
TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L4.1

 Cloud Computing –
 How did we get here? – part III,

 Introduction to Cloud Computing

 Wes J. Lloyd
 School of Engineering and Technology

 University of Washington - Tacoma

TCSS 462/562:

(SOFTWARE ENGINEERING

FOR) CLOUD COMPUTING  Questions from 10/3

 Tutorial 0, Tutorial 1, Tutorial 2

 Term Project Proposal

 Cloud Computing – How did we get here? - part III

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book

#1: Cloud Computing Concepts, Technology & Architecture

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.2

OBJECTIVES – 10/8

 Please classify your perspective on material covered in today’s

class (48 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.27 ( - previous 6.83)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.40 ( - previous 6.26)

 Response rates:

 TCSS 462: 32/43 – 74.41%

 TCSS 562: 16/19 – 84.21%

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.3

MATERIAL / PACE

 As a Devops engineer, why must we pay attention to the

average number threads when deploying our applications to

the cloud?

▪ Under-provisioning: provisioning too few cloud resources (not enough

vCPUs) to support the TLP of an application

▪ RESULT: insufficient vCPUs will be a performance bottleneck

▪ RESULT: the user experience suffers, latency (waiting) increases when

requests queue-up, turnaround time is slower if processing resources are

insufficient

▪ Over-provisioning: provision too many cloud resources (more vCPUs

than needed) relative to the TLP of an application

▪ RESULT: the user experience should be ideal

▪ RESULT: the application cost host will be higher than necessary when

more resources (i.e. vCPUs) are purchased relative to the number needed

(e.g. TLP)

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.4

FEEDBACK FROM 10/3

 What are the consequences of not using multithreading in our

application?

▪ Without multi-threaded processing, the application processing

throughput (requests processed per unit time) may be lower than the

capacity of your cloud resource (vCPUs)

▪ It may be possible to divide data sets and process them in separate

chunks in parallel to use available all available vCPUs

▪ It is also common to host servers where multiple user requests are

processed using distinct threads at the same time (in parallel)

▪ If all application processing is single-threaded, individual user

sessions can run using a separate thread, and multiple sessions can

run in parallel

▪ User processing can be parallelized with multiple threads for speed-up

where it is feasible

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.5

FEEDBACK - 2

 When are al l levels of parallelism used s imultaneously?

▪ If performing multi-thread data processing where there is a dataset
divided into chunks, and chunks are processed in parallel, then all
four-types of parallelism should occur simultaneously since the
computer will inherently perform instruction-level at bit-level
parallelism on its own

 I 'm unsure about when to consider the amount of vCPUs and
when to consider the amount of logical cores when choosing
an instance.

▪ Hyperthreaded CPUs have logical cores

▪ Cloud VMs provide users with “vCPUs” that are backed by
hyperthreaded CPUs (i.e. logical cores)

▪ As cloud users, it is important to understand when a resource is
implemented with physical vs. logical cores, because there IS a
notable performance (and cost) difference !!

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.6

FEEDBACK - 3

1 2

3 4

5 6

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L4.2

 Term Project - when should we start forming teams, etc.?

▪ We will introduce the term project proposal requirements today

▪ Groups in Canvas have been set up

▪ Students should “drag” their name into a group, and begin reaching

out via Canvas/discord messaging

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.7

FEEDBACK - 4

 UW census day was last Friday

 Course registrations have now largely been finalized for UW

courses for the quarter

 Course instructor will be sharing credits as soon as possible

now this week

October 8, 2024
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.8

AWS CLOUD CREDITS UPDATE

 Questions from 10/3

 Tutorial 0, Tutorial 1 , Tutorial 2

 Term Project Proposal

 Cloud Computing – How did we get here? - part III

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book

#1: Cloud Computing Concepts, Technology & Architecture

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.9

OBJECTIVES – 10/8

 Introduction to L inux & the Command Line

 https://faculty.washington.edu/wlloyd/courses/tcss562/tutori
als/TCSS462_562_f2023_tutorial_1.pdf

 Tutorial Sections:
1. The Command Line

2. Basic Navigation

3. More About Files

4. Manual Pages

5. File Manipulation

6. VI – Text Editor

7. Wildcards

8. Permissions

9. Filters

10. Grep and regular expressions

11. Piping and Redirection

12. Process Management

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.10

TUTORIAL 1

 Introduction to Bash Scripting

 https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/T
CSS462_562_f2023_tutorial_2.pdf

 Review tutorial sect ions:

