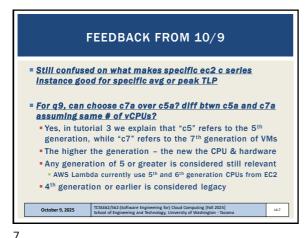

CSS LIFE AFTER GRADUATION SEMINAR EXTRA CREDIT OPPORTUNITY When: Wednesday, October 9, 12:30pm-1:20pm Where: Milgard Hall (MLG) 110 Is there life after graduating from CSS in SET? Yes! Dr. Donald Chinn and Andrew Frv will discuss the two main career paths after getting your bachelors degree: graduate school and industry. Whether you are a senior dreading the prospect of looking for a job or doing more school, or a junior who wonders what courses to take and how to get an internship, it is never too early (or late) to learn about what you can do now to prepare yourself for your life after ■ This session is also open to CSS MS students Extra credit: 3 additional points in the daily feedback category Enables 3 surveys to be missed, or for 23 out of 20 points for 2.3% grade bonus October 9, 2025 TCSS462/562:(S School of Engin ud Computing [Fall 2025] ersity of Washington - Tac

2

ONLINE DAILY FEEDBACK SURVEY Daily Feedback Quiz in Canvas - Take After Each Class 1-point
 Extra Credit for completing online Class Activity 1 - Implicit vs. Explicit Parallelism
Available until Oct 11 at 11:59pm | Due Oct 7 at 7:50pm | -2-points Extra Credit for completing in-person in class 36 points possible 2 5% added to final course grade for TCSS 562 - Online Daily Feedback Survey - 9/30 (36/36)TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacor October 9, 2025 L4.4


3

MATERIAL / PACE Please classify your perspective on material covered in today's class (43 responses, 32 in-person, 11 online): ■ 1-mostly review, 5-equal new/review, 10-mostly new **■ Average - 7.14** (**\(-** previous 7.24) Please rate the pace of today's class: ■ 1-slow, 5-just right, 10-fast ■ <u>Average - 5.09</u> (- previous 5.20) October 9, 2025 L4.6

6

Slides by Wes J. Lloyd L4.1

FEEDBACK - 2 Homogeneous and heterogeneous systems: how do these systems differ from each other in terms of real life usage? On the large public clouds, cloud services/platforms based on homogeneous hardware may be quite rare A service or platform implemented using identical hardware should have less performance variability AWS wants users to accept on average 10% performance variation: if avg runtime is 60 sec, acceptable runtime is 54 to 66 sec. What is message passing? Is Karatsuba's algorithm (a more efficient multiplication algorithm) considered data-level parallelism? No - this algorithm is considered task parallelism as the operations performed on the data are not the same TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tac October 9, 2025 L4.8

FEEDBACK - 3

Is there a benefit to having a low arithmetic intensity?

A program having low arithmetic intensity has:
Low work (W) - few computations
High r/w memory traffic (Q) - lots of fetching

In modern computers, performing computations is significantly faster than fetching data from main memory (RAM).
Processors execute billions of calculations per second
Time to retrieve data from RAM is a bottleneck that can cause the CPU to sit idle.
Computers use a tiered memory hierarchy with multiple levels of extremely fast, small, and expensive cache memory located between the CPU and the slower, larger, and cheaper main memory.

TCS462/562/SchWave Engineering for) Cloud Computing [Rall 2025]
School of Engineering and Technology, University of Washington -Tacoma

9

October 9, 2025

OBJECTIVES - 10/9

**Questions from 10/7

**Tutorlal 0, Tutorlal 1, Tutorlal 2, Tutorlal 3

**Term Project Proposal

**Cloud Computing - How did we get here? - part III (Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

**Graphics processing units

**Speed-up, Amdahl's Law, Scaled Speedup

**Properties of distributed systems

**Modularity

**Introduction to Cloud Computing - loosely based on book #1: Cloud Computing Concepts, Technology & Architecture

October 9, 2025

| ICSS462/S621/Software Engineering for] Cloud Computing [Fail 2025] | School of Engineering and Technology, University of Washington - Tacoma*

