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TCSS 462/562: 

(SOFTWARE ENGINEERING 

FOR) CLOUD COMPUTING  Questions from 10/3

 Tutorial 0, Tutorial 1, Tutorial 2

 Term Project Proposal

 Cloud Computing –  How did we get here? - part III

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

 Modularity 

 Introduction to Cloud Computing –  loosely based on book 

#1: Cloud Computing Concepts, Technology & Architecture
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OBJECTIVES – 10/8

 Please classify your perspective on material covered in today’s 

class (48 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average –  6.27  (  -  previous 6.83)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average –  5.40  (  -  previous 6.26)  

 Response rates:

 TCSS 462: 32/43 – 74.41%

 TCSS 562: 16/19 – 84.21%
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MATERIAL / PACE

 As a Devops engineer, why must we pay attention to the 

average number threads when deploying our applications to 

the cloud? 

▪ Under-provisioning: provisioning too few cloud resources (not enough 

vCPUs) to support the TLP of an application

▪ RESULT: insufficient vCPUs will be a performance bottleneck

▪ RESULT: the user experience suffers, latency (waiting) increases when 

requests queue-up, turnaround time is slower if processing resources are 

insufficient

▪ Over-provisioning: provision too many cloud resources (more vCPUs 

than needed) relative to the TLP of an application

▪ RESULT: the user experience should be ideal

▪ RESULT: the application cost host will be higher than necessary when 

more resources (i.e. vCPUs) are purchased relative to the number needed 

(e.g. TLP)
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FEEDBACK FROM 10/3

 What are the consequences of  not using multithreading in  our 

application?

▪ Without multi-threaded processing, the application processing 

throughput (requests processed per unit time) may be lower than the 

capacity of your cloud resource (vCPUs)

▪ It may be possible to divide data sets and process them in separate 

chunks in parallel to use available all available vCPUs

▪ It is also common to host servers where multiple user requests are 

processed using distinct threads at the same time (in parallel)

▪ If all application processing is single-threaded, individual user 

sessions can run using a separate thread, and multiple sessions can 

run in parallel 

▪ User processing can be parallelized with multiple threads for speed-up 

where it is feasible
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FEEDBACK - 2

 When are al l levels of  parallelism used s imultaneously?

▪ If performing multi-thread data processing where there is a dataset 
divided into chunks, and chunks are processed in parallel, then all 
four-types of parallelism should occur simultaneously since the 
computer will inherently perform instruction-level at bit-level 
parallelism on its own

 I 'm unsure about when to consider the amount of  vCPUs and 
when to consider the amount of  logical cores when choosing 
an instance.

▪ Hyperthreaded CPUs have logical cores

▪ Cloud VMs provide users with “vCPUs” that are backed by 
hyperthreaded CPUs (i.e. logical cores)

▪ As cloud users, it is important to understand when a resource is 
implemented with physical vs. logical cores, because there IS a 
notable performance (and cost) difference  !!

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.6

FEEDBACK - 3
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 Term Project -  when should we start forming teams, etc.?

▪ We will introduce the term project proposal requirements today

▪ Groups in Canvas have been set up

▪ Students should “drag” their name into a group, and begin reaching 

out via Canvas/discord messaging 
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FEEDBACK - 4

 UW census day was last Friday

 Course registrations have now largely been finalized for UW 

courses for the quarter

 Course instructor will be sharing credits as soon as possible 

now this week
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AWS CLOUD CREDITS UPDATE

 Questions from 10/3

 Tutorial 0,  Tutorial 1 ,  Tutorial 2

 Term Project Proposal

 Cloud Computing –  How did we get here? - part III

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

 Modularity 

 Introduction to Cloud Computing –  loosely based on book 

#1: Cloud Computing Concepts, Technology & Architecture
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OBJECTIVES – 10/8

 Introduction to L inux & the Command Line

 https://faculty.washington.edu/wlloyd/courses/tcss562/tutori
als/TCSS462_562_f2023_tutorial_1.pdf  

 Tutorial Sections:
1. The Command Line

2. Basic Navigation

3. More About Files

4. Manual Pages

5. File Manipulation

6. VI – Text Editor

7. Wildcards

8. Permissions

9. Filters

10. Grep and regular expressions

11. Piping and Redirection

12. Process Management

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.10

TUTORIAL 1

 Introduction to  Bash Scripting

 https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/T
CSS462_562_f2023_tutorial_2.pdf  

