TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TCSS 462/562:
(SOFTWARE ENGINEERING,
FOR) CLOUD COMPUTING

Cloud Computing -
How did we get here? - 11

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

OBJECTIVES - 10/3

= Questions from 10/1
® Tutorial O, Tutorial 1, Tutorial 2

® Cloud Computing - How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

m Class Activity 1 - Implicit vs Explicit Parallelism

® SIMD architectures, vector processing, multimedia
extensions

® Graphics processing units

® Speed-up, Amdahl's Law, Scaled Speedup
® Properties of distributed systems

= Modularity

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

October 3, 2024

Slides by Wes J. Lloyd L3.1

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Take After Each Class

= Extra Credit

Announcements

for completing * Upcoming Assignment:
Assignments Ipcoming Assignments

Discussions B
= Tuesday class Z°m

Class Activity 1 - Implicit vs. Explicit Parallelism
Available until Oct 11 at 11:59pm | Due Oct 7 at 7:50pm | -/10 pts

surveys close Grades © Tutorial 1 - Linux
peon “* Available until Oct 19 3t 11:5%pm | Due Oct 153t 11:5%m | /20 pts
11:59pm WED ™~
Pages
Files ¥ Past Assignments
® Thursday class
Quizzes

surveys close %

Collaborations

11:59pm MON y iovaries

TCSS 562 - Online Daily Feedback Survey - 10/5
Available until Dec 18 at 11:59pm Due Oct 6 at 8:59pm | -/1 pts

1

UW Resources

TCSS 562 - Online Daily Feedback Survey - 9/30
Available until Dec 18 at 11:59pm | Due Oct 4 3t 8:59pm | -/1pts

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

October 3, 2024 School of Engineering and Technology, University of Washington - Tacoma | 153 |
3
TCSS 562 - Online Daily Feedback Survey - 10/5
Started: Oct 7 at 1:13am
Quiz Instructions
[| Question1 0.5 pts
On a scale of 1 to 10, please classify your perspective on material covered in today’s
class:
1 2 3 4 5 6 7 8 9 10
Mostly Equal Mostly
Review To Me New and Review New to Me
[| Question 2 0.5 pts
Please rate the pace of today'’s class:
1 2 3 4 5 6 7 8 9 10
Slow Just Right Fast
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
Uctobensp2024 School of Engineering and Technology, University of Washington - Tacoma L5.4
4

Slides by Wes J. Lloyd

[Fall 2024]

L3.2

TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (40 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 7.03 (4 - previous 6.16)

= Please rate the pace of today’s class:
m 1-slow, 5-just right, 10-fast
= Average - 5.48 (1 - previous 5.55)

= Response rates:
= TCSS 462: 27/42
= TCSS 562: 13/18

October 3, 2024 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] | 135 |

School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK FROM 10/3

= Djfference between hyperthread and vCPU

= vCPU stands for virtual CPU
® This refers to the CPUs provided by a virtual machine

® Since a virtual machine is a virtual server, the CPUs in virtual
servers are called virtual CPUs

= |nstructions executed on a virtual CPU get mapped to logical
CPU cores on the OS for execution (KVM)
= The virtual to physical mapping varies based on which physical CPUs
are free and available
= 4-core server, 2-vCPU VM:
vCPU 0 - (CPU 0, CPU 1, CPU 2, CPU 3) mapped based on availability
vCPU 1 > (CPU 0, CPU 1, CPU 2, CPU 3) mapped based on availability

October 3, 2024 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] | 36 |

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L3.3

TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

HYPER-THREADING - 2

= How do | use hyper-threading?

