
Τ

OBJECTIVES – 10/7 Questions from 10/2 Tutorial 0, Tutorial 1, Tutorial 2 Cloud Computing – How did we get here? (Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition) Class Activity 1 – Implicit vs Explicit Parallelism SIMD architectures, vector processing, multimedia extensions Graphics processing units Speed-up, Amdahl's Law, Scaled Speedup Properties of distributed systems Modularity October 7, 2025 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

2

3

4

5	Started:	S 562 - Oct 7 at 1:1 ! Instru	3am		aily	Feedb	ack S	iurvey	/ - 1 0	/5		
		Question 1 0.5 pts On a scale of 1 to 10, please classify your perspective on material covered in today's class:										
			2 o Me	3		5 Equal w and Rev	6 iew	7	8	9	10 Mostly New to Me	
		Question	12								0.5 pts	
		Please rat	te the	pace of t	today's (class:	6	7	8	9	10	

5

MATERIAL / PACE ■ Please classify your perspective on material covered in today's class (46 respondents, 38 in-person, 8 online): ■ 1-mostly review, 5-equal new/review, 10-mostly new ■ Average - 7.24 (↑ - previous 7.20) ■ Please rate the pace of today's class: ■ 1-slow, 5-just right, 10-fast ■ Average - 5.20 (↑ - previous 5.16) October 7, 2025 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] school of Engineering and Technology, University of Washington - Tacoma

6

FEEDBACK FROM 10/2

- Do we need to upload video of doing the assignment (tutorial 1?) for quiz or can take quiz directly?
 - Assuming question is about tutorial 1
 - Quiz can be taken directly, but 50% credit for uploading script of Linux session where you've tested the Linux commands to answer the quiz questions
- Are metal "vms" on Amazon a dedicated machine since no hypervisor?
 - Yes renting a "metal" instance is one way to reserve an entire physical server, and guarantee there are no other tenants (users)

October 7, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L3.7

7

QUESTIONS - 2

- What changed between amd "m6a"-192vCPU/host and "m4a"-192vCPU/host? if # of CPUs did not change what did?
 - There is no "m4a" ec2 instance family
 - Do you mean what is the difference between m6a.48xlarge and m6a.metal?
- Why would embarrassingly parallel be an issue?
 - Embarrassingly parallel also is called "pleasingly" parallel
 - This simply means that making the program code parallel was relatively easy – such that the programmer is embarrassed regarding how "easy" their job is
- Does data level parallelism require multiple processors ?
 - On a Von Neumann (control-flow) architecture (e.g. x86/ARM), yes

October 7, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

13.8

8

QUESTIONS - 3

- How are the differences between ARM and Intel (x86) processors significant for cloud computing?
- Papers:
- Characterizing X86 and ARM Serverless Performance Variation: A Natural Language Processing Case Study
- X86 vs. ARM64: An Investigation of Factors Influencing Serverless Performance
- Predicting ARM64 Serverless Function Runtime: Leveraging function profiling for generalized performance models

October 7, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L3.9

9

FEEDBACK - 4

- Thread level parallelism is not clear
- Thread level parallelism refers to when parallelism occurs as a result of multiple threads performing operations in parallel typically on a multi-core computer
- As DevOps engineers, we often are responsible for deploying our applications in the cloud. Therefore, we need to understand the average number and peak number of threads our application requires.
- In class, I demonstrated how this can be observed in Linux using "top" and a multi-threaded prime number generation program

October 7, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L3.10

10

DEMOGRAPHICS SURVEY

Please complete the ONLINE demographics survey:

We have received 41 responses so far. We are waiting on ~12 responses.