 Review tutorial sect ions:

 Create a BASH webservice cl ient

1. What is a BASH script?

2. Variables

3. Input

4. Arithmetic

5. If Statements

6. Loops

7. Functions

8. User Interface

 Call  service to obtain IP address & lat/long of computer

 Call  service to obtain weather forecast  for lat/long
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TUTORIAL 2

 Questions from 10/3

 Tutorial 0, Tutorial 1, Tutorial 2

 Term Project Proposal

 Cloud Computing –  How did we get here? - part III

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

 Modularity 

 Introduction to Cloud Computing –  loosely based on book 

#1: Cloud Computing Concepts, Technology & Architecture
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OBJECTIVES – 10/8
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 Questions from 10/1

 Tutorial 0, Tutorial 1, Tutorial 2

 Cloud Computing –  How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Class Activity 1 –  Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia 

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

 Modularity 
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CATCH UP FROM – 10/3

Michael Flynn’s proposed taxonomy of computer 

architectures based on concurrent instructions and 

number of data streams (1966)

 SISD (Single Instruction Single Data)

 SIMD (Single Instruction, Multiple Data)

 MIMD (Multiple Instructions, Multiple Data)

 LESS COMMON : MISD (Multiple Instructions, Single Data)  

 Pipeline architectures: functional units perform different 

operations on the same data 

 For fault tolerance, may want to execute same instructions 

redundantly to detect and mask errors – for task replication
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MICHAEL FLYNN’S COMPUTER 

ARCHITECTURE TAXONOMY

 SISD (Single Instruction Single Data)

Scalar architecture with one processor/core.

▪ Individual cores of modern multicore processors are 

“SISD”

 SIMD (Single Instruction, Multiple Data)

Supports vector processing

▪When SIMD instructions are issued, operations on 

individual vector components are carried out concurrently

▪ Two 64-element vectors can be added in parallel

▪ Vector processing instructions added to modern CPUs

▪ Example: Intel MMX (multimedia) instructions

October 8, 2024
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FLYNN’S TAXONOMY

 Exploit data-parallelism: vector operations enable speedups

 Vectors architecture provide vector registers that can store 

entire matrices into a CPU register

 SIMD CPU extension (e.g. MMX) add support for vector 

operations on traditional CPUs

 Vector operations reduce total number of instructions for 

large vector operations 

 Provides higher potential speedup vs. MIMD architecture

 Developers can think sequentially; not worry about 

parallelism
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(SIMD): VECTOR PROCESSING

ADVANTAGES

 MIMD (Multiple Instructions, Multiple Data)  - system with 

several processors and/or cores that function asynchronously 

and independently

 At any time, dif ferent processors/cores may execute dif ferent 

instructions on dif ferent data

 Multi-core CPUs are MIMD

 Processors share memory via interconnection networks

▪ Hypercube, 2D torus, 3D torus, omega network, other topologies

 MIMD systems have dif ferent methods of sharing memory

▪ Uniform Memory Access (UMA)

▪ Cache Only Memory Access (COMA)

▪ Non-Uniform Memory Access (NUMA)
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FLYNN’S TAXONOMY - 2

 Arithmetic intensity : Ratio of work (W) to 
    memory traffic r/w (Q) 
Example: # of floating point ops per byte of data read

 Characterizes application scalability with SIMD support

▪ SIMD can perform many fast matrix operations in parallel 

 High arithmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

 Low arithmetic intensity:  
Programs with sparse matrix operations do not scale well 
with problem size
(memory RW becomes bottleneck, not enough ops!)
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ARITHMETIC INTENSITY
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 When program reaches a given arithmetic intensity 

performance of code running on CPU hits a “roof” 

 CPU performance bottleneck changes from:

memory bandwidth ( lef t)  →  f loating point performance (right)

October 8, 2024
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ROOFLINE MODEL

Key take-aways:
When a program’s has low 
Arithmetic Intensity, memory 
bandwidth limits performance..

With high Arithmetic intensity, 
the system has peak parallel 
performance…
→ performance is limited by??