Please complete the ONLINE demographics survey:

We have received 42 responses so far.
>>> Random Drawing

https://forms.gle/QNUW2hUV7fR7BDmv7

Linked from course webpage in Canvas:

http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Taco AWS CLOUD CREDITS SURVEY

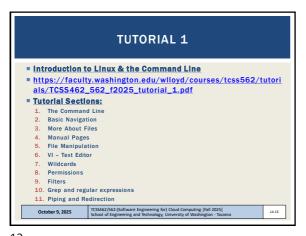
Please complete the AWS Cloud Credits survey:

Please only complete survey after setting up AWS account or if requiring an IAM user (no-credit card option)

https://forms.gle/Y4IWyBRFVLRPnPX37

Linked from course webpage in Canvas:

http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html


October 9, 2025

| TCSS462/S62: (Software Engineering for I Cloud Computing [Fall 2025] school of Engineering and Technology, University of Washington - Tacoma

11 12

Slides by Wes J. Lloyd L4.2

L4.11

TUTORIAL 2 Introduction to Bash Scripting https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_2.pdf Review tutorial sections: Create a BASH webservice client What is a BASH script? Variables Input Arithmetic If Statements Loops Functions User Interface Call service to obtain IP address & lat/long of computer Call service to obtain weather forecast for lat/long 14.14

13 14

OBJECTIVES - 10/9

Questions from 10/7

Tutorlal 0, Tutorlal 1, Tutorlal 2 Tutorlal 3

Term Project Proposal

Cloud Computing - How did we get here? - part III (Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

Graphics processing units

Speed-up, Amdahl's Law, Scaled Speedup

Properties of distributed systems

Modularity

Introduction to Cloud Computing - loosely based on book #1: Cloud Computing Concepts, Technology & Architecture

October 9, 2025

ICSS402/562/Software Engineering for) Cloud Computing [fall 2025]

School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 10/9

* Questions from 10/7

* Tutorial 0, Tutorial 1, Tutorial 2, Tutorial 3

* Term Project Proposal

* Cloud Computing - How did we get here? - part III (Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

* Graphics processing units

* Speed-up, Amdahl's Law, Scaled Speedup

* Properties of distributed systems

* Modularity

* Introduction to Cloud Computing - loosely based on book #1: Cloud Computing Concepts, Technology & Architecture

October 9, 2025

**TCSS462/S52/Software Engineering for/ Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington: "Second Second S

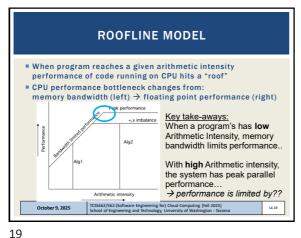
15

OBJECTIVES - 10/9

Questions from 10/7
Tutorial 0, Tutorial 1, Tutorial 2, Tutorial 3
Term Project Proposal

Cloud Computing - How did we get here? - part III
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

Graphics processing units
Speed-up, Amdahl's Law, Scaled Speedup
Properties of distributed systems
Modularity
Introduction to Cloud Computing - loosely based on book
#1: Cloud Computing Concepts, Technology & Architecture


October 9, 2025

INCSA62/S62-Schrluwe Engineering for Count Computing [fell 2025]
School of Engineering and Technology, University of Washington - Tacoms

ARITHMETIC INTENSITY Arithmetic intensity: Ratio of work (W) to memory traffic r/w (Q) Example: # of floating point ops per byte of data read Characterizes application scalability with SIMD support SIMD can perform many fast matrix operations in parallel High arithmetic intensity: Programs with dense matrix operations scale up nicely (many calcs vs memory RW, supports lots of parallelism) Low arithmetic intensity: Programs with sparse matrix operations do not scale well with problem size (memory RW becomes bottleneck, not enough ops!) TCSS462/562:(Software Engineering for) Cloud Co School of Engineering and Technology, University October 9, 2025 L4.18

