slides by Wes J. Lloyd L8.15



SERVICE COMPOSITION How should application code be composed for deployment to serverless computing platforms? Client flow control, 4 functions Server flow control, Monolithic Deployment 3 functions Recommended practice: Decompose into many microservices Platform limits: code + libraries ~250MB Performance How does composition impact the number of function invocations, and memory utilization?

INFRASTRUCTURE FREEZE/THAW CYCLE · Unused infrastructure is deprecated • But after how long? (varies by platform) Infrastructure: microVMs (on AWS Lambda), containers on some platforms Performance Code image - built/transferred to physical host & cached Host has local code cache create function instance (microVM) on host · Function instance ready to use

95 96

FACTORS IMPACTING PERFORMANCE OF FAAS COMPUTING PLATFORMS

Infrastructure scaling/elasticity
Resource contention (CPU, network, memory caches)
Hardware heterogeneity (CPU types, hyperthread, etc)
Load balancing / provisioning variation
Infrastructure retention: COLD vs. WARM
Infrastructure freeze/thaw cycle
Function memory reservation size
Application service composition

97

99

FUNCTION-AS-A-SERVICE

AWS
Lambda
Demo

CLOUD COMPUTING DELIVERY MODELS

Infrastructure-as-a-Service (IaaS)
Platform-as-a-Service (PaaS)
Software-as-a-Service (SaaS)
Serverless Computing:
Function-as-a-Service (FaaS)
Container-as-a-Service (CaaS)
October 23, 2025


ICCS462/562:[Software Engineering for) Cloud Computing [Fail 2025]
School of Engineering and Technology, University of Machington - Taxonss

Liston

101 102

Slides by Wes J. Lloyd L8.17

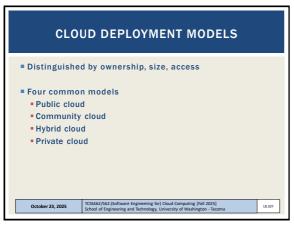
98

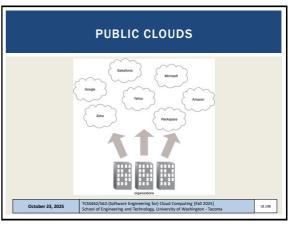
CLOUD COMPUTING DELIVERY MODELS

Infrastructure-as-a-Service (laaS)
Platform-as-a-Service (PaaS)
Software-as-a-Service (SaaS)
Serverless Computing:
Function-as-a-Service (FaaS)
Container-as-a-Service (CaaS)
Ottober 23, 2025

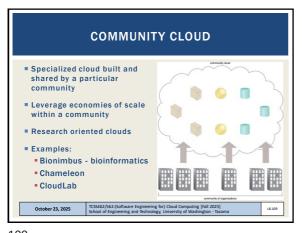
ICCS642/562/Software Engineering fol/ Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

103

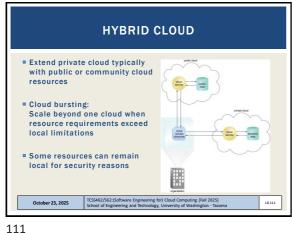

OBJECTIVES - 10/23

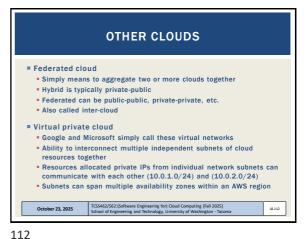

Questions from 10/21
Tutorials Questions
Tutorial 4 - to be posted...
From: Cloud Computing Concepts, Technology & Architecture: Chapter 4: Cloud Computing Concepts and Models:
Cloud computing delivery models
Cloud deployment models
AWS Overview and demo
2nd hour:
Activity 2 - Intro to EC2
Term Project Planning

October 23, 2025

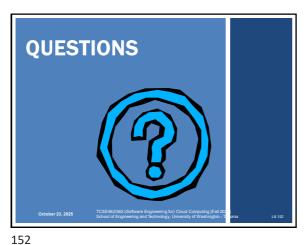

TCSS462/562:[Software Engineering for] Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma


105 106




107 108

109



OBJECTIVES - 10/23 Questions from 10/21 ■ Tutorials Questions ■ Tutorial 4 - to be posted... From: Cloud Computing Concepts, Technology & Architecture: **Chapter 4: Cloud Computing Concepts and Models:** Cloud computing delivery models Cloud deployment models AWS Overview and demo 2nd hour: - Activity 2 - Intro to EC2 Term Project Planning October 23, 2025

113 149

[Fall 2025]

TCSS 462: Cloud Computing TCSS 562: Software Engineering for Cloud Computing School of Engineering and Technology, UW-Tacoma

L8.20 Slides by Wes J. Lloyd