 Questions from 10/3

 Tutorial 0, Tutorial 1, Tutorial 2

 Term Project Proposal

 Cloud Computing –  How did we get here? - part III

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

 Modularity 

 Introduction to Cloud Computing –  loosely based on book 

#1: Cloud Computing Concepts, Technology & Architecture
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OBJECTIVES – 10/8

 GPU provides multiple SIMD processors 

 Typically 7 to 15 SIMD processors each

 32,768 total registers, divided into 16 lanes

(2048 registers each)

 GPU programming model: 

single instruction, multiple thread

 Programmed using CUDA- C like programming 

language by NVIDIA for GPUs

 CUDA threads –  single thread associated with each 

data element (e.g. vector or matrix)

 Thousands of threads run concurrently 

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.21

GRAPHICAL PROCESSING UNITS (GPUS)

 Questions from 10/3

 Tutorial 0, Tutorial 1, Tutorial 2

 Term Project Proposal

 Cloud Computing –  How did we get here? - part III

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

 Modularity 

 Introduction to Cloud Computing –  loosely based on book 

#1: Cloud Computing Concepts, Technology & Architecture
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OBJECTIVES – 10/8

Parallel hardware and software systems allow: 

▪ Solve problems demanding resources not available on 
single system.

▪ Reduce time required to obtain solution

 The speed-up (S) measures effectiveness of 
parallelization:

                            S(N) = T(1) / T(N) 

T(1) →  execution time of total sequential computation

T(N) →  execution time for performing N parallel 
computations in parallel 
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TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.23

PARALLEL COMPUTING

 Consider embarrassingly parallel image processing

 Eight images (multiple data)

 Apply image transformation (greyscale) in parallel

 8-core CPU, 16 hyperthreads

 Sequential processing: perform transformations one at a time 
using a single program thread

▪ 8 images, 3 seconds each: T(1) = 24 seconds

 Parallel processing

▪ 8 images, 3 seconds each: T(N) = 3 seconds

 Speedup: S(N) = 24 / 3 = 8x speedup

 Called “perfect scaling”

 Must consider data transfer and computation setup time

October 8, 2024
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SPEED-UP EXAMPLE
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 Amdahl’s law is used to estimate the speed -up of a job 
using parallel computing

1. Divide job into two parts

2. Part A that will still be sequential

3. Part B that will be sped-up with parallel computing

 Portion of computation which cannot be parallelized will 
determine (i.e. limit) the overall speedup 

 Amdahl’s law assumes jobs are of a fixed size

 Also, Amdahl’s assumes no overhead for distributing the 
work, and a perfectly even work distribution

October 8, 2024
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AMDAHL’S LAW

 S = theoretical speedup of the whole task

 f= fraction of work that is parallel              (ex. 25% or 0.25)

 N= proposed speed up of the parallel part  ( ex. 5 t imes speedup )

 % improvement
of task execution     = 100 * (1 – (1 / S))

 Using Amdahl’s law, we can f ind the maximum possible 
speed-up (S) for a g iven scenario  (e.g. ~8x) …

October 8, 2024
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AMDAHL’S LAW

Speed-up formula
                           →

 Program with two independent parts:

▪ Part A is 75% of the execution time

▪ Part B is 25% of the execution time

 Part B is made 5 times faster with
parallel computing (N=5)

 Estimate the percent improvement of task execution

 Original Part A is 3 seconds, Part B is 1 second

 N=5 (speedup of part B)

 f=.25 (only 25% of the whole job (A+B) will be sped -up)

 S=1 / ((1-f)  + f/N)

 S=1 / (( .75) + .25/5)

 S=1.25  (speed up is 1.25x faster)

 % improvement = 100 * (1 – 1/1.25) = 20%
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AMDAHL’S LAW EXAMPLE

from Wikipedia

 Calculates the scaled speed-up using “N” processors

                             S(N)  = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized 

(e.g. must run sequentially)

 Can be used to estimate runtime of parallel portion of 

program

October 8, 2024
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GUSTAFSON'S LAW

 Calculates the scaled speed-up using “N” processors

                             S(N)  = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized 

(e.g. must run sequentially)

 Can be used to estimate runtime of parallel portion of 

program

 Where α =  / ( + )

 Where = sequential time,  =parallel time

 Our Amdahl’s example: = 3s,  =1s, α =.75
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GUSTAFSON'S LAW

 Calculates the scaled speed-up using “N” processors

                             S(N)  = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized 

(e.g. must run sequentially)

 Example:

Consider a program that is embarrassingly parallel, 

but 75% cannot be parallelized.  α=.75

QUESTION: I f  deploying the job on a 2 -core CPU, what 

scaled speedup is  possible assuming the use of two 

processes that run in parallel?