= Hyper-threading is automatic
= Modern CPUs expose each physical CPU core as two CPU cores
= cat /proc/cpuinfo command lists individual cores

= Operating system schedules processes & threads to run on a
hyper-thread

® On CPUs with hyper-threading, each CPU core has two hyper-
threads

= To the operating system they are seen as full-featured
independent CPU cores

October 3, 2024 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] | 137 |

School of Engineering and Technology, University of Washington - Tacoma

CAT /PROC/CPUINFO || LSCPU

wlloyd\ddlone: u cat [proc/cpuinfo | grep -C 20 ht
: GenuinelIntel
H)
194
: Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHZ
: 3

¢ Oxdc
H ‘HO 023

If a CPU has hyper-threading

enabled, the “ht” flag is listed

: fpu vme de pse tsc msr pae mce c¢x8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx
fxsr sse sse2 ss tm pbe syscall nx pdpelgb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xt
r)pr)lr)gy nonstop_tsc aperfmperf pni pclmulqdq dtesé4 monitor ds (pl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pc

4 4 _2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f1l6c rdrand lahf_lm abm 3dnowprefetch epb
invpcid_single intel pt ssbd ibrs ibpb stibp kaiser tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust
bmil hle avx2 smep bmi2 erms invpcid rtm mpx rdseed adx smap clflushopt xsaveopt xsavec xgetbvl dtherm ida arat
pln pts hwp hwp notify hwp_act_window hwp_epp md_clear flush_l1id

: cpu_meltdown spectre_vi <pe(tre v2 spec_ store _bypass 11tf mds swapgs taa itlb_multihit srbds

: 5184.46

: 64

i 64
address sizes : 39 bits physical, 48 bits virtual
power management:

Slides by Wes J. Lloyd L3.4

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

@

Provides more satisfactory solution

Single physical processor is shared as
two logical processors

Each logical processor has its own
architecture state

Single set of execution units are shared
between logical processors

Hyper-Threading (HT)
Technology

Processor Execution
Resources

Figure 2: Processors without Hyper-Threading Tech

Processor Execution
Resources

Arch State [} Arch State

N-logical PUs are supported

Have the same gain % with only 5% die-
size penalty.

HT allows single processor to fetch and
execute two separate code streams
simultaneously.

Processor Execution
Resources

Processor Execution
Resources

Figure 3: Processors with Hyper-Threading

Technology

HYPER-THREADING - 3

= When should we use hyper-threading, and when
should not?

= For personal computing, hyper-threading helps improve system
performance when many programs use only short bursts of

CPU time

= Databases, HPC (science) applications, and others may benefit
from disabling hyper-threading. Testing will help quantify

performance.

= Disabling hyper-threading (HW setting), cuts the number of CPU
cores available to operating system in half
Can be disabled in the System BIOS or UEFI (uniform extensible

firmware interface) software

BIOS / UEFI is a small resident program that can be accessed by
pressing a function-key when rebooting the computer

BIOS / UEFI is used to configure hardware options
Making changes requires rebooting the computer

October 3, 2024

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

| 13.10 |

10

Slides by Wes J. Lloyd

[Fall 2024]

L3.5

TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

FEEDBACK - 2

m |t is still not clear to me why a core with two hyperthreads is
faster than a core without hyperthreading that is operating at
100%?

= The hyperthreaded core is only faster if running a job that
uses multiple threads at the same time (in parallel).

= |f the job is sequential, there is likely no difference.

= But for your laptop, the more hypertheads you have, the more
web browser code you can execute in parallel across each tab
of the browser

= Web browsers are multi-process (Chrome) or multi-threaded (Firefox)

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] | a1 |

October 3, 2024 School of Engineering and Technology, University of Washington - Tacoma

11

EFFECTS OF HYPERTHREADING ON AWS LAMBDA

= Cores — Speedup - Theoretical Speedup

6 100

Sysbench-prime number generation 90
80
70
60
50
40
30
20
10

Cores
Runtime Speed Up

0
2000 4000 6000 8000 10000

Memory (MBs)

Figure 1: AWS Lambda Performance Speedup for Sysbench
Prime Number Generation vs. Function Memory
From: Cordingly, R., Heydari, N., Yu, H., Hoang, V., Sadeghi, Z., Lloyd, W., Enhancing Observability of Serverless

Computing with the Serverless Application Analytics Framework, Tutorial Paper. 2021 12th ACM/SPEC
International Conference on Performance Engineering (ICPE '21), Apr 19-23, 2021.

12

Slides by Wes J. Lloyd L3.6

TCSS 462: Cloud Computing

TCSS 562: Software E
School of Engineering

ngineering for Cloud Computing
and Technology, UW-Tacoma

AWS LAMBDA: vCPUs ARE TIED TO MEMORY

AWS IBM —— Google — Digital Ocean
25
2
-
c
3 15
O
Y
) 1
>
0.5
0
0 500 1000 1500 2000 2500

Memory Setting (MBs)

Fig. 2. Allocated vCPUs available at each memory setting on each platform.

From: Cordingly, R., Xu, S., Lloyd, W., Function Memory Optimization for Heterogeneous Serverless Platforms with
CPU Time Accounting, 2022 10th IEEE International Conference on Cloud Engineering (IC2E 2022),
Sept 26-30, 2022

13

FEEDBACK - 3

= |f | use a computer with 8 cores (client) to rent a virtual machine
with 128 cores through a cloud provider, the computer with less
cores won’t decrease the performance of the virtual machine with
more cores because they are separate?

® CORRECT, the performance will not decrease.

® The 8-core (laptop/desktop) is just used to access the remote
computer via ssh/graphical desktop

® The laptop/desktop acts as a client computer used to access the
powerful remote server

= Any applications / jobs /workloads are run on the remote server,
but are launched by the client

= Through a terminal session (ssh), or remote graphical desktop
= Or by calling a web service hosted on the powerful server

= You may experience network latency between the client and server
for large data transfers

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

Octoben3)2024 School of Engineering and Technology, University of Washington - Tacoma

| 13.14

14

Slides by Wes J. Lloyd

[Fall 2024]

L3.7

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

FEEDBACK - 4

= Thread level parallelism is not clear

= Thread level parallelism refers to when parallelism occurs as
a result of multiple threads performance operations in parallel
typically on a multi-core computer

= As DevOps engineers, we often are responsible for deploying
our applications in the cloud. Therefore, we need to
understand the average number and peak number of threads
our application requires.

® |n class, | demonstrated how this can be observed in Linux
using “top” and a multi-threaded prime number generation
program

October 3, 2024 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] | 1315 |

School of Engineering and Technology, University of Washington - Tacoma

15

DEMOGRAPHICS SURVEY

= Please complete the ONLINE demographics survey:

We have received 37 responses so far.
We are waiting on ~23 responses.

® https://forms.gle/6ER7PzfP521vdxYW9

= Linked from course webpage in Canvas:

= http://faculty.washington.edu/wlloyd/courses/tcss562/
announcements.html

October 3, 2024 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024] | 1316 |

School of Engineering and Technology, University of Washington - Tacoma

16

Slides by Wes J. Lloyd

[Fall 2024]

L3.8

https://forms.gle/6ER7PzfP521vdxYW9
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

AWS CLOUD CREDITS SURVEY

= Please complete the AWS Cloud Credits survey:

Please only complete survey after setting up AWS account
or if requiring an IAM user (no-credit card option)

= https://forms.gle/fmKkLZbxZECbAay16

= Linked from course webpage in Canvas:

= http://faculty.washington.edu/wlloyd/courses/tcss562/
announcements.html

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]

October 3, 2024 School of Engineering and Technology, University of Washington - Tacoma

| 13.17 |

17

OBJECTIVES - 10/3

® Questions from 10/1

® Tutorial O, Tutorial 1, Tutorial 2

® Cloud Computing - How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

m Class Activity 1 - Implicit vs Explicit Parallelism

® SIMD architectures, vector processing, multimedia
extensions

® Graphics processing units

® Speed-up, Amdahl's Law, Scaled Speedup
® Properties of distributed systems

= Modularity

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

Octoben3)2024 School of Engineering and Technology, University of Washington - Tacoma

| 13.18 |

18

Slides by Wes J. Lloyd

[Fall 2024]

L3.9

https://forms.gle/fmKkLZbxZECbAay16
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 10/3

® Questions from 10/1

® Tutorial O) Tutorial 1, Tutorial 2

® Cloud Computing - How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

m Class Activity 1 - Implicit vs Explicit Parallelism

= SIMD architectures, vector processing, multimedia
extensions

® Graphics processing units

® Speed-up, Amdahl's Law, Scaled Speedup
® Properties of distributed systems

® Modularity

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

October 3, 2024 School of Engineering and Technology, University of Washington - Tacoma

13.19

19

OBJECTIVES - 10/3

® Questions from 10/1
® Tutorial O, Tutorial 1, |Tutorial 2

® Cloud Computing - How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

m Class Activity 1 - Implicit vs Explicit Parallelism

® SIMD architectures, vector processing, multimedia
extensions

® Graphics processing units

® Speed-up, Amdahl's Law, Scaled Speedup
® Properties of distributed systems

= Modularity

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

Octoben3)2024 School of Engineering and Technology, University of Washington - Tacoma

13.20

20

Slides by Wes J. Lloyd

[Fall 2024]

L3.10

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 10/3

® Questions from 10/1
® Tutorial O, Tutorial 1, Tutorial 2

= Cloud Computing - How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition

m Class Activity 1 - Implicit vs Explicit Parallelism

= SIMD architectures, vector processing, multimedia
extensions

® Graphics processing units

® Speed-up, Amdahl's Law, Scaled Speedup
® Properties of distributed systems

® Modularity

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

October 3, 2024 School of Engineering and Technology, University of Washington - Tacoma

13.21

21

CLOUD COMPUTING:

HOW DID WE GET HERE? - 5

® Compute clouds are large-scale distributed systems
= Heterogeneous systems
Many services/platforms w/ diverse hw + capabilities
= Homogeneous systems
Within a platform - illusion of identical hardware
= Autonomous

Automatic management and maintenance- largely with
little human intervention

=Self organizing

User requested resources organize themselves to satisfy
requests on-demand

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

School of Engineering and Technology, University of Washington - Tacoma 132

October 3, 2024

22

Slides by Wes J. Lloyd

[Fall 2024]

L3.11

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CLOUD COMPUTING:

HOW DID WE GET HERE? - 6

= Compute clouds are large-scale distributed
systems

® Infrastructure-as-a-Service (laaS) Cloud
= Provide VMs on demand to users
= ec2instances.info (AWS EC2)

= Clouds can consist of
=Homogeneous hardware (servers, etc.)
=Heterogeneous hardware (servers, etc.)

®"Which is preferable?

October 3, 2024

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] 1323
School of Engineering and Technology, University of Washington - Tacoma :

23

HARDWARE HETEROGENEITY

= |f providing laaS, what are advantages/

disadvantages of using homogeneous hardware?

= Easier to provide same quality of service to end users
Less performance variance

Components with variable performance: CPUs, memory
(speed differences), disks (SSDs, HDDs), network interfaces
(caches?)

= Homogeneous hardware (servers): components are
interchangeable

As components fail, identical backups are
immediately available

Example: blade servers
= As clouds grow, why is HW homogeneity difficult to maintain?
= What are some advantages of using heterogeneous HW?

October 3, 2024

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] 1320
School of Engineering and Technology, University of Washington - Tacoma :

24

Slides by Wes J. Lloyd

[Fall 2024]

L3.12

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 10/3

® Questions from 10/1
® Tutorial O, Tutorial 1, Tutorial 2

® Cloud Computing - How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

m Class Activity 1 - Implicit vs Explicit Parallelism |

= SIMD architectures, vector processing, multimedia
extensions

® Graphics processing units

® Speed-up, Amdahl's Law, Scaled Speedup
® Properties of distributed systems

® Modularity

October 3, 2024 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] | 1325 |

School of Engineering and Technology, University of Washington - Tacoma

25

CLASS ACTIVITY 1

® Form groups of ~3 - in class or with Zoom breakout rooms
= Each group will complete a MSWORD DOCX worksheet

= Be sure to add names at top of document as they appear in
Canvas

= Activity can be completed in class or after class

= The activity can also be completed individually

= When completed, one person should submit a PDF of the
documet to Canvas

= |nstructor will score all group members based on the uploaded
PDF file

= To get started:
= Follow the link: (link also available in Canvas)

https://faculty.washington.edu/wlloyd/courses/tcss562/
assignments/tcss462 562 _f2024 tpsi.docx

October 3, 2024

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] 1326
School of Engineering and Technology, University of Washington - Tacoma :

26

Slides by Wes J. Lloyd

[Fall 2024]

L3.13

https://faculty.washington.edu/wlloyd/courses/tcss562/assignments/tcss462_562_f2024_tps1.docx
https://faculty.washington.edu/wlloyd/courses/tcss562/assignments/tcss462_562_f2024_tps1.docx

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CLASS ACTIVITY 1

® Solutions to be discussed..

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

October 3, 2024 School of Engineering and Technology, University of Washington - Tacoma

| 13.27 |

27

IMPLICIT PARALLELISM

= Implicit types:

= Why are these methods available automatically without
special developer effort?

= Advantages:

= Disadvantages:

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

Octoben3)2024 School of Engineering and Technology, University of Washington - Tacoma

| 13.28 |

28

Slides by Wes J. Lloyd

[Fall 2024]

L3.14

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

EXPLICIT PARALLELISM

= Explicit types:

= Advantages:

= Disadvantages:

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

October 3, 2024 School of Engineering and Technology, University of Washington - Tacoma

13.29

29

PARALLELISM QUESTIONS

® 7. For bit-level parallelism, should a developer be
concerned with the available number of virtual CPU
processing cores when choosing a cloud-based virtual
machine if wanting to obtain the best possible speed-up?
(Yes / No)

= 8. For instruction-level parallelism, should a developer be
concerned with the physical CPU’s architecture used to
host a cloud-based virtual machine if wanting to obtain
the best possible speed-up? (Yes / No)

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

School of Engineering and Technology, University of Washington - Tacoma 1330

October 3, 2024

30

Slides by Wes J. Lloyd

[Fall 2024]

L3.15

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

PARALLELISM QUESTIONS - 2

= 9. An application developer measures the average and
peak thread level parallelism (TLP) of an application prior
to deployment on the AWS EC2. The developer measures
an average TLP of 2.3, and a peak TLP of 7.3. The
application is to be deployed using a compute-optimized
(c-series) ec2 instance. Using resources online, such as
the websites below, propose a good virtual machine (ec2
type) that satisfies average TLP, and a second for
satisfying peak TLP.

" https://docs.aws.amazon.com/ec2/latest/instancetypes/
co.html

® https://instances.vantage.sh/

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
October 3, 2024 School of Engineering and Technology, University of Washington - Tacoma B3

31

PARALLELISM QUESTIONS - 3

® What is a good ec2 c-series instance for average TLP ?

= Why is this instance good/sufficient for satisfying average
TLP?

® What is a good ec2 c-series instance for peak TLP ?

= Why is this instance good/sufficient for satisfying peak TLP ?

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
Octoben3)2024 School of Engineering and Technology, University of Washington - Tacoma 1332

32

Slides by Wes J. Lloyd

[Fall 2024]

L3.16

https://docs.aws.amazon.com/ec2/latest/instancetypes/co.html
https://docs.aws.amazon.com/ec2/latest/instancetypes/co.html
https://instances.vantage.sh/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 10/3

® Questions from 10/1
® Tutorial O, Tutorial 1, Tutorial 2

® Cloud Computing - How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

m Class Activity 1 - Implicit vs Explicit Parallelism

= SIMD architectures, vector processing, multimedia
extensions

® Graphics processing units

® Speed-up, Amdahl's Law, Scaled Speedup
® Properties of distributed systems

® Modularity

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

October 3, 2024 School of Engineering and Technology, University of Washington - Tacoma

13.33

33

MICHAEL FLYNN'S COMPUTER

ARCHITECTURE TAXONOMY

® Michael Flynn’s proposed taxonomy of computer
architectures based on concurrent instructions and
number of data streams (1966)

= SISD (Single Instruction Single Data)

= SIMD (Single Instruction, Multiple Data)

= MIMD (Multiple Instructions, Multiple Data)

®m [ESS COMMON: MISD (Multiple Instructions, Single Data)

® Pipeline architectures: functional units perform different
operations on the same data

® For fault tolerance, may want to execute same instructions
redundantly to detect and mask errors - for task replication

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]

School of Engineering and Technology, University of Washington - Tacoma 1334

October 3, 2024

34

Slides by Wes J. Lloyd

[Fall 2024]

L3.17

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

FLYNN'S TAXONOMY

= SISD (Single Instruction Single Data)
Scalar architecture with one processor/core.

= Individual cores of modern multicore processors are
“SISD”

= SIMD (Single Instruction, Multiple Data)
Supports vector processing

= When SIMD instructions are issued, operations on
individual vector components are carried out concurrently

= Two 64-element vectors can be added in parallel
= Vector processing instructions added to modern CPUs
= Example: Intel MMX (multimedia) instructions

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]

October 3, 2024 School of Engineering and Technology, University of Washington - Tacoma

| 13.35

35

(SIMD): VECTOR PROCESSING

ADVANTAGES

= Exploit data-parallelism: vector operations enable speedups

® Vectors architecture provide vector registers that can store
entire matrices into a CPU register

= SIMD CPU extension (e.g. MMX) add support for vector
operations on traditional CPUs

® Vector operations reduce total number of instructions for
large vector operations

® Provides higher potential speedup vs. MIMD architecture

® Developers can think sequentially; not worry about
parallelism

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]

Octoben3)2024 School of Engineering and Technology, University of Washington - Tacoma

| 13.36

36

Slides by Wes J. Lloyd

[Fall 2024]

L3.18

TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

FLYNN'S TAXONOMY - 2

= MIMD (Multiple Instructions, Multiple Data) - system with
several processors and/or cores that function asynchronously
and independently

= At any time, different processors/cores may execute different
instructions on different data

® Multi-core CPUs are MIMD

= Processors share memory via interconnection networks
= Hypercube, 2D torus, 3D torus, omega network, other topologies
= MIMD systems have different methods of sharing memory
Uniform Memory Access (UMA)
Cache Only Memory Access (COMA)
Non-Uniform Memory Access (NUMA)

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]
October 3, 2024 School of Engineering and Technology, University of Washington - Tacoma 337

37

ARITHMETIC INTENSITY

= Arithmetic intensity: Ratio of work (W) to I w

memory traffic r/w (Q) Q
Example: # of floating point ops per byte of data read

® Characterizes application scalability with SIMD support

= SIMD can perform many fast matrix operations in parallel

= High arithmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

= | ow arithmetic intensity:
Programs with sparse matrix operations do not scale well
with problem size
(memory RW becomes bottleneck, not enough ops!)

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
Octoben3)2024 School of Engineering and Technology, University of Washington - Tacoma 1338

38

Slides by Wes J. Lloyd L3.19

TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

ROOFLINE MODEL

= When program reaches a given arithmetic intensity
performance of code running on CPU hits a “roof”

= CPU performance bottleneck changes from:
memory bandwidth (left) > floating point performance (right)

Paak performance
‘@@ oxmbaance [KEY take-aways:

& When a program’s has low

g & Arithmetic Intensity, memory

AR Moz bandwidth limits performance..

P
Aot With high Arithmetic intensity,
the system has peak parallel
performance...
Arithmetic intensity = performance is limited by??

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

October 3, 2024 School of Engineering and Technology, University of Washington - Tacoma

| 13.39

39

OBJECTIVES - 10/3

® Questions from 10/1
® Tutorial O, Tutorial 1, Tutorial 2

® Cloud Computing - How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

m Class Activity 1 - Implicit vs Explicit Parallelism

® SIMD architectures, vector processing, multimedia
extensions

| = Graphics processing units |
® Speed-up, Amdahl's Law, Scaled Speedup
® Properties of distributed systems
= Modularity

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

Octoben3)2024 School of Engineering and Technology, University of Washington - Tacoma

| 13.40

40

Slides by Wes J. Lloyd L3.20

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

GRAPHICAL PROCESSING UNITS (GPUs)

® GPU provides multiple SIMD processors
m Typically 7 to 15 SIMD processors each

m 32,768 total registers, divided into 16 lanes
(2048 registers each)

B GPU programming model:
single instruction, multiple thread

® Programmed using CUDA- C like programming
language by NVIDIA for GPUs

® CUDA threads - single thread associated with each
data element (e.g. vector or matrix)

® Thousands of threads run concurrently

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

October 3, 2024 School of Engineering and Technology, University of Washington - Tacoma

13.41

41

OBJECTIVES - 10/3

® Questions from 10/1
® Tutorial O, Tutorial 1, Tutorial 2

® Cloud Computing - How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

m Class Activity 1 - Implicit vs Explicit Parallelism

® SIMD architectures, vector processing, multimedia
extensions

® Graphics processing units

| = Speed-up, Amdahl's Law, Scaled Speedup |
® Properties of distributed systems
= Modularity

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

| October 3, 2024 13.42

42

Slides by Wes J. Lloyd

[Fall 2024]

L3.21

TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

PARALLEL COMPUTING

= Parallel hardware and software systems allow:

= Solving problems needing resources not available on a
single system.

= Reduced time required to obtain solution

®The speed-up (S) measures effectiveness of
parallelization:

S(N) = T(1) / T(N)

T(1) = execution time of total sequential computation

T(N) > execution time for performing N parallel
computations in parallel

October 3, 2023 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] | 1343 |

School of Engineering and Technology, University of Washington - Tacoma

43

SPEED-UP EXAMPLE

= Consider embarrassingly parallel image processing
= Eight images (multiple data)
= Apply image transformation (greyscale) in parallel
m 8-core CPU, 16 hyperthreads

m Sequential processing: perform transformations one at a time

using a single program thread
= 8 images, 3 seconds each: T (1) = 24 seconds

= Parallel processing

= 8 images, 3 seconds each: T (N) = 3 seconds
= Speedup: S(N) = 24 / 3 = 8x speedup
= Called “perfect scaling”

= Must consider data transfer and computation setup time

October 3, 2023

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] \3.00
School of Engineering and Technology, University of Washington - Tacoma :

44

Slides by Wes J. Lloyd L3.22

TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

AMDAHL'S LAW

= Amdahl’s law is used to estimate the speed-up of a job
using parallel computing

1. Divide job into two parts
2. Part A that will still be sequential
3. Part B that will be sped-up with parallel computing

® Portion of computation which cannot be parallelized will
determine (i.e. limit) the overall speedup

= Amdahl’s law assumes jobs are of a fixed size

= Also, Amdahl’s assumes no overhead for distributing the
work, and a perfectly even work distribution

October 3, 2023 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] | 1345

School of Engineering and Technology, University of Washington - Tacoma

45

AMDAHL'S LAW

Speed-up formula 1

9 e, ———
e F - . n _L
(1—=f)+%
m S = theoretical speedup of the whole task
m f= fraction of work that is parallel (ex. 25% or 0.25)
= N= proposed speed up of the parallel part (ex. 5 times speedup)

" % improvement
of task execution =100 * (1L -(1/9))

= Using Amdahl’s law, we can find the maximum possible

speed-up (S) for a given scenario (e.g. ~8x) ...