17 18

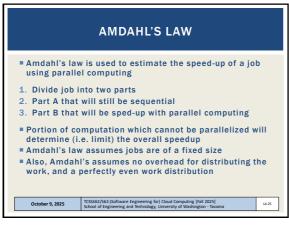
Slides by Wes J. Lloyd L4.3

OBJECTIVES - 10/9 Questions from 10/7 ■ Tutorial 0, Tutorial 1, Tutorial 2, Tutorial 3 ■ Term Project Proposal Cloud Computing - How did we get here? - part III (Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition) Graphics processing units Speed-up, Amdahl's Law, Scaled Speedup ■ Properties of distributed systems Introduction to Cloud Computing - loosely based on book #1: Cloud Computing Concepts, Technology & Architecture

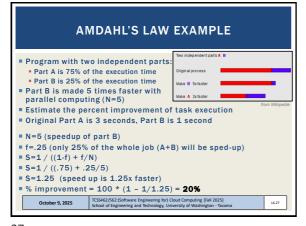
20

GRAPHICAL PROCESSING UNITS (GPUs) ■ GPU provides multiple SIMD processors ■ Typically 7 to 15 SIMD processors each 32,768 total registers, divided into 16 lanes (2048 registers each) GPU programming model: single instruction, multiple thread Programmed using CUDA- C like programming language by NVIDIA for GPUs CUDA threads - single thread associated with each data element (e.g. vector or matrix) Thousands of threads run concurrently TCSS462/562:(Software Engineering for) Cloud Computing [Fal School of Engineering and Technology, University of Washingto L4.21

OBJECTIVES - 10/9 Questions from 10/7 ■ Tutorial 0, Tutorial 1, Tutorial 2, Tutorial 3 ■ Term Project Proposal Cloud Computing - How did we get here? - part III (Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition) Graphics processing units Speed-up, Amdahl's Law, Scaled Speedup Properties of distributed systems Introduction to Cloud Computing - loosely based on book #1: Cloud Computing Concepts, Technology & Architecture TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tac October 9, 2025


21

PARALLEL COMPUTING ■ Parallel hardware and software systems allow: Solve problems demanding resources not available on single system. Reduce time required to obtain solution ■The speed-up (S) measures effectiveness of parallelization: S(N) = T(1) / T(N) $T(1) \rightarrow$ execution time of total sequential computation $T(N) \rightarrow \text{execution time for performing N parallel}$ computations in parallel TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tac October 9, 2025 L4.23


SPEED-UP EXAMPLE Consider embarrassingly parallel image processing Eight images (multiple data) Apply image transformation (greyscale) in parallel 8-core CPU, 16 hyperthreads Sequential processing: perform transformations one at a time using a single program thread 8 images, 3 seconds each: T(1) = 24 seconds Parallel processing 8 images, 3 seconds each: T(N) = 3 seconds • Speedup: S(N) = 24 / 3 = 8x speedup Called "perfect scaling" Must consider data transfer and computation setup time October 9, 2025 L4.24

23 24

Slides by Wes J. Lloyd 144

25 26

Calculates the scaled speed-up using "N" processors $S(N) = N + (1 - N) \alpha$ N: Number of processors $\alpha : \text{fraction of program run time which can't be parallelized}$ (e.g. must run sequentially)

Can be used to estimate runtime of parallel portion of program Can be used to estimate runtime of parallel portion of program Can be used to estimate runtime of parallel portion of program Cotober 9, 2025 Cotober 9, 2025 Cotober 9, 2025

27

GUSTAFSON'S LAW

Calculates the scaled speed-up using "N" processors $S(N) = N + (1 - N) \alpha$ N: Number of processors α : fraction of program run time which can't be parallelized (e.g. must run sequentially)

Can be used to estimate runtime of parallel portion of program

Where $\alpha = \sigma / (\pi + \sigma)$ Where σ = sequential time, π = parallel time

Our Amdahl's example: σ = 3s, π = 1s, π = .75

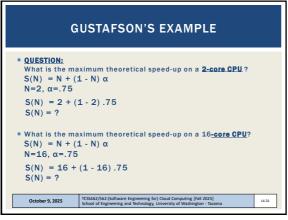
GUSTAFSON'S LAW

Calculates the scaled speed-up using "N" processors $S(N) = N + (1 - N) \alpha$ N: Number of processors α : fraction of program run time which can't be parallelized (e.g. must run sequentially)

Example:
Consider a program that is embarrassingly parallel, but 75% cannot be parallelized. $\alpha = .75$ QUESTION: If deploying the job on a 2-core CPU, what scaled speedup is possible assuming the use of two processes that run in parallel?