October 8, 2024
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GUSTAFSON'S LAW
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 QUESTION: 

What is the maximum theoret ical speed -up on a 2-core CPU ?

S(N)  = N + (1 - N) α

N=2, α=.75

   S(N)  = 2 + (1 - 2) .75

   S(N) = ?

 What is the maximum theoret ical speed -up on a 16-core CPU?

S(N)  = N + (1 - N) α

N=16, α=.75

   S(N)  = 16 + (1 - 16) .75

   S(N) = ?

October 8, 2024
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GUSTAFSON’S EXAMPLE

 QUESTION: 

What is the maximum theoret ical speed -up on a 2-core CPU ?

S(N)  = N + (1 - N) α

N=2, α=.75

    S(N)  = 2 + (1 - 2) .75

   S(N) = ?

 What is the maximum theoret ical speed -up on a 16-core CPU?

S(N)  = N + (1 - N) α

N=16, α=.75

   S(N)  = 16 + (1 - 16) .75

   S(N) = ?
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GUSTAFSON’S EXAMPLE

For 2 CPUs, speed up is 1.25x

For 16 CPUs, speed up is 4.75x

For 2 CPUs, speed up is 1.25x

For 16 CPUs, speed up is 4.75x

 Transistors on a chip doubles approximately every 1.5 years

 CPUs now have billions of transistors

 Power dissipation issues at faster clock rates leads to heat 

removal challenges

▪ Transition from: increasing clock rates → to adding CPU cores

 Symmetric core processor  –multi-core CPU, all cores have the 

same computational resources and speed  

 Asymmetric core processor  – on a multi -core CPU, some cores 

have more resources and speed  

 Dynamic core processor  – processing resources and speed can 

be dynamically configured among cores

 Observation: asymmetric processors of fer a higher speedup

October 8, 2024
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MOORE’S LAW

What kind of processor are modern
Intel CPUs ?

What kind of processor are modern
Intel CPUs ?

 Questions from 10/3

 Tutorial 0, Tutorial 1, Tutorial 2

 Term Project Proposal

 Cloud Computing –  How did we get here? - part III

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

 Modularity 

 Introduction to Cloud Computing –  loosely based on book 

#1: Cloud Computing Concepts, Technology & Architecture
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OBJECTIVES – 10/8

 Collection of autonomous computers, connected through a 

network with distribution software called “middleware” that 

enables coordination of activities and sharing of resources

 Key characteristics:

 Users perceive system as a single, integrated computing 

facility. 

 Compute nodes are autonomous

 Scheduling, resource management, and security implemented 

by every node 

 Multiple points of control and failure

 Nodes may not be accessible at all times 

 System can be scaled by adding additional nodes

 Availability at low levels of HW/software/network reliability

October 8, 2024
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DISTRIBUTED SYSTEMS

 Key non-functional attributes

▪ Known as “ilities” in software engineering

 Availability –  24/7 access?

 Reliability - Fault tolerance 

 Accessibility – reachable?

 Usability – user fr iendly

 Understandability – can under

 Scalability – responds to variable demand

 Extensibility –  can be easily modified, extended

 Maintainability – can be easily fixed

 Consistency –  data is replicated correctly in timely manner
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DISTRIBUTED SYSTEMS - 2
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 Access transparency: local and remote objects accessed using 
identical operations

 Location transparency: objects accessed w/o knowledge of 
their location.