 Create a BASH webservice cl ient

1. What is a BASH script?

2. Variables

3. Input

4. Arithmetic

5. If Statements

6. Loops

7. Functions

8. User Interface

 Call service to obtain IP address & lat/long of computer

 Call service to obtain weather forecast for lat/long

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.11

TUTORIAL 2

 Questions from 10/3

 Tutorial 0, Tutorial 1, Tutorial 2

 Term Project Proposal

 Cloud Computing – How did we get here? - part III

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book

#1: Cloud Computing Concepts, Technology & Architecture

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.12

OBJECTIVES – 10/8

7 8

9 10

11 12

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2023_tutorial_1.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2023_tutorial_1.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2023_tutorial_2.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2023_tutorial_2.pdf

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L4.3

 Questions from 10/1

 Tutorial 0, Tutorial 1, Tutorial 2

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.13

CATCH UP FROM – 10/3

Michael Flynn’s proposed taxonomy of computer

architectures based on concurrent instructions and

number of data streams (1966)

 SISD (Single Instruction Single Data)

 SIMD (Single Instruction, Multiple Data)

 MIMD (Multiple Instructions, Multiple Data)

 LESS COMMON : MISD (Multiple Instructions, Single Data)

 Pipeline architectures: functional units perform different

operations on the same data

 For fault tolerance, may want to execute same instructions

redundantly to detect and mask errors – for task replication

October 8, 2024
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.14

MICHAEL FLYNN’S COMPUTER

ARCHITECTURE TAXONOMY

 SISD (Single Instruction Single Data)

Scalar architecture with one processor/core.

▪ Individual cores of modern multicore processors are

“SISD”

 SIMD (Single Instruction, Multiple Data)

Supports vector processing

▪When SIMD instructions are issued, operations on

individual vector components are carried out concurrently

▪ Two 64-element vectors can be added in parallel

▪ Vector processing instructions added to modern CPUs

▪ Example: Intel MMX (multimedia) instructions

October 8, 2024
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.15

FLYNN’S TAXONOMY

 Exploit data-parallelism: vector operations enable speedups

 Vectors architecture provide vector registers that can store

entire matrices into a CPU register

 SIMD CPU extension (e.g. MMX) add support for vector

operations on traditional CPUs

 Vector operations reduce total number of instructions for

large vector operations

 Provides higher potential speedup vs. MIMD architecture

 Developers can think sequentially; not worry about

parallelism

October 8, 2024
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.16

(SIMD): VECTOR PROCESSING

ADVANTAGES

 MIMD (Multiple Instructions, Multiple Data) - system with

several processors and/or cores that function asynchronously

and independently

 At any time, dif ferent processors/cores may execute dif ferent

instructions on dif ferent data

 Multi-core CPUs are MIMD

 Processors share memory via interconnection networks

▪ Hypercube, 2D torus, 3D torus, omega network, other topologies

 MIMD systems have dif ferent methods of sharing memory

▪ Uniform Memory Access (UMA)

▪ Cache Only Memory Access (COMA)

▪ Non-Uniform Memory Access (NUMA)

October 8, 2024
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.17

FLYNN’S TAXONOMY - 2

 Arithmetic intensity : Ratio of work (W) to
 memory traffic r/w (Q)
Example: # of floating point ops per byte of data read

 Characterizes application scalability with SIMD support

▪ SIMD can perform many fast matrix operations in parallel

 High arithmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

 Low arithmetic intensity:
Programs with sparse matrix operations do not scale well
with problem size
(memory RW becomes bottleneck, not enough ops!)

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.18

ARITHMETIC INTENSITY

13 14

15 16

17 18

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L4.4

 When program reaches a given arithmetic intensity

performance of code running on CPU hits a “roof”

 CPU performance bottleneck changes from:

memory bandwidth (lef t) → f loating point performance (right)

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.19

ROOFLINE MODEL

Key take-aways:
When a program’s has low
Arithmetic Intensity, memory
bandwidth limits performance..

With high Arithmetic intensity,
the system has peak parallel
performance…
→ performance is limited by??

 Questions from 10/3

 Tutorial 0, Tutorial 1, Tutorial 2

 Term Project Proposal

 Cloud Computing – How did we get here? - part III

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book

#1: Cloud Computing Concepts, Technology & Architecture

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.20

OBJECTIVES – 10/8

 GPU provides multiple SIMD processors

 Typically 7 to 15 SIMD processors each

 32,768 total registers, divided into 16 lanes

(2048 registers each)

 GPU programming model:

single instruction, multiple thread

 Programmed using CUDA- C like programming

language by NVIDIA for GPUs

 CUDA threads – single thread associated with each

data element (e.g. vector or matrix)

 Thousands of threads run concurrently

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.21

GRAPHICAL PROCESSING UNITS (GPUS)

 Questions from 10/3

 Tutorial 0, Tutorial 1, Tutorial 2

 Term Project Proposal

 Cloud Computing – How did we get here? - part III

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book

#1: Cloud Computing Concepts, Technology & Architecture

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.22

OBJECTIVES – 10/8

Parallel hardware and software systems allow:

▪ Solve problems demanding resources not available on
single system.