October 3, 2023 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] | 3.6

School of Engineering and Technology, University of Washington - Tacoma

46

Slides by Wes J. Lloyd L3.23

TCSS 462: Cloud Com
TCSS 562: Software E

puting
ngineering for Cloud Computing

School of Engineering and Technology, UW-Tacoma

AMDAHL'S LAW EXAMPLE

Two independentparts A B

= Program with two independent parts:
= Part A is 75% of the execution time Original process =
= Part B is 25% of the execution time Make B 5xfaster [

Part B is made 5 times faster with
parallel computing

Make A 2xfaster |

from Wikipedia

Estimate the percent improvement of task execution
Original Part A is 3 seconds, Part B is 1 second

® N=5 (speedup of part B)

= f=.25 (only 25% of the whole job (A+B) will be sped-up)
= S=1/ ((1-f) + f/S)

= S=1/ ((.75) + .25/5)

m S=1.25 (speed up is 1.25x faster)

= % improvement = 100 * (1 - 1/1.25) = 20%

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] 1347
School of Engineering and Technology, University of Washington - Tacoma :

October 3, 2023

47

GUSTAFSON'S LAW

® Calculates the scaled speed-up using “N” processors
S(N) =N+ (1-N)«

N: Number of processors

o: fraction of program run time which can’t be parallelized
(e.g. must run sequentially)

® Can be used to estimate runtime of parallel portion of
program

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] | 3.8 |

Octoben3)2023 School of Engineering and Technology, University of Washington - Tacoma

48

Slides by Wes J. Lloyd

[Fall 2024]

L3.24

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

GUSTAFSON'S LAW

® Calculates the scaled speed-up using “N” processors
S(N) =N+ (1-N)«

N: Number of processors

o: fraction of program run time which can’t be parallelized
(e.g. must run sequentially)

® Can be used to estimate runtime of parallel portion of
program

® Where « = o / (m + o)
® Where o= sequential time, © =parallel time
® Qur Amdahl’s example: o= 3s, 1 =1s, a« =.75

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

October 3, 2023 13.49

49

GUSTAFSON'S LAW

® Calculates the scaled speed-up using “N” processors
S(N) =N+ (1-N)«

N: Number of processors

o: fraction of program run time which can’t be parallelized
(e.g. must run sequentially)

= Example:
Consider a program that is embarrassingly parallel,

but 75% cannot be parallelized. «=.75

QUESTION: If deploying the job on a 2-core CPU, what
scaled speedup is possible assuming the use of two
processes that run in parallel?

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

School of Engineering and Technology, University of Washington - Tacoma 1350

October 3, 2023

50

Slides by Wes J. Lloyd

[Fall 2024]

L3.25

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

GUSTAFSON’S EXAMPLE

= QUESTION:
What is the maximum theoretical speed-up on a 2-core CPU ?

S(N) =N+ (1-N) «

N=2, a=.75
S(N) =2+ (1-2).75
S(N) =72

® What is the maximum theoretical speed-up on a 16-core CPU?

S(N) =N+ (1-N) «

N=16, a=.75

S(N) =16 + (1 -16) .75

S(N) =?

October 3, 2023 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] 1351

School of Engineering and Technology, University of Washington - Tacoma

51

GUSTAFSON’S EXAMPLE

= QUESTION:
What is the maximum theoretical speed-up on a 2-core CPU ?

S(N) =N+ (1-N) «

N=2, a=
S(N) = For 2 CPUs, speed up is 1.25x
S(N) = .
For 16 CPUs, speed up is 4.75x
= What is the maximum - b-core CPU?
S(N) =N+ (1-N)«x
N=16, a=.75
S(N) =16 + (1 -16) .75
S(N) =?
October 3, 2023 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] 1352

School of Engineering and Technology, University of Washington - Tacoma

52

Slides by Wes J. Lloyd

[Fall 2024]

L3.26

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

MOORE’S LAW

= Transistors on a chip doubles approximately every 1.5 years
= CPUs no