 Concurrency transparency: several processes run concurrently 
using shared objects w/o inter ference among them

 Replication transparency: multiple instances of objects are 
used to increase reliability
-  users are unaware if and how the system is replicated

 Failure transparency: concealment of faults

 Migration transparency: objects are moved w/o affecting 
operations performed on them

 Performance transparency: system can be reconfigured based 
on load and quality of service requirements

 Scaling transparency: system and applications can scale w/o 
change in system structure and w/o affecting applications
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TRANSPARENCY PROPERTIES OF 

DISTRIBUTED SYSTEMS

 Questions from 10/3

 Tutorial 0, Tutorial 1, Tutorial 2

 Term Project Proposal

 Cloud Computing –  How did we get here? - part III

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

 Modularity 

 Introduction to Cloud Computing –  loosely based on book 

#1: Cloud Computing Concepts, Technology & Architecture
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OBJECTIVES – 10/8

 Soft modularity:  TRADITIONAL 

 Divide a program into modules (classes) that call each other 

and communicate with shared-memory

 A procedure calling convention is used (or method invocation)

 Enforced modularity:  CLOUD COMPUTING

 Program is divided into modules that communicate only 

through message passing 

 The ubiquitous client -server paradigm 

 Clients and servers are independent decoupled modules

 System is more robust if  servers are stateless

 May be scaled and deployed separately

 May also FAIL separately!
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TYPES OF MODULARITY

 Multi-core CPU technology and hyper -threading

 What is a 

▪ Heterogeneous system?

▪ Homogeneous system?

▪ Autonomous or self-organizing system?

 Fine grained vs. coarse grained parallelism

 Parallel message passing code is easier to debug than 

shared memory (e.g. p-threads)

 Know your application’s max/avg Thread Level 

Parallelism (TLP )

 Data-level parallelism: Map-Reduce, (SIMD) Single 

Instruction Multiple Data, Vector processing & GPUs
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CLOUD COMPUTING – HOW DID WE GET HERE? - 

PART III

SUMMARY OF KEY POINTS

 Bit-level parallelism

 Instruction-level parallelism (CPU pipelining)

 Flynn’s taxonomy : computer system architecture classification

▪ SISD – Single Instruction, Single Data (modern core of a CPU) 

▪ SIMD – Single Instruction, Multiple Data (Data parallelism)

▪ MIMD – Multiple Instruction, Multiple Data

▪ MISD is RARE; application for fault tolerance…

 Arithmetic intensity : ratio of calculations vs memory RW

 Roofline model: 

Memory bottleneck with low arithmetic intensity

 GPUs: ideal for programs with high arithmetic intensity

▪ SIMD and Vector processing supported by many large registers 
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CLOUD COMPUTING –  HOW DID WE GET HERE? - 

PART III

SUMMARY OF KEY POINTS - 2

 Speed-up (S)

S(N) = T(1) / T(N)

 Amdahl’s law:
S = 1/ α
α = percent of program that must be sequential

 Scaled speedup with N processes:
S(N)  = N –  α( N-1)

 Moore’s Law

 Symmetric core, Asymmetric core, Dynamic core CPU

 Distributed Systems Non-function quality attributes 

 Distributed Systems –  Types of Transparency

 Types of modularity - Soft, Enforced

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.42

CLOUD COMPUTING –  HOW DID WE GET HERE? - 

PART III

SUMMARY OF KEY POINTS - 3
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 Questions from 10/3

 Tutorial 0, Tutorial 1, Tutorial 2

 Term Project Proposal

 Cloud Computing –  How did we get here? - part III

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

 Modularity 

 Introduction to Cloud Computing –  loosely based on book 

#1: Cloud Computing Concepts, Technology & Architecture
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OBJECTIVES – 10/8

INTRODUCTION TO 

CLOUD COMPUTING
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 Introduction to Cloud Computing

▪Why study cloud computing?

▪History of cloud computing

▪Business drivers

▪Cloud enabling technologies

▪Terminology

▪Benefits of cloud adoption

▪Risks of cloud adoption
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OBJECTIVES – 10/8

 LINKEDIN - TOP IT Skills f rom job app data

▪ #1 Cloud and Distributed Computing 

▪ https://learning.linkedin.com/week-of-learning/top-skills

▪ #2 Statistical Analysis and Data Mining

 FORBES Survey –  6 Tech Skills That’ll Help You Earn More

▪ #1 Data Science

▪ #2 Cloud and Distributed Computing

▪ http://www.forbes.com/sites/laurencebradford/2016/12/

19/6-tech-skills-thatll-help-you-earn-more-in-2017/
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WHY STUDY CLOUD COMPUTING?