▪ Reduce time required to obtain solution

 The speed-up (S) measures effectiveness of
parallelization:

 S(N) = T(1) / T(N)

T(1) → execution time of total sequential computation

T(N) → execution time for performing N parallel
computations in parallel

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.23

PARALLEL COMPUTING

 Consider embarrassingly parallel image processing

 Eight images (multiple data)

 Apply image transformation (greyscale) in parallel

 8-core CPU, 16 hyperthreads

 Sequential processing: perform transformations one at a time
using a single program thread

▪ 8 images, 3 seconds each: T(1) = 24 seconds

 Parallel processing

▪ 8 images, 3 seconds each: T(N) = 3 seconds

 Speedup: S(N) = 24 / 3 = 8x speedup

 Called “perfect scaling”

 Must consider data transfer and computation setup time

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.24

SPEED-UP EXAMPLE

19 20

21 22

23 24

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L4.5

 Amdahl’s law is used to estimate the speed -up of a job
using parallel computing

1. Divide job into two parts

2. Part A that will still be sequential

3. Part B that will be sped-up with parallel computing

 Portion of computation which cannot be parallelized will
determine (i.e. limit) the overall speedup

 Amdahl’s law assumes jobs are of a fixed size

 Also, Amdahl’s assumes no overhead for distributing the
work, and a perfectly even work distribution

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.25

AMDAHL’S LAW

 S = theoretical speedup of the whole task

 f= fraction of work that is parallel (ex. 25% or 0.25)

 N= proposed speed up of the parallel part (ex. 5 t imes speedup)

 % improvement
of task execution = 100 * (1 – (1 / S))

 Using Amdahl’s law, we can f ind the maximum possible
speed-up (S) for a g iven scenario (e.g. ~8x) …

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.26

AMDAHL’S LAW

Speed-up formula
 →

 Program with two independent parts:

▪ Part A is 75% of the execution time

▪ Part B is 25% of the execution time

 Part B is made 5 times faster with
parallel computing (N=5)

 Estimate the percent improvement of task execution

 Original Part A is 3 seconds, Part B is 1 second

 N=5 (speedup of part B)

 f=.25 (only 25% of the whole job (A+B) will be sped -up)

 S=1 / ((1-f) + f/N)

 S=1 / ((.75) + .25/5)

 S=1.25 (speed up is 1.25x faster)

 % improvement = 100 * (1 – 1/1.25) = 20%

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.27

AMDAHL’S LAW EXAMPLE

from Wikipedia

 Calculates the scaled speed-up using “N” processors

 S(N) = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized

(e.g. must run sequentially)

 Can be used to estimate runtime of parallel portion of

program

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.28

GUSTAFSON'S LAW

 Calculates the scaled speed-up using “N” processors

 S(N) = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized

(e.g. must run sequentially)

 Can be used to estimate runtime of parallel portion of

program

 Where α =  / ( + )

 Where = sequential time,  =parallel time

 Our Amdahl’s example: = 3s,  =1s, α =.75

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.29

GUSTAFSON'S LAW

 Calculates the scaled speed-up using “N” processors

 S(N) = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized

(e.g. must run sequentially)

 Example:

Consider a program that is embarrassingly parallel,

but 75% cannot be parallelized. α=.75

QUESTION: I f deploying the job on a 2 -core CPU, what

scaled speedup is possible assuming the use of two

processes that run in parallel?

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.30

GUSTAFSON'S LAW

25 26

27 28

29 30

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L4.6

 QUESTION:

What is the maximum theoret ical speed -up on a 2-core CPU ?

S(N) = N + (1 - N) α

N=2, α=.75

 S(N) = 2 + (1 - 2) .75

 S(N) = ?

 What is the maximum theoret ical speed -up on a 16-core CPU?

S(N) = N + (1 - N) α

N=16, α=.75

 S(N) = 16 + (1 - 16) .75

 S(N) = ?

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.31

GUSTAFSON’S EXAMPLE

 QUESTION:

What is the maximum theoret ical speed -up on a 2-core CPU ?

S(N) = N + (1 - N) α

N=2, α=.75

 S(N) = 2 + (1 - 2) .75

 S(N) = ?

 What is the maximum theoret ical speed -up on a 16-core CPU?

S(N) = N + (1 - N) α

N=16, α=.75

 S(N) = 16 + (1 - 16) .75

 S(N) = ?