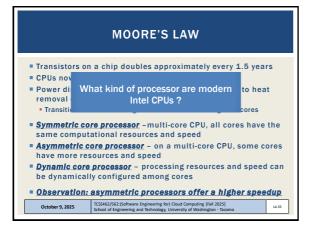
October 9, 2025

Cicober 9, 2025


Cicober 9, 2025

Cicober 9, 2025

Laboratory of Washington - Tacoma


29 30

Slides by Wes J. Lloyd L4.5

GUSTAFSON'S EXAMPLE • QUESTION: What is the maximum theoretical speed-up on a 2-core CPU? $S(N) = N + (1 - N) \alpha$ N=2, α= For 2 CPUs, speed up is 1.25x S(N) =S(N) = ?For 16 CPUs, speed up is 4.75x What is the maximum theoretical speed-up on a 16-core CPU? $S(N) = N + (1 - N) \alpha$ $N=16, \alpha=.75$ S(N) = 16 + (1 - 16).75S(N) = ?October 9, 2025 L4.32

31

OBJECTIVES - 10/9

Questions from 10/7
Tutorial 0, Tutorial 1, Tutorial 2, Tutorial 3
Term Project Proposal
Cloud Computing - How did we get here? - part III
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
Graphics processing units
Speed-up, Amdahl's Law, Scaled Speedup
Properties of distributed systems
Modularity
Introduction to Cloud Computing - loosely based on book
#1: Cloud Computing Concepts, Technology & Architecture

October 9, 2025

TSSS46/JSS2/SSCHware Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology University of Washington - Tacoma

33

Collection of autonomous computers, connected through a network with distribution software called "middleware" that enables coordination of activities and sharing of resources

Key characteristics:
Users perceive system as a single, integrated computing facility.

Compute nodes are autonomous

Scheduling, resource management, and security implemented by every node

Multiple points of control and failure

Nodes may not be accessible at all times

System can be scaled by adding additional nodes

Availability at low levels of HW/software/network reliability

October 9, 2025

TCSG467/SG2/SG4/Wave Engineering for) Cloud Computing [fail 2025]
School of Engineering for) Cloud Computing [fail 2025]
School of Engineering for) Cloud Computing [fail 2025]

35 36

Slides by Wes J. Lloyd L4.6

32

TRANSPARENCY PROPERTIES OF DISTRIBUTED SYSTEMS * Access transparency: local and remote objects accessed using identical operations * Location transparency: objects accessed w/o knowledge of their location. * Concurrency transparency: several processes run concurrently using shared objects w/o interference among them * Replication transparency: multiple instances of objects are used to increase reliability - users are unaware if and how the system is replicated * Fallure transparency: concealment of faults * Migration transparency: objects are moved w/o affecting operations performed on them * Performance transparency: system can be reconfigured based on load and quality of service requirements * Scaling transparency: system and applications can scale w/o change in system structure and w/o affecting applications

OBJECTIVES - 10/9

**Questions from 10/7

**Tutorial 0, Tutorial 1, Tutorial 2, Tutorial 3

**Term Project Proposal

**Cloud Computing - How did we get here? - part III
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

**Graphics processing units

**Speed-up, Amdahl's Law, Scaled Speedup

**Properties of distributed systems

**Modularity

**Introduction to Cloud Computing - loosely based on book
#1: Cloud Computing Concepts, Technology & Architecture

October 9, 2025

**TCSG462/SG-Eichtware Engineering ford Cloud Computing [Fill 2025]
School of Engineering and Technology, University of Washington - Tacoma

Labs.