- https://forms.gle/QNUW2hUV7fR7BDmv7
- Linked from course webpage in Canvas:
- http://faculty.washington.edu/wlloyd/courses/tcss562/ announcements.html

October 7, 2025

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L3.11

11

AWS CLOUD CREDITS SURVEY

Please complete the AWS Cloud Credits survey:

Please only complete survey after setting up AWS account or if requiring an IAM user (no-credit card option)

- https://forms.gle/Y4iWvBRFVLRPnPX37
- Linked from course webpage in Canvas:
- http://faculty.washington.edu/wlloyd/courses/tcss562/ announcements.html

October 7, 2025

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L3.12

12

OBJECTIVES - 10/7 - Questions from 10/2 - Tutorial 0. Tutorial 1, Tutorial 2 - Cloud Computing - How did we get here? (Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition) - Class Activity 1 - Implicit vs Explicit Parallelism - SIMD architectures, vector processing, multimedia extensions - Graphics processing units - Speed-up, Amdahl's Law, Scaled Speedup - Properties of distributed systems - Modularity - October 7, 2025 - TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] - School of Engineering and Technology, University of Washington - Tacoma

13

OBJECTIVES - 10/7 Questions from 10/2 Tutorial 0, Tutorial 1, Tutorial 2 Cloud Computing - How did we get here? (Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition) Class Activity 1 - Implicit vs Explicit Parallelism SIMD architectures, vector processing, multimedia extensions Graphics processing units Speed-up, Amdahl's Law, Scaled Speedup Properties of distributed systems Modularity October 7, 2025 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

14

OBJECTIVES - 10/7 Questions from 10/2 Tutorial 0, Tutorial 1, Tutorial 2 Cloud Computing - How did we get here? (Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition) Class Activity 1 - Implicit vs Explicit Parallelism SIMD architectures, vector processing, multimedia extensions Graphics processing units Speed-up, Amdahl's Law, Scaled Speedup Properties of distributed systems Modularity

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma

15

October 7, 2025

OBJECTIVES - 10/7 Questions from 10/2 Tutorial 0, Tutorial 1, Tutorial 2 Cloud Computing - How did we get here? (Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition) Class Activity 1 - Implicit vs Explicit Parallelism SIMD architectures, vector processing, multimedia extensions Graphics processing units Speed-up, Amdahl's Law, Scaled Speedup Properties of distributed systems Modularity Ctober 7, 2025 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

16

CLOUD COMPUTING: HOW DID WE GET HERE? - 5

- Compute clouds are large-scale distributed systems
 - Heterogeneous systems
 - Many services/platforms w/ diverse hw + capabilities
 - Homogeneous systems
 - Within a platform illusion of identical hardware
 - Autonomous
 - Automatic management and maintenance- largely with little human intervention
 - Self organizing
 - User requested resources organize themselves to satisfy requests on-demand

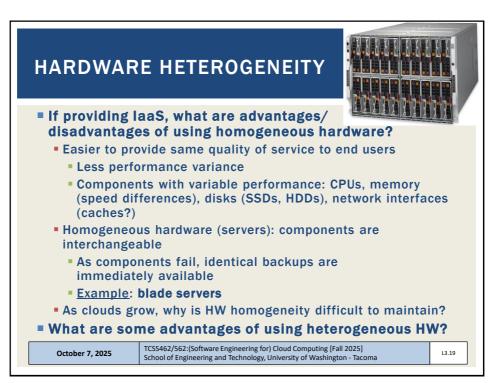
October 7, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L3.17

17

CLOUD COMPUTING: HOW DID WE GET HERE? - 6


- Compute clouds are large-scale distributed systems
- Infrastructure-as-a-Service (laaS) Cloud
 - Provide VMs on demand to users
 - ec2instances.info (AWS EC2)
- Clouds can consist of
 - Homogeneous hardware (servers, etc.)
 - Heterogeneous hardware (servers, etc.)
- Which is preferable?