 Computerworld

Magazine
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WHY STUDY CLOUD COMPUTING? - 2

 Introduction to Cloud Computing

▪Why study cloud computing?

▪History of cloud computing

▪Business drivers

▪Cloud enabling technologies

▪Terminology

▪Benefits of cloud adoption

▪Risks of cloud adoption
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OBJECTIVES – 10/8
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 John McCarthy, 1961

▪ Turing award winner for contributions to AI

 “If computers of the kind I have advocated become the 

computers of the future, then computing may someday be 

organized as a public utility just as the telephone system is a 

public utility… The computer utility could become the basis of 

a new and important industry…”
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A BRIEF HISTORY OF CLOUD COMPUTING

 Internet based computer utilities

 Since the mid-1990s

 Search engines: Yahoo!, Google, Bing

 Email: Hotmail, Gmail

 2000s

 Social networking platforms: MySpace, Facebook, LinkedIn

 Social media: Twitter, YouTube

 Popularized core concepts

 Formed basis of cloud computing
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CLOUD HISTORY - 2

 Late 1990s – Early Software-as-a-Service (SaaS)

▪ Salesforce: Remotely provisioned services for the enterprise

 2002 - 

▪ Amazon Web Services (AWS) platform: Enterprise oriented services 

for remotely provisioned storage, computing resources, and business 

functionality

 2006 – Infrastructure-as-a-Service ( IaaS)

▪ Amazon launches Elastic Compute Cloud (EC2) service

▪ Organization can “lease” computing capacity and processing power 

to host enterprise applications

▪ Infrastructure
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CLOUD HISTORY: SERVICES - 1

 2006 – Software-as-a-Service (SaaS)

▪ Google: Offers Google DOCS, “MS Office” like fully -web 

based application for online documentation creation and 

collaboration

 2009 – Platform-as-a-Service (PaaS)

▪ Google: Offers Google App Engine, publicly hosted 

platform for hosting scalable web applications on google-

hosted datacenters
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CLOUD HISTORY: SERVICES - 2

CLOUD COMPUTING

NIST GENERAL DEFINITION

“Cloud computing is a model for enabling 

convenient, on-demand network access to a shared 

pool of configurable computing resources 

(networks, servers, storage, applications and 

services) that can be rapidly provisioned and 

reused with minimal management effort or service 

provider interaction”…
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“Cloud computing is a specialized form of 

distributed computing that introduces utilization 

models for remotely provisioning scalable and 

measured resources.”

From Cloud Computing Concepts,  Technology,  and Architecture

Z. Mahmood,  R.  Putt ini ,  Prent ice Hall ,  5 th print ing,  2015
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MORE CONCISE DEFINITION
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 Introduction to Cloud Computing

▪Why study cloud computing?

▪History of cloud computing

▪Business drivers

▪Cloud enabling technologies

▪Terminology

▪Benefits of cloud adoption

▪Risks of cloud adoption
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OBJECTIVES – 10/8

Capacity planning

Cost reduction

Operational overhead

Organizational agility
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BUSINESS DRIVERS 

FOR CLOUD COMPUTING

 Capacity planning

▪ Process of determining and fulfilling future demand for IT 
resources

▪ Capacity vs. demand

▪ Discrepancy between capacity of IT resources and actual 
demand

▪ Over-provisioning: resource capacity exceeds demand

▪ Under-provisioning: demand exceeds resource capacity

▪ Capacity planning aims to minimize the discrepancy of 
available resources vs. demand
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BUSINESS DRIVERS 

FOR CLOUD COMPUTING
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Dwight, The Office TV sitcom

 Capacity planning

▪ Over-provisioning: is costly due to too much infrastructure

▪ Under-provisioning: is costly due to potential for business loss from 

poor quality of service

 Capacity planning strategies

▪ Lead strategy: add capacity in anticipation of demand (pre-

provisioning)