Total Computing Concepts - Tacoma

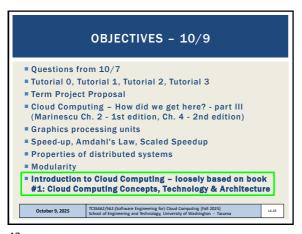
**Total C

37 38

TYPES OF MODULARITY **Soft modularity: TRADITIONAL** Divide a program into modules (classes) that call each other and communicate with shared-memory A procedure calling convention is used (or method invocation) ■ Enforced modularity: CLOUD COMPUTING Program is divided into modules that communicate only through message passing ■ The ubiquitous client-server paradigm Clients and servers are independent decoupled modules System is more robust if servers are stateless May be scaled and deployed separately ■ May also FAIL separately! TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tac October 9, 2025 L4.39

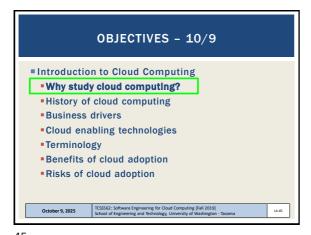
CLOUD COMPUTING - HOW DID WE GET HERE? -PART III SUMMARY OF KEY POINTS ■ Multi-core CPU technology and hyper-threading ■ What is a Heterogeneous system? Homogeneous system? • Autonomous or self-organizing system? Fine grained vs. coarse grained parallelism Parallel message passing code is easier to debug than shared memory (e.g. p-threads) Know your application's max/avg Thread Level Parallelism (TLP) ■ Data-level parallelism: Map-Reduce, (SIMD) Single Instruction Multiple Data, Vector processing & GPUs L4.40

39


CLOUD COMPUTING - HOW DID WE GET HERE? -**PART III SUMMARY OF KEY POINTS - 2** Bit-level parallelism Instruction-level parallelism (CPU pipelining) Flynn's taxonomy: computer system architecture classification • SISD - Single Instruction, Single Data (modern core of a CPU) SIMD - Single Instruction, Multiple Data (Data parallelism) • MIMD - Multiple Instruction, Multiple Data MISD is RARE; application for fault tolerance... Arithmetic Intensity: ratio of calculations vs memory RW = Roofline model: Memory bottleneck with low arithmetic intensity • GPUs: ideal for programs with high arithmetic intensity SIMD and Vector processing supported by many large registers TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tac October 9, 2025 L4.41 CLOUD COMPUTING – HOW DID WE GET HERE? - PART III

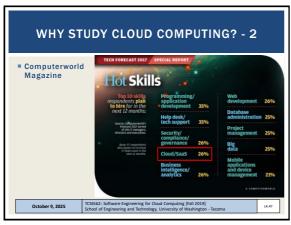
SUMMARY OF KEY POINTS - 3

Speed-up (S) S(N) = T(1) / T(N)Amdahl's law: $S = 1 / \alpha$ $\alpha = percent of program that must be sequential$ Scaled speedup with N processes: $S(N) = N - \alpha(N-1)$ Moore's Law
Symmetric core, Asymmetric core, Dynamic core CPU
Distributed Systems Non-function quality attributes
Distributed Systems - Types of Transparency
Types of modularity- Soft, Enforced


41 42

Slides by Wes J. Lloyd L4.7

43 44

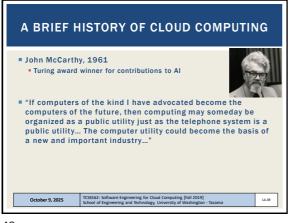


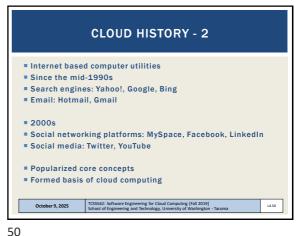
WHY STUDY CLOUD COMPUTING?