October 7, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L3.18

18

19

OBJECTIVES - 10/7

- Questions from 10/2
- Tutorial 0, Tutorial 1, Tutorial 2
- Cloud Computing How did we get here?
 (Marinescu Ch. 2 1st edition, Ch. 4 2nd edition)
- Class Activity 1 Implicit vs Explicit Parallelism
- SIMD architectures, vector processing, multimedia extensions
- Graphics processing units
- Speed-up, Amdahl's Law, Scaled Speedup
- Properties of distributed systems
- Modularity

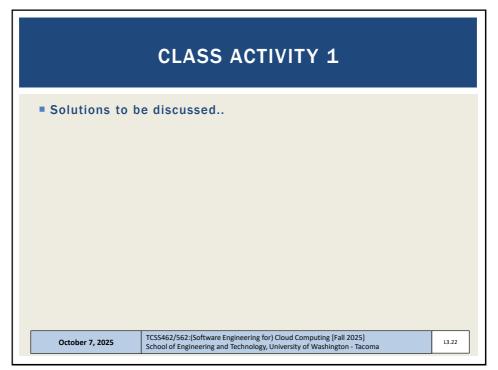
October 7, 2025 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L3.20

20

CLASS ACTIVITY 1 ■ Form teams of ~3 - in class or with Zoom breakout rooms ■ Each team will complete a MSWORD DOCX worksheet Be sure to add team member names at top of document as they appear in Canvas Activity can be completed in class or after class ■ The activity can also be completed individually ■ When completed, one team member should submit a PDF of the document to Canvas All team members will receive a grade based on the uploaded

■ To get started:


PDF file

Follow the link: (link also available in Canvas) https://faculty.washington.edu/wlloyd/courses/tcss562/ assignments/tcss462 562 f2025 tps1.docx

October 7, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

21

22

I	MPLICIT PARALLELISM	
■ Implicit types	:	
Why are these special develo	e methods available automatically without oper effort?	
Advantages:		
Disadvantages	s:	
October 7, 2025	TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma	L3.23

23

EXPLICIT PARALLELISM					
Explicit types:					
Advantages:					
■ Disadvantage	s:				
October 7, 2025	TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma	L3.24			

24

PARALLELISM QUESTIONS

- 7. For bit-level parallelism, should a developer be concerned with the available number of virtual CPU processing cores when choosing a cloud-based virtual machine if wanting to obtain the best possible speed-up? (Yes / No)
- 8. For instruction-level parallelism, should a developer be concerned with the physical CPU's architecture used to host a cloud-based virtual machine if wanting to obtain the best possible speed-up? (Yes / No)

October 7, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L3.25

25

PARALLELISM QUESTIONS - 2

- 9. An application developer measures the average and peak thread level parallelism (TLP) of an application prior to deployment on the AWS EC2. The developer measures an average TLP of 2.3, and a peak TLP of 7.3. The application is to be deployed using a compute-optimized (c-series) ec2 instance. Using resources online, such as the websites below, , propose a good virtual machine (ec2 type) that satisfies average TLP, and a second for satisfying peak TLP that does not under-provision or over-provision vCPUs for the TLP goal, in order to control costs.
- https://docs.aws.amazon.com/ec2/latest/instancetypes/ co.html
- https://instances.vantage.sh/

October 7, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L3.26

26

PARALLELISM QUESTIONS - 3

- What is a good ec2 c-series instance for average TLP?
- Why is this instance good/sufficient for satisfying average TLP?
- What is a good ec2 c-series instance for peak TLP?
- Why is this instance good/sufficient for satisfying peak TLP?

October 7, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L3.27

27

OBJECTIVES - 10/7

- Questions from 10/2
- Tutorial 0, Tutorial 1, Tutorial 2
- Cloud Computing How did we get here?
 (Marinescu Ch. 2 1st edition, Ch. 4 2nd edition)
- Class Activity 1 Implicit vs Explicit Parallelism
- SIMD architectures, vector processing, multimedia extensions
- Graphics processing units
- Speed-up, Amdahl's Law, Scaled Speedup
- Properties of distributed systems
- Modularity

October 7, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L3.28

28

MICHAEL FLYNN'S COMPUTER ARCHITECTURE TAXONOMY

- Michael Flynn's proposed taxonomy of computer architectures based on concurrent instructions and number of data streams (1966)
- SISD (Single Instruction Single Data)
- SIMD (Single Instruction, Multiple Data)
- MIMD (Multiple Instructions, Multiple Data)
- LESS COMMON: MISD (Multiple Instructions, Single Data)
- Pipeline architectures: functional units perform different operations on the same data
- For fault tolerance, may want to execute same instructions redundantly to detect and mask errors – for task replication