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.32

GUSTAFSON’S EXAMPLE

For 2 CPUs, speed up is 1.25x

For 16 CPUs, speed up is 4.75x

For 2 CPUs, speed up is 1.25x

For 16 CPUs, speed up is 4.75x

 Transistors on a chip doubles approximately every 1.5 years

 CPUs now have billions of transistors

 Power dissipation issues at faster clock rates leads to heat

removal challenges

▪ Transition from: increasing clock rates → to adding CPU cores

 Symmetric core processor –multi-core CPU, all cores have the

same computational resources and speed

 Asymmetric core processor – on a multi -core CPU, some cores

have more resources and speed

 Dynamic core processor – processing resources and speed can

be dynamically configured among cores

 Observation: asymmetric processors of fer a higher speedup

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.33

MOORE’S LAW

What kind of processor are modern
Intel CPUs ?

What kind of processor are modern
Intel CPUs ?

 Questions from 10/3

 Tutorial 0, Tutorial 1, Tutorial 2

 Term Project Proposal

 Cloud Computing – How did we get here? - part III

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book

#1: Cloud Computing Concepts, Technology & Architecture

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.34

OBJECTIVES – 10/8

 Collection of autonomous computers, connected through a

network with distribution software called “middleware” that

enables coordination of activities and sharing of resources

 Key characteristics:

 Users perceive system as a single, integrated computing

facility.

 Compute nodes are autonomous

 Scheduling, resource management, and security implemented

by every node

 Multiple points of control and failure

 Nodes may not be accessible at all times

 System can be scaled by adding additional nodes

 Availability at low levels of HW/software/network reliability

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.35

DISTRIBUTED SYSTEMS

 Key non-functional attributes

▪ Known as “ilities” in software engineering

 Availability – 24/7 access?

 Reliability - Fault tolerance

 Accessibility – reachable?

 Usability – user fr iendly

 Understandability – can under

 Scalability – responds to variable demand

 Extensibility – can be easily modified, extended

 Maintainability – can be easily fixed

 Consistency – data is replicated correctly in timely manner

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.36

DISTRIBUTED SYSTEMS - 2

31 32

33 34

35 36

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L4.7

 Access transparency: local and remote objects accessed using
identical operations

 Location transparency: objects accessed w/o knowledge of
their location.

 Concurrency transparency: several processes run concurrently
using shared objects w/o inter ference among them

 Replication transparency: multiple instances of objects are
used to increase reliability
- users are unaware if and how the system is replicated

 Failure transparency: concealment of faults

 Migration transparency: objects are moved w/o affecting
operations performed on them

 Performance transparency: system can be reconfigured based
on load and quality of service requirements

 Scaling transparency: system and applications can scale w/o
change in system structure and w/o affecting applications

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.37

TRANSPARENCY PROPERTIES OF

DISTRIBUTED SYSTEMS

 Questions from 10/3

 Tutorial 0, Tutorial 1, Tutorial 2

 Term Project Proposal

 Cloud Computing – How did we get here? - part III

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book

#1: Cloud Computing Concepts, Technology & Architecture

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.38

OBJECTIVES – 10/8

 Soft modularity: TRADITIONAL

 Divide a program into modules (classes) that call each other

and communicate with shared-memory

 A procedure calling convention is used (or method invocation)

 Enforced modularity: CLOUD COMPUTING

 Program is divided into modules that communicate only

through message passing

 The ubiquitous client -server paradigm

 Clients and servers are independent decoupled modules

 System is more robust if servers are stateless

 May be scaled and deployed separately

 May also FAIL separately!

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.39

TYPES OF MODULARITY

 Multi-core CPU technology and hyper -threading

 What is a

▪ Heterogeneous system?

▪ Homogeneous system?

▪ Autonomous or self-organizing system?

 Fine grained vs. coarse grained parallelism

 Parallel message passing code is easier to debug than

shared memory (e.g. p-threads)

 Know your application’s max/avg Thread Level

Parallelism (TLP)

 Data-level parallelism: Map-Reduce, (SIMD) Single

Instruction Multiple Data, Vector processing & GPUs

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.40

CLOUD COMPUTING – HOW DID WE GET HERE? -

PART III

SUMMARY OF KEY POINTS

 Bit-level parallelism

 Instruction-level parallelism (CPU pipelining)

 Flynn’s taxonomy : computer system architecture classification

▪ SISD – Single Instruction, Single Data (modern core of a CPU)

▪ SIMD – Single Instruction, Multiple Data (Data parallelism)

▪ MIMD – Multiple Instruction, Multiple Data

▪ MISD is RARE; application for fault tolerance…

 Arithmetic intensity : ratio of calculations vs memory RW

 Roofline model:

Memory bottleneck with low arithmetic intensity

 GPUs: ideal for programs with high arithmetic intensity

▪ SIMD and Vector processing supported by many large registers

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.41

CLOUD COMPUTING – HOW DID WE GET HERE? -

PART III

SUMMARY OF KEY POINTS - 2

 Speed-up (S)

S(N) = T(1) / T(N)