LINKEDIN - TOP IT Skills from job app data
#1 Cloud and Distributed Computing
https://learning.linkedin.com/week-of-learning/top-skills
#2 Statistical Analysis and Data Mining

FORBES Survey - 6 Tech Skills That'll Help You Earn More
#1 Data Science
#2 Cloud and Distributed Computing
http://www.forbes.com/sites/laurencebradford/2016/12/19/6-tech-skills-thatll-help-you-earn-more-in-2017/

45




OBJECTIVES - 10/9

Introduction to Cloud Computing
Why study cloud computing?
History of cloud computing
Business drivers
Cloud enabling technologies
Terminology
Benefits of cloud adoption
Risks of cloud adoption
TCSSS62: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

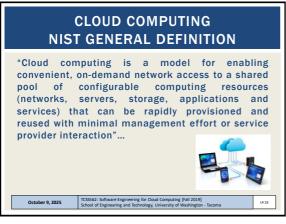
47 48

Slides by Wes J. Lloyd L4.8

49

CLOUD HISTORY: SERVICES - 2

2006 - Software-as-a-Service (SaaS)
Google: Offers Google DOCS, "MS Office" like fully-web based application for online documentation creation and collaboration


2009 - Platform-as-a-Service (PaaS)
Google: Offers Google App Engine, publicly hosted platform for hosting scalable web applications on google-hosted datacenters

Cotober 9, 2025

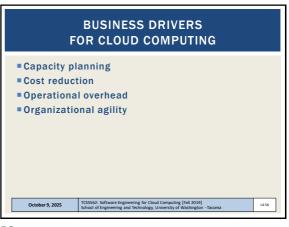
TCSSS62: Software Engineering for Cloud Computing [Fail 2019] School of Engineering and Technology, University of Washington - Tacoma

L432

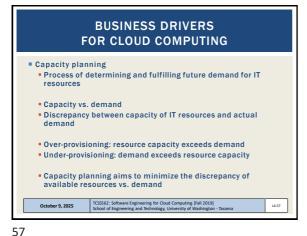
51

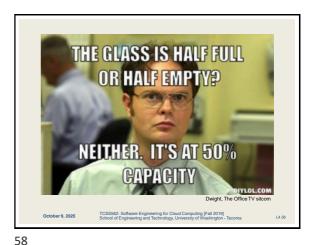
"Cloud computing is a specialized form of distributed computing that introduces utilization models for remotely provisioning scalable and measured resources."

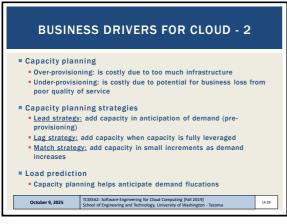
From Cloud Computing Concepts, Technology, and Architecture Z. Mahmood, R. Puttini, Prentice Hall, 5th printing, 2015

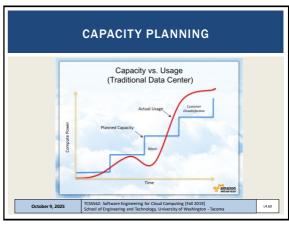

Cotober 9, 2025

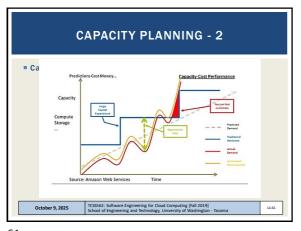
TCSSSG2: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma


53 54


Slides by Wes J. Lloyd L4.9




55 56


37

59 60

Slides by Wes J. Lloyd L4.10

Cost reduction
IT Infrastructure acquisition
IT Infrastructure maintenance

Operational overhead
Technical personnel to maintain physical IT infrastructure
System upgrades, patches that add testing to deployment cycles
Utility bills, capital investments for power and cooling
Security and access control measures for server rooms
Admin and accounting staff to track licenses, support agreements, purchases

October 9, 2025

TCSSCS Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Taconsa

1442

61

BUSINESS DRIVERS FOR CLOUD - 4

Organizational agility

Ability to adapt and evolve infrastructure to face change from internal and external business factors

Funding constraints can lead to insufficient on premise IT

Cloud computing enables IT resources to scale with a lower financial commitment

October 9, 2025

TCSSG2: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 10/9

Introduction to Cloud Computing
Why study cloud computing?
History of cloud computing
Business drivers
Cloud enabling technologies
Terminology
Benefits of cloud adoption
Risks of cloud adoption
TCSS62-Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