October 7, 2025

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L3.29

29

FLYNN'S TAXONOMY

- SISD (Single Instruction Single Data)
 - Scalar architecture with one processor/core.
 - Individual cores of modern multicore processors are "SISD"
- SIMD (Single Instruction, Multiple Data)

Supports vector processing

- When SIMD instructions are issued, operations on individual vector components are carried out concurrently
- Two 64-element vectors can be added in parallel
- Vector processing instructions added to modern CPUs
- Example: Intel MMX (multimedia) instructions

October 7, 2025

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

3.30

30

(SIMD): VECTOR PROCESSING ADVANTAGES

- Exploit data-parallelism: vector operations enable speedups
- Vectors architecture provide vector registers that can store entire matrices into a CPU register
- SIMD CPU extension (e.g. MMX) add support for vector operations on traditional CPUs
- Vector operations reduce total number of instructions for large vector operations
- Provides higher potential speedup vs. MIMD architecture
- Developers can think sequentially; not worry about parallelism

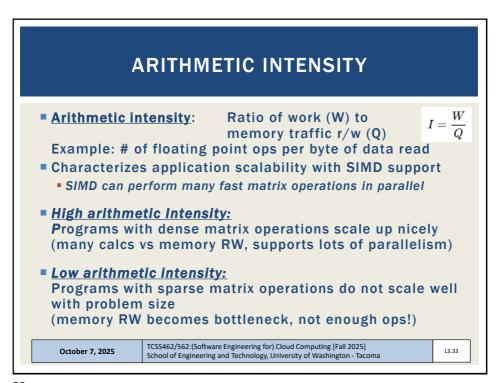
October 7, 2025

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

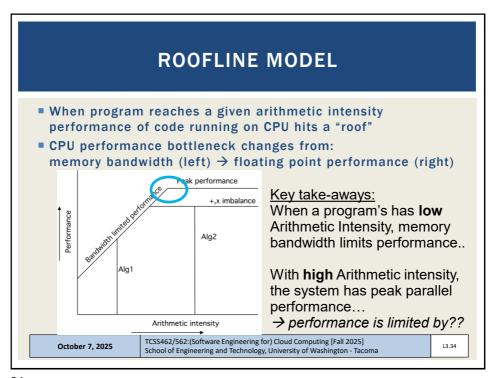
L3.31

31

FLYNN'S TAXONOMY - 2


- MIMD (Multiple Instructions, Multiple Data) system with several processors and/or cores that function asynchronously and independently
- At any time, different processors/cores may execute different instructions on different data
- Multi-core CPUs are MIMD
- Processors share memory via interconnection networks
 - Hypercube, 2D torus, 3D torus, omega network, other topologies
- MIMD systems have different methods of sharing memory
 - Uniform Memory Access (UMA)
 - Cache Only Memory Access (COMA)
 - Non-Uniform Memory Access (NUMA)

October 7, 2025


TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L3.32

32

33

34

OBJECTIVES - 10/7

- Questions from 10/2
- Tutorial 0, Tutorial 1, Tutorial 2
- Cloud Computing How did we get here? (Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
- Class Activity 1 Implicit vs Explicit Parallelism
- SIMD architectures, vector processing, multimedia extensions

Graphics processing units

- Speed-up, Amdahl's Law, Scaled Speedup
- Properties of distributed systems
- Modularity

October 7, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

35

GRAPHICAL PROCESSING UNITS (GPUs)

- GPU provides multiple SIMD processors
- Typically 7 to 15 SIMD processors each
- 32,768 total registers, divided into 16 lanes (2048 registers each)
- GPU programming model: single instruction, multiple thread
- Programmed using CUDA- C like programming language by NVIDIA for GPUs
- CUDA threads single thread associated with each data element (e.g. vector or matrix)
- Thousands of threads run concurrently