 Amdahl’s law:
S = 1/ α
α = percent of program that must be sequential

 Scaled speedup with N processes:
S(N) = N – α(N-1)

 Moore’s Law

 Symmetric core, Asymmetric core, Dynamic core CPU

 Distributed Systems Non-function quality attributes

 Distributed Systems – Types of Transparency

 Types of modularity - Soft, Enforced

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.42

CLOUD COMPUTING – HOW DID WE GET HERE? -

PART III

SUMMARY OF KEY POINTS - 3

37 38

39 40

41 42

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L4.8

 Questions from 10/3

 Tutorial 0, Tutorial 1, Tutorial 2

 Term Project Proposal

 Cloud Computing – How did we get here? - part III

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book

#1: Cloud Computing Concepts, Technology & Architecture

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.43

OBJECTIVES – 10/8

INTRODUCTION TO

CLOUD COMPUTING

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L4.44

 Introduction to Cloud Computing

▪Why study cloud computing?

▪History of cloud computing

▪Business drivers

▪Cloud enabling technologies

▪Terminology

▪Benefits of cloud adoption

▪Risks of cloud adoption

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.45

OBJECTIVES – 10/8

 LINKEDIN - TOP IT Skills f rom job app data

▪ #1 Cloud and Distributed Computing

▪ https://learning.linkedin.com/week-of-learning/top-skills

▪ #2 Statistical Analysis and Data Mining

 FORBES Survey – 6 Tech Skills That’ll Help You Earn More

▪ #1 Data Science

▪ #2 Cloud and Distributed Computing

▪ http://www.forbes.com/sites/laurencebradford/2016/12/

19/6-tech-skills-thatll-help-you-earn-more-in-2017/

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.46

WHY STUDY CLOUD COMPUTING?

 Computerworld

Magazine

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.47

WHY STUDY CLOUD COMPUTING? - 2

 Introduction to Cloud Computing

▪Why study cloud computing?

▪History of cloud computing

▪Business drivers

▪Cloud enabling technologies

▪Terminology

▪Benefits of cloud adoption

▪Risks of cloud adoption

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.48

OBJECTIVES – 10/8

43 44

45 46

47 48

https://learning.linkedin.com/week-of-learning/top-skills
http://www.forbes.com/sites/laurencebradford/2016/12/19/6-tech-skills-thatll-help-you-earn-more-in-2017/
http://www.forbes.com/sites/laurencebradford/2016/12/19/6-tech-skills-thatll-help-you-earn-more-in-2017/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L4.9

 John McCarthy, 1961

▪ Turing award winner for contributions to AI

 “If computers of the kind I have advocated become the

computers of the future, then computing may someday be

organized as a public utility just as the telephone system is a

public utility… The computer utility could become the basis of

a new and important industry…”

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.49

A BRIEF HISTORY OF CLOUD COMPUTING

 Internet based computer utilities

 Since the mid-1990s

 Search engines: Yahoo!, Google, Bing

 Email: Hotmail, Gmail

 2000s

 Social networking platforms: MySpace, Facebook, LinkedIn

 Social media: Twitter, YouTube

 Popularized core concepts

 Formed basis of cloud computing

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.50

CLOUD HISTORY - 2

 Late 1990s – Early Software-as-a-Service (SaaS)

▪ Salesforce: Remotely provisioned services for the enterprise

 2002 -

▪ Amazon Web Services (AWS) platform: Enterprise oriented services

for remotely provisioned storage, computing resources, and business

functionality

 2006 – Infrastructure-as-a-Service (IaaS)

▪ Amazon launches Elastic Compute Cloud (EC2) service

▪ Organization can “lease” computing capacity and processing power

to host enterprise applications

▪ Infrastructure

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.51

CLOUD HISTORY: SERVICES - 1

 2006 – Software-as-a-Service (SaaS)

▪ Google: Offers Google DOCS, “MS Office” like fully -web

based application for online documentation creation and

collaboration

 2009 – Platform-as-a-Service (PaaS)

▪ Google: Offers Google App Engine, publicly hosted

platform for hosting scalable web applications on google-

hosted datacenters

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.52

CLOUD HISTORY: SERVICES - 2

CLOUD COMPUTING

NIST GENERAL DEFINITION

“Cloud computing is a model for enabling

convenient, on-demand network access to a shared

pool of configurable computing resources

(networks, servers, storage, applications and

services) that can be rapidly provisioned and

reused with minimal management effort or service

provider interaction”…

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.53

“Cloud computing is a specialized form of

distributed computing that introduces utilization

models for remotely provisioning scalable and

measured resources.”

From Cloud Computing Concepts, Technology, and Architecture

Z. Mahmood, R. Putt ini , Prent ice Hall , 5 th print ing, 2015

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.54

MORE CONCISE DEFINITION

49 50

51 52

53 54

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L4.10

 Introduction to Cloud Computing

▪Why study cloud computing?