63

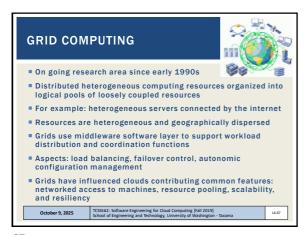
65

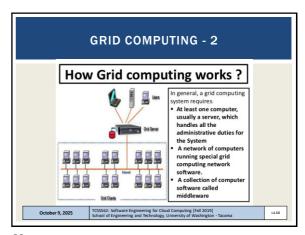
TECHNOLOGY INNOVATIONS
LEADING TO CLOUD

Cluster computing
Grid computing
Virtualization
Ottober 9, 2025
TCSSS62: Software Engineering for Cloud Computing [fall 2015]
School of Engineering and Rectinology, University of Visiolandian - Tocoma

CLUSTER COMPUTING

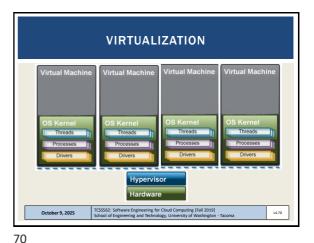
Cluster computing (clustering)
Cluster is a group of independent IT resources interconnected as a single system
Servers configured with homogeneous hardware and software
Identical or similar RAM, CPU, HDDs
Design emphasizes redundancy as server components are easily interchanged to keep overall system running
Example: if a RAID card fails on a key server, the card can be swapped from another redundant server
Enables warm replica servers
Duplication of key infrastructure servers to provide HW failover to ensure high availability (HA)

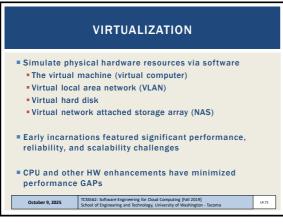

October 9, 2025


CCCSS62: Software Engineering for Cloud Computing [Fail 2019]
School of Engineering and Technology, University of Wishington - Tacoma

66

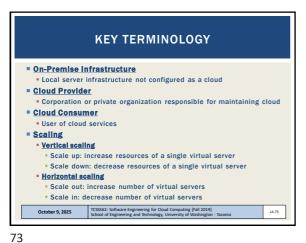
Slides by Wes J. Lloyd L4.11

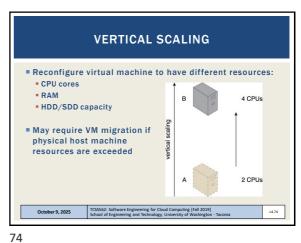

62

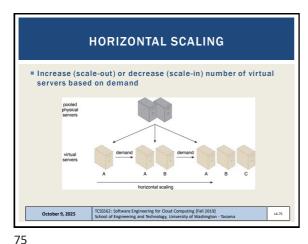


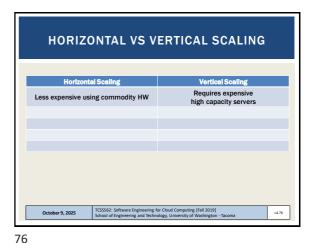
67 68

03

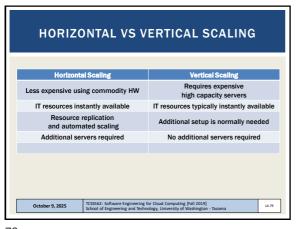


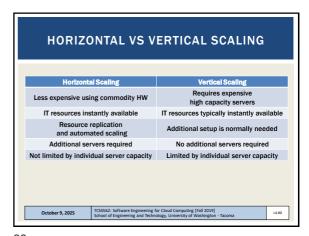

OBJECTIVES - 10/9


Introduction to Cloud Computing
Why study cloud computing?
History of cloud computing
Business drivers
Cloud enabling technologies
Terminology
Benefits of cloud adoption
Risks of cloud adoption
TCCSSE2: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