October 7, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

36

OBJECTIVES - 10/7

- Questions from 10/2
- Tutorial 0, Tutorial 1, Tutorial 2
- Cloud Computing How did we get here?
 (Marinescu Ch. 2 1st edition, Ch. 4 2nd edition)
- Class Activity 1 Implicit vs Explicit Parallelism
- SIMD architectures, vector processing, multimedia extensions
- Graphics processing units
- Speed-up, Amdahl's Law, Scaled Speedup
- Properties of distributed systems
- Modularity

October 7, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L3.37

37

PARALLEL COMPUTING

- Parallel hardware and software systems allow:
 - Solving problems needing resources not available on a single system.
 - Reduced time required to obtain solution
- The speed-up (S) measures effectiveness of parallelization:

$$S(N) = T(1) / T(N)$$

- $T(1) \rightarrow$ execution time of total sequential computation
- T(N) → execution time for performing N parallel computations in parallel

October 3, 2023

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

3.38

38

SPEED-UP EXAMPLE

- Consider embarrassingly parallel image processing
- Eight images (multiple data)
- Apply image transformation (greyscale) in parallel
- 8-core CPU, 16 hyperthreads
- Sequential processing: perform transformations one at a time using a single program thread
 - 8 images, 3 seconds each: T(1) = 24 seconds
- Parallel processing
 - 8 images, 3 seconds each: T(N) = 3 seconds
- Speedup: S(N) = 24 / 3 = 8x speedup
- Called "perfect scaling"
- Must consider data transfer and computation setup time

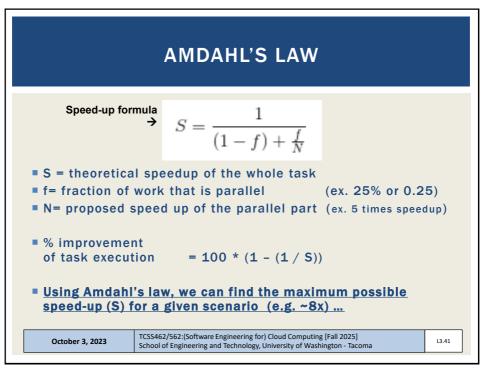
October 3, 2023

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

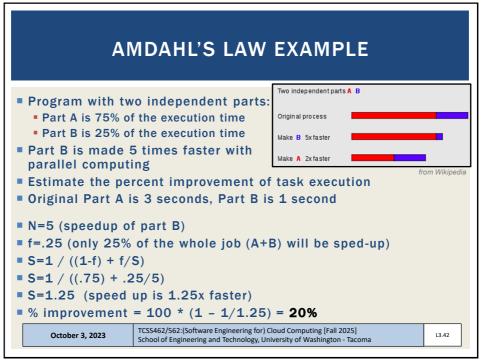
L3.39

39

AMDAHL'S LAW


- Amdahl's law is used to estimate the speed-up of a job using parallel computing
- 1. Divide job into two parts
- 2. Part A that will still be sequential
- 3. Part B that will be sped-up with parallel computing
- Portion of computation which cannot be parallelized will determine (i.e. limit) the overall speedup
- Amdahl's law assumes jobs are of a fixed size
- Also, Amdahl's assumes no overhead for distributing the work, and a perfectly even work distribution

October 3, 2023


TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L3.40

40

41

42

GUSTAFSON'S LAW

■ Calculates the <u>scaled speed-up</u> using "N" processors $S(N) = N + (1 - N) \alpha$

N: Number of processors

- α: fraction of program run time which can't be parallelized (e.g. must run sequentially)
- Can be used to estimate runtime of parallel portion of program

October 3, 2023

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L3.43

43

GUSTAFSON'S LAW

Calculates the <u>scaled speed-up</u> using "N" processors

$$S(N) = N + (1 - N) \alpha$$

N: Number of processors

α: fraction of program run time which can't be parallelized (e.g. must run sequentially)

- Can be used to estimate runtime of parallel portion of program
- Where $\alpha = \sigma / (\pi + \sigma)$
- Where σ = sequential time, π =parallel time
- Our Amdahl's example: σ = 3s, π =1s, α =.75

October 3, 2023

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L3.44

44

GUSTAFSON'S LAW

■ Calculates the <u>scaled speed-up</u> using "N" processors $S(N) = N + (1 - N) \alpha$

N: Number of processors

a: fraction of program run time which can't be parallelized(e.g. must run sequentially)

Example:

Consider a program that is embarrassingly parallel, but 75% cannot be parallelized. α =.75 QUESTION: If deploying the job on a 2-core CPU, what scaled speedup is possible assuming the use of two processes that run in parallel?