▪History of cloud computing

▪Business drivers

▪Cloud enabling technologies

▪Terminology

▪Benefits of cloud adoption

▪Risks of cloud adoption

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.55

OBJECTIVES – 10/8

Capacity planning

Cost reduction

Operational overhead

Organizational agility

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.56

BUSINESS DRIVERS

FOR CLOUD COMPUTING

 Capacity planning

▪ Process of determining and fulfilling future demand for IT
resources

▪ Capacity vs. demand

▪ Discrepancy between capacity of IT resources and actual
demand

▪ Over-provisioning: resource capacity exceeds demand

▪ Under-provisioning: demand exceeds resource capacity

▪ Capacity planning aims to minimize the discrepancy of
available resources vs. demand

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.57

BUSINESS DRIVERS

FOR CLOUD COMPUTING

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L4.58

Dwight, The Office TV sitcom

 Capacity planning

▪ Over-provisioning: is costly due to too much infrastructure

▪ Under-provisioning: is costly due to potential for business loss from

poor quality of service

 Capacity planning strategies

▪ Lead strategy: add capacity in anticipation of demand (pre-

provisioning)

▪ Lag strategy: add capacity when capacity is fully leveraged

▪ Match strategy: add capacity in small increments as demand

increases

 Load prediction

▪ Capacity planning helps anticipate demand flucations

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.59

BUSINESS DRIVERS FOR CLOUD - 2

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.60

CAPACITY PLANNING

55 56

57 58

59 60

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L4.11

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.61

CAPACITY PLANNING - 2

 Capacity planning  Cost reduction

▪ IT Infrastructure acquisition

▪ IT Infrastructure maintenance

 Operational overhead

▪ Technical personnel to maintain physical IT infrastructure

▪ System upgrades, patches that add testing to deployment
cycles

▪ Utility bills, capital investments for power and cooling

▪ Security and access control measures for server rooms

▪ Admin and accounting staff to track licenses, support
agreements, purchases

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.62

BUSINESS DRIVERS FOR CLOUD - 3

 Organizational agility

▪ Ability to adapt and evolve infrastructure to face change

from internal and external business factors

▪ Funding constraints can lead to insufficient on premise IT

▪ Cloud computing enables IT resources to scale with a

lower financial commitment

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.63

BUSINESS DRIVERS FOR CLOUD - 4

 Introduction to Cloud Computing

▪Why study cloud computing?

▪History of cloud computing

▪Business drivers

▪Cloud enabling technologies

▪Terminology

▪Benefits of cloud adoption

▪Risks of cloud adoption

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.64

OBJECTIVES – 10/8

Cluster computing

Grid computing

Virtualization

Others

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.65

TECHNOLOGY INNOVATIONS

LEADING TO CLOUD

 Cluster computing (clustering)

▪ Cluster is a group of independent IT resources

interconnected as a single system

▪ Servers configured with homogeneous hardware and software

▪ Identical or similar RAM, CPU, HDDs

▪ Design emphasizes redundancy as server components are easily

interchanged to keep overall system running

▪ Example: if a RAID card fails on a key server, the card can be

swapped from another redundant server

▪ Enables warm replica servers

▪ Duplication of key infrastructure servers to provide

HW failover to ensure high availability (HA)

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.66

CLUSTER COMPUTING

61 62

63 64

65 66

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L4.12

 On going research area since early 1990s

 Distributed heterogeneous computing resources organized into
logical pools of loosely coupled resources

 For example: heterogeneous servers connected by the internet

 Resources are heterogeneous and geographically dispersed

 Grids use middleware software layer to support workload
distribution and coordination functions

 Aspects: load balancing, failover control, autonomic
configuration management

 Grids have influenced clouds contributing common features:
networked access to machines, resource pooling, scalability,
and resiliency

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.67

GRID COMPUTING

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.68

GRID COMPUTING - 2

VIRTUALIZATION

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.69

VIRTUALIZATION

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.70

 Simulate physical hardware resources via software

▪ The virtual machine (virtual computer)

▪ Virtual local area network (VLAN)

▪ Virtual hard disk

▪ Virtual network attached storage array (NAS)

 Early incarnations featured significant performance,

reliability, and scalability challenges

 CPU and other HW enhancements have minimized

performance GAPs

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.71

VIRTUALIZATION

 Introduction to Cloud Computing

▪Why study cloud computing?

▪History of cloud computing

▪Business drivers

▪Cloud enabling technologies

▪Terminology

▪Benefits of cloud adoption

▪Risks of cloud adoption

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.72

OBJECTIVES – 10/8

67 68

69 70

71 72

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L4.13

 On-Premise Infrastructure

▪ Local server infrastructure not configured as a cloud

 Cloud Provider

▪ Corporation or private organization responsible for maintaining cloud

 Cloud Consumer

▪ User of cloud services

 Scaling

▪ Vertical scaling

▪ Scale up: increase resources of a single virtual server

▪ Scale down: decrease resources of a single virtual server

▪ Horizontal scaling

▪ Scale out: increase number of virtual servers

▪ Scale in: decrease number of virtual servers

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.73

KEY TERMINOLOGY

 Reconfigure virtual machine to have different resources:

▪ CPU cores

▪ RAM

▪ HDD/SDD capacity

 May require VM migration if

physical host machine

resources are exceeded

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.74

VERTICAL SCALING

 Increase (scale-out) or decrease (scale-in) number of vir tual

servers based on demand

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.75

HORIZONTAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.76

HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

IT resources instantly available IT resources typically instantly available

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.77

HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication

 and automated scaling
Additional setup is normally needed

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.78

HORIZONTAL VS VERTICAL SCALING

73 74

75 76

77 78

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L4.14

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication

 and automated scaling
Additional setup is normally needed

Additional servers required No additional servers required

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.79

HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication

 and automated scaling
Additional setup is normally needed

Additional servers required No additional servers required

Not limited by individual server capacity Limited by individual server capacity

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.80

HORIZONTAL VS VERTICAL SCALING

 Cloud services

▪ Broad array of resources accessible “as -a-service”

▪ Categorized as Infrastructure (IaaS), Platform (PaaS),

Software (SaaS)

 Service-level-agreements (SLAs):

▪ Establish expectations for: uptime, security, availability,

reliability, and performance

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.81

KEY TERMINOLOGY - 2

 Introduction to Cloud Computing

▪Why study cloud computing?

▪History of cloud computing

▪Business drivers

▪Cloud enabling technologies

▪Terminology

▪Benefits of cloud adoption

▪Risks of cloud adoption

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.82

OBJECTIVES – 10/8

 Cloud providers

▪ Leverage economies of scale through mass-acquisition and

management of large-scale IT resources

▪ Locate datacenters to optimize costs where electricity is low

 Cloud consumers

▪ Key business/accounting difference:

▪ Cloud computing enables anticipated capital expenditures to be

replaced with operational expenditures

▪ Operational expenditures always scale with the business

▪ Eliminates need to invest in server infrastructure based on

anticipated business needs

▪ Businesses become more agile and lower their financial risks by

eliminating large capital investments in physical infrastructure

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.83

GOALS AND BENEFITS

 On demand access to pay -as-you-go resources on a short -term

basis (less commitment)

 Ability to acquire “unlimited” computing

resources on demand when required for

business needs

 Ability to add/remove IT resources at

a fine-grained level

 Abstraction of server infrastructure so

applications deployments are not dependent

on specific locations, hardware, etc.

▪ The cloud has made our software deployments

more agile…

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.84

CLOUD BENEFITS - 2

79 80

81 82

83 84

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L4.15

 Example: Using 100 servers for 1 hour costs the same as
using 1 server for 100 hours

 Rosetta Protein Folding: Working with a UW -Tacoma graduate
student, we recently deployed this science model across 5,900
compute cores on Amazon for 2-days…

 What is the cost to purchase 5,900 compute cores?

 Recent Dell Server purchase example:
20 cores on 2 servers for $4,478…

 Using this ratio 5,900 cores costs $1.3 million (purchase only)

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.85

CLOUD BENEFITS - 3

Gene Wilder, Charlie and the Chocolate Factory

 Increased scalability

▪ Example demand over a

24-hour day →

 Increased availability

 Increased reliability

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.87

CLOUD BENEFITS

 Introduction to Cloud Computing

▪Why study cloud computing?

▪History of cloud computing

▪Business drivers

▪Cloud enabling technologies

▪Terminology

▪Benefits of cloud adoption

▪Risks of cloud adoption

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.88

OBJECTIVES – 10/8

 Increased security vulnerabilities

▪ Expansion of trust boundaries now include the external
cloud

▪ Security responsibility shared with cloud provider

 Reduced operational governance / control

▪ Users have less control of physical hardware

▪ Cloud user does not directly control resources to ensure
quality-of-service

▪ Infrastructure management is abstracted

▪ Quality and stability of resources can vary

▪ Network latency costs and variability

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.89

CLOUD ADOPTION RISKS

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.90

NETWORK LATENCY COSTS

85 86

87 88

89 90

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L4.16

 Performance monitoring of cloud applications

▪ Cloud metrics (AWS cloudwatch) support monitoring cloud
infrastructure (network load, CPU utilization, I/O)

▪ Performance of cloud applications depends on the health of
aggregated cloud resources working together

▪ User must monitor this aggregate performance

 Limited portability among clouds

▪ Early cloud systems have significant “vendor” lock -in

▪ Common APIs and deployment models are slow to evolve

▪ Operating system containers help make applications more
portable, but containers still must be deployed

 Geographical issues

▪ Abstraction of cloud location leads to legal challenges with respect
to laws for data privacy and storage

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.91

CLOUD RISKS - 2

October 8, 2024
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.92

CLOUD: VENDOR LOCK-IN

QUESTIONS

October 8, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma L4.93

91 92

93

	Slide 1: TCSS 462/562: (Software Engineering for) Cloud Computing
	Slide 2: OBJECTIVES – 10/8
	Slide 3: Material / pace
	Slide 4: Feedback from 10/3
	Slide 5: Feedback - 2
	Slide 6: Feedback - 3
	Slide 7: Feedback - 4
	Slide 8: AWS Cloud Credits update
	Slide 9: OBJECTIVES – 10/8
	Slide 10: Tutorial 1
	Slide 11: Tutorial 2
	Slide 12: OBJECTIVES – 10/8
	Slide 13: Catch up from – 10/3
	Slide 14: Michael Flynn’s computer architecture taxonomy
	Slide 15: Flynn’s taxonomy
	Slide 16: (Simd): VECtOR PROCESSING advantages
	Slide 17: Flynn’s taxonomy - 2
	Slide 18: Arithmetic intensity
	Slide 19: Roofline model
	Slide 20: OBJECTIVES – 10/8
	Slide 21: Graphical processing units (gpus)
	Slide 22: OBJECTIVES – 10/8
	Slide 23: Parallel computing
	Slide 24: Speed-up example
	Slide 25: Amdahl’s law
	Slide 26: Amdahl’s law
	Slide 27: Amdahl’s law example
	Slide 28: Gustafson's Law
	Slide 29: Gustafson's Law
	Slide 30: Gustafson's Law
	Slide 31: Gustafson’s example
	Slide 32: Gustafson’s example
	Slide 33: Moore’s law
	Slide 34: OBJECTIVES – 10/8
	Slide 35: Distributed systems
	Slide 36: Distributed systems - 2
	Slide 37: Transparency properties of distributed systems
	Slide 38: OBJECTIVES – 10/8
	Slide 39: Types of modularity
	Slide 40: Cloud Computing – How did we get here? - part III Summary of key points
	Slide 41: Cloud Computing – How did we get here? - part III Summary of key points - 2
	Slide 42: Cloud Computing – How did we get here? - part III Summary of key points - 3
	Slide 43: OBJECTIVES – 10/8
	Slide 44: Introduction to cloud computing
	Slide 45: OBJECTIVES – 10/8
	Slide 46: Why study cloud computing?
	Slide 47: Why study cloud computing? - 2
	Slide 48: OBJECTIVES – 10/8
	Slide 49: A brief history of cloud computing
	Slide 50: Cloud history - 2
	Slide 51: Cloud history: services - 1
	Slide 52: Cloud history: services - 2
	Slide 53: Cloud Computing NIST General Definition
	Slide 54: More concise definition
	Slide 55: OBJECTIVES – 10/8
	Slide 56: Business drivers for cloud computing
	Slide 57: Business drivers for cloud computing
	Slide 58
	Slide 59: Business drivers for cloud - 2
	Slide 60: Capacity planning
	Slide 61: Capacity planning - 2
	Slide 62: Business drivers for cloud - 3
	Slide 63: Business drivers for cloud - 4
	Slide 64: OBJECTIVES – 10/8
	Slide 65: Technology innovations leading to cloud
	Slide 66: Cluster computing
	Slide 67: Grid computing
	Slide 68: Grid computing - 2
	Slide 69: Virtualization
	Slide 70: Virtualization
	Slide 71: virtualization
	Slide 72: OBJECTIVES – 10/8
	Slide 73: Key terminology
	Slide 74: Vertical Scaling
	Slide 75: Horizontal scaling
	Slide 76: Horizontal vs vertical scaling
	Slide 77: Horizontal vs vertical scaling
	Slide 78: Horizontal vs vertical scaling
	Slide 79: Horizontal vs vertical scaling
	Slide 80: Horizontal vs vertical scaling
	Slide 81: Key terminology - 2
	Slide 82: OBJECTIVES – 10/8
	Slide 83: Goals and benefits
	Slide 84: Cloud benefits - 2
	Slide 85: Cloud benefits - 3
	Slide 86
	Slide 87: Cloud benefits
	Slide 88: OBJECTIVES – 10/8
	Slide 89: Cloud adoption risks
	Slide 90: Network latency costs
	Slide 91: Cloud risks - 2
	Slide 92: Cloud: vendor lock-in
	Slide 93: Questions