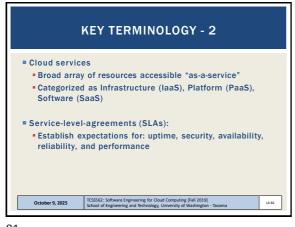

71 72

Slides by Wes J. Lloyd L4.12




Horizontal Scaling		Vertical Scaling
Less expensive using commodity HW		Requires expensive high capacity servers
IT resources instantly available		IT resources typically instantly availab

HORIZONTAL VS VERTICAL SCALING Vertical Sc Requires expensive Less expensive using commodity HW high capacity servers IT resources instantly available IT resources typically instantly available Resource replication Additional setup is normally needed and automated scaling October 9, 2025 L4.78


77 78

Slides by Wes J. Lloyd L4.13

79 80

OBJECTIVES - 10/9

Introduction to Cloud Computing
Why study cloud computing?
History of cloud computing
Business drivers
Cloud enabling technologies
Terminology
Benefits of cloud adoption
Risks of cloud adoption

TCSS62: Software Engineering for Cloud Computing [Fail 2019]
School of Engineering and Technology, University of Washington - Tacoma

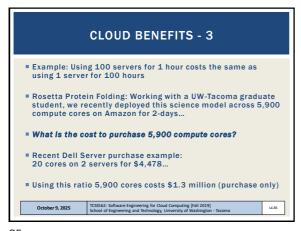
81

CLOUD BENEFITS - 2

On demand access to pay-as-you-go resources on a short-term basis (less commitment)

Ability to acquire "unlimited" computing resources on demand when required for business needs

Ability to add/remove IT resources at a fine-grained level


Abstraction of server infrastructure so applications deployments are not dependent on specific locations, hardware, etc.

The cloud has made our software deployments more agile...

TCSSSG2: Software Engineering for Cloud Computing [fail 2019] School of Engineering and Technology, University of Washington - Tacoma

83 84

Slides by Wes J. Lloyd L4.14

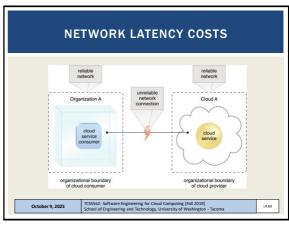
85

CLOUD BENEFITS Increased scalability Example demand over a 24-hour day → 10.000 9,000 Increased availability 7.000 ■ Increased reliability 5,000 4,000 3,000 2.000 TCSS562: Software Engineering for Cloud Computing [Fall 2019] School of Engineering and Technology, University of Washington - Ta October 9, 2025 L4.87

OBJECTIVES - 10/9

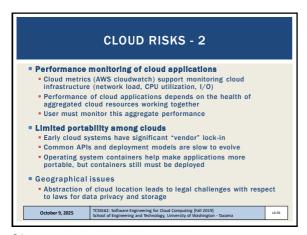
Introduction to Cloud Computing
Why study cloud computing?
History of cloud computing
Business drivers
Cloud enabling technologies
Terminology
Benefits of cloud adoption
Risks of cloud adoption

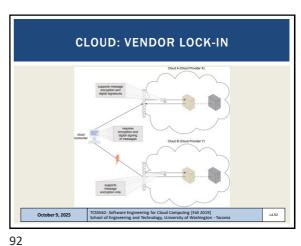
TCSS62: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

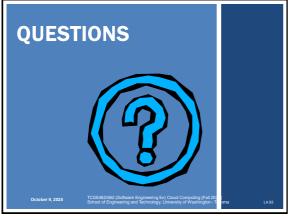

87

CLOUD ADOPTION RISKS

Increased security vulnerabilities
Expansion of trust boundaries now include the external cloud
Security responsibility shared with cloud provider


Reduced operational governance / control
Users have less control of physical hardware
Cloud user does not directly control resources to ensure quality-of-service
Infrastructure management is abstracted
Quality and stability of resources can vary
Network latency costs and variability


ICCSSG2: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma


89 90

Slides by Wes J. Lloyd L4.15

91

93

Slides by Wes J. Lloyd L4.16