▪ Lag strategy: add capacity when capacity is fully leveraged

▪ Match strategy: add capacity in small increments as demand 

increases

 Load prediction

▪ Capacity planning helps anticipate demand flucations
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BUSINESS DRIVERS FOR CLOUD - 2
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CAPACITY PLANNING
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October 8, 2024
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CAPACITY PLANNING - 2

 Capacity planning  Cost reduction

▪ IT Infrastructure acquisition

▪ IT Infrastructure maintenance

 Operational overhead

▪ Technical personnel to maintain physical IT infrastructure

▪ System upgrades, patches that add testing to deployment 
cycles

▪ Utility bills, capital investments for power and cooling

▪ Security and access control measures for server rooms

▪ Admin and accounting staff to track licenses, support 
agreements, purchases
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BUSINESS DRIVERS FOR CLOUD - 3

 Organizational agility

▪ Ability to adapt and evolve infrastructure to face change 

from internal and external business factors

▪ Funding constraints can lead to insufficient on premise IT

▪ Cloud computing enables IT resources to scale with a 

lower financial commitment

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.63

BUSINESS DRIVERS FOR CLOUD - 4

 Introduction to Cloud Computing

▪Why study cloud computing?

▪History of cloud computing

▪Business drivers

▪Cloud enabling technologies

▪Terminology

▪Benefits of cloud adoption

▪Risks of cloud adoption

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.64

OBJECTIVES – 10/8

Cluster computing

Grid computing

Virtualization

Others
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TECHNOLOGY INNOVATIONS 

LEADING TO CLOUD

 Cluster computing (clustering)

▪ Cluster is a group of independent IT resources 

interconnected as a single system

▪ Servers configured with homogeneous hardware and software

▪ Identical or similar RAM, CPU, HDDs

▪ Design emphasizes redundancy as server components are easily 

interchanged to keep overall system running

▪ Example: if a RAID card fails on a key server, the card can be 

swapped from another redundant server

▪ Enables warm replica servers

▪ Duplication of key infrastructure servers to provide 

HW failover to ensure high availability (HA)
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CLUSTER COMPUTING
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 On going research area since early 1990s

 Distributed heterogeneous computing resources organized into 
logical pools of loosely coupled resources

 For example: heterogeneous servers connected by the internet

 Resources are heterogeneous and geographically dispersed

 Grids use middleware software layer to support workload 
distribution and coordination functions

 Aspects: load balancing, failover control, autonomic 
configuration management

 Grids have influenced clouds contributing common features: 
networked access to machines, resource pooling, scalability, 
and resiliency
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GRID COMPUTING 
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GRID COMPUTING - 2

VIRTUALIZATION
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VIRTUALIZATION
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 Simulate physical hardware resources via software

▪ The virtual machine (virtual computer)

▪ Virtual local area network (VLAN)

▪ Virtual hard disk

▪ Virtual network attached storage array (NAS)

 Early incarnations featured significant performance, 

reliability, and scalability challenges

 CPU and other HW enhancements have minimized 

performance GAPs
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VIRTUALIZATION

 Introduction to Cloud Computing

▪Why study cloud computing?

▪History of cloud computing

▪Business drivers

▪Cloud enabling technologies

▪Terminology

▪Benefits of cloud adoption

▪Risks of cloud adoption
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OBJECTIVES – 10/8

67 68

69 70

71 72



TCSS 462: Cloud Computing  
TCSS 562: Software Engineering for Cloud Computing  
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L4.13

 On-Premise Infrastructure

▪ Local server infrastructure not configured as a cloud

 Cloud Provider

▪ Corporation or private organization responsible for maintaining cloud

 Cloud Consumer

▪ User of cloud services

 Scaling 

▪ Vertical scaling

▪ Scale up: increase resources of a single virtual server

▪ Scale down: decrease resources of a single virtual server

▪ Horizontal scaling

▪ Scale out: increase number of virtual servers

▪ Scale in: decrease number of virtual servers
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KEY TERMINOLOGY

 Reconfigure virtual machine to have different resources:

▪ CPU cores

▪ RAM

▪ HDD/SDD capacity

 May require VM migration if

physical host machine 

resources are exceeded
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VERTICAL SCALING

 Increase (scale-out) or decrease (scale-in) number of vir tual 

servers based on demand

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.75

HORIZONTAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers
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HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers

IT resources instantly available IT resources typically instantly available
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HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication

 and automated scaling
Additional setup is normally needed
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HORIZONTAL VS VERTICAL SCALING
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Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication

 and automated scaling
Additional setup is normally needed

Additional servers required No additional servers required
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HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication

 and automated scaling
Additional setup is normally needed

Additional servers required No additional servers required

Not limited by individual server capacity Limited by individual server capacity
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HORIZONTAL VS VERTICAL SCALING

 Cloud services

▪ Broad array of resources accessible “as -a-service”

▪ Categorized as Infrastructure (IaaS), Platform (PaaS), 

Software (SaaS)

 Service-level-agreements (SLAs):

▪ Establish expectations for: uptime, security, availability, 

reliability, and performance
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KEY TERMINOLOGY - 2

 Introduction to Cloud Computing

▪Why study cloud computing?

▪History of cloud computing

▪Business drivers

▪Cloud enabling technologies

▪Terminology

▪Benefits of cloud adoption

▪Risks of cloud adoption
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OBJECTIVES – 10/8

 Cloud providers

▪ Leverage economies of scale through mass-acquisition and 

management of large-scale IT resources

▪ Locate datacenters to optimize costs where electricity is low

 Cloud consumers

▪ Key business/accounting difference:

▪ Cloud computing enables anticipated capital expenditures to be 

replaced with operational expenditures  

▪ Operational expenditures always scale with the business

▪ Eliminates need to invest in server infrastructure based on 

anticipated business needs

▪ Businesses become more agile and lower their financial risks by 

eliminating large capital investments in physical infrastructure 
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GOALS AND BENEFITS

 On demand access to pay -as-you-go resources on a short -term 

basis ( less commitment)

 Ability to acquire “unlimited” computing

resources on demand when required for 

business needs

 Ability to add/remove IT resources at 

a fine-grained level

 Abstraction of server infrastructure so 

applications deployments are not dependent

on specific locations, hardware, etc.

▪ The cloud has made our software deployments 

more agile…
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CLOUD BENEFITS - 2
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 Example: Using 100 servers for 1 hour costs the same as 
using 1 server for 100 hours

 Rosetta Protein Folding: Working with a UW -Tacoma graduate 
student, we recently deployed this science model across 5,900 
compute cores on Amazon for 2-days…

 What is  the cost to purchase 5,900 compute cores?

 Recent Dell Server purchase example: 
20 cores on 2 servers for $4,478…

 Using this ratio 5,900 cores costs $1.3 million (purchase only)
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CLOUD BENEFITS - 3

Gene Wilder, Charlie and the Chocolate Factory

 Increased scalability

▪ Example demand over a

24-hour day  →

 Increased availability

 Increased reliability
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CLOUD BENEFITS

 Introduction to Cloud Computing

▪Why study cloud computing?

▪History of cloud computing

▪Business drivers

▪Cloud enabling technologies

▪Terminology

▪Benefits of cloud adoption

▪Risks of cloud adoption
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OBJECTIVES – 10/8

 Increased security vulnerabilities

▪ Expansion of trust boundaries now include the external 
cloud

▪ Security responsibility shared with cloud provider

 Reduced operational governance / control

▪ Users have less control of physical hardware

▪ Cloud user does not directly control resources to ensure 
quality-of-service

▪ Infrastructure management is abstracted

▪ Quality and stability of resources can vary

▪ Network latency costs and variability 
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CLOUD ADOPTION RISKS
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NETWORK LATENCY COSTS
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 Performance monitoring of  cloud applications

▪ Cloud metrics (AWS cloudwatch) support monitoring cloud 
infrastructure (network load, CPU utilization, I/O)

▪ Performance of cloud applications depends on the health of 
aggregated cloud resources working together

▪ User must monitor this aggregate performance 

 Limited portability among clouds

▪ Early cloud systems have significant “vendor” lock -in

▪ Common APIs and deployment models are slow to evolve

▪ Operating system containers help make applications more 
portable, but containers still must be deployed

 Geographical issues

▪ Abstraction of cloud location leads to legal challenges with respect 
to laws for data privacy and storage
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CLOUD RISKS - 2
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CLOUD: VENDOR LOCK-IN

QUESTIONS
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