October 3, 2023

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L3.45

45

GUSTAFSON'S EXAMPLE

QUESTION:

What is the maximum theoretical speed-up on a 2-core CPU?

 $S(N) = N + (1 - N) \alpha$

 $N=2, \alpha=.75$

S(N) = 2 + (1 - 2).75

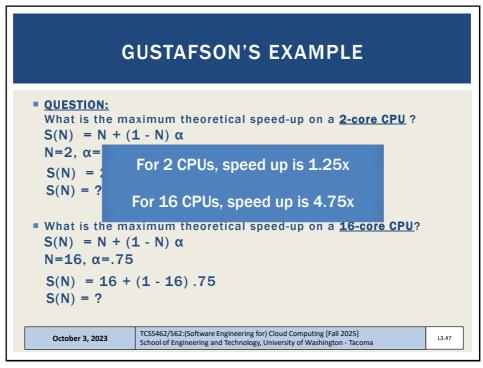
S(N) = ?

■ What is the maximum theoretical speed-up on a 16-core CPU?

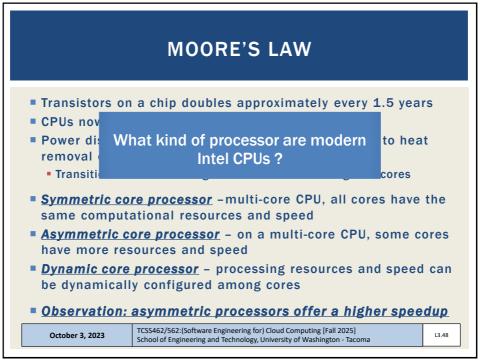
 $S(N) = N + (1 - N) \alpha$

 $N=16, \alpha=.75$

S(N) = 16 + (1 - 16).75


S(N) = ?

October 3, 2023


TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

3.46

46

47

48

OBJECTIVES - 10/7 Questions from 10/2 Tutorial 0, Tutorial 1, Tutorial 2 Cloud Computing - How did we get here? (Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition) Class Activity 1 - Implicit vs Explicit Parallelism SIMD architectures, vector processing, multimedia extensions Graphics processing units Graphics processing units Speed-up, Amdahl's Law, Scaled Speedup Properties of distributed systems Modularity TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] school of Engineering and Technology, University of Washington - Tacoma

49

DISTRIBUTED SYSTEMS

- Collection of autonomous computers, connected through a network with distribution software called "middleware" that enables coordination of activities and sharing of resources
- Key characteristics:
- Users perceive system as a single, integrated computing facility.
- Compute nodes are autonomous
- Scheduling, resource management, and security implemented by every node
- Multiple points of control and failure
- Nodes may not be accessible at all times
- System can be scaled by adding additional nodes
- Availability at low levels of HW/software/network reliability

October 7, 2025 TCSS462/562:(Software Eng

L3.50

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

50

DISTRIBUTED SYSTEMS - 2

- Key non-functional attributes
 - Known as "ilities" in software engineering
- Availability 24/7 access?
- Reliability Fault tolerance
- Accessibility reachable?
- Usability user friendly
- Understandability can under
- Scalability responds to variable demand
- Extensibility can be easily modified, extended
- Maintainability can be easily fixed
- Consistency data is replicated correctly in timely manner

October 7, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L3.51

51

TRANSPARENCY PROPERTIES OF DISTRIBUTED SYSTEMS

- Access transparency: local and remote objects accessed using identical operations
- Location transparency: objects accessed w/o knowledge of their location.
- Concurrency transparency: several processes run concurrently using shared objects w/o interference among them
- Replication transparency: multiple instances of objects are used to increase reliability
 - users are unaware if and how the system is replicated
- Failure transparency: concealment of faults
- Migration transparency: objects are moved w/o affecting operations performed on them
- Performance transparency: system can be reconfigured based on load and quality of service requirements
- Scaling transparency: system and applications can scale w/o change in system structure and w/o affecting applications

October 7, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L3.52

52

OBJECTIVES - 10/7

- Questions from 10/2
- Tutorial 0, Tutorial 1, Tutorial 2
- Cloud Computing How did we get here?
 (Marinescu Ch. 2 1st edition, Ch. 4 2nd edition)
- Class Activity 1 Implicit vs Explicit Parallelism
- SIMD architectures, vector processing, multimedia extensions
- Graphics processing units
- Speed-up, Amdahl's Law, Scaled Speedup
- Properties of distributed systems
- Modularity

October 7, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L3.53

53

TYPES OF MODULARITY

- Soft modularity: TRADITIONAL
- Divide a program into modules (classes) that call each other and communicate with shared-memory
- A procedure calling convention is used (or method invocation)
- Enforced modularity: CLOUD COMPUTING
- Program is divided into modules that communicate only through message passing
- The ubiquitous client-server paradigm
- Clients and servers are independent decoupled modules
- System is more robust if servers are stateless
- May be scaled and deployed separately
- May also FAIL separately!

October 7, 2025

may also in a soparatory

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L3.54

54

CLOUD COMPUTING - HOW DID WE GET HERE? SUMMARY OF KEY POINTS

- Multi-core CPU technology and hyper-threading
- What is a
 - Heterogeneous system?
 - Homogeneous system?
 - Autonomous or self-organizing system?
- Fine grained vs. coarse grained parallelism
- Parallel message passing code is easier to debug than shared memory (e.g. p-threads)
- Know your application's max/avg <u>Thread Level</u>Parallelism (TLP)
- Data-level parallelism: Map-Reduce, (SIMD) Single Instruction Multiple Data, Vector processing & GPUs

October 7, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L3.55

55

CLOUD COMPUTING – HOW DID WE GET HERE? SUMMARY OF KEY POINTS - 2

- Bit-level parallelism
- Instruction-level parallelism (CPU pipelining)
- Flynn's taxonomy: computer system architecture classification
 - SISD Single Instruction, Single Data (modern core of a CPU)
 - SIMD Single Instruction, Multiple Data (Data parallelism)
 - MIMD Multiple Instruction, Multiple Data
 - MISD is RARE; application for fault tolerance...
- Arithmetic intensity: ratio of calculations vs memory RW
- Roofline model:

Memory bottleneck with low arithmetic intensity

- GPUs: ideal for programs with high arithmetic intensity
 - SIMD and Vector processing supported by many large registers

October 7, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

3.56

56

CLOUD COMPUTING - HOW DID WE GET HERE? SUMMARY OF KEY POINTS - 3

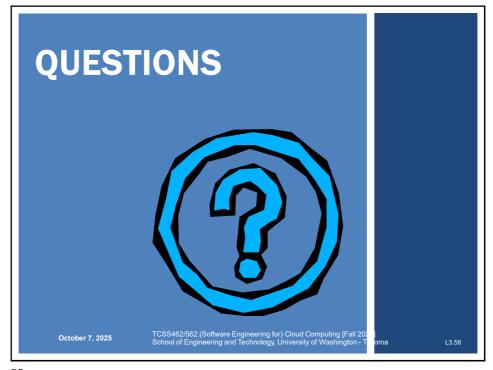
- Speed-up (S)
 S(N) = T(1) / T(N)
- Amdahl's law:

 $S = 1/\alpha$

 α = percent of program that must be sequential

Scaled speedup with N processes:

 $S(N) = N - \alpha(N-1)$


- Moore's Law
- Symmetric core, Asymmetric core, Dynamic core CPU
- Distributed Systems Non-function quality attributes
- Distributed Systems Types of Transparency
- Types of modularity- Soft, Enforced

October 7, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L3.57

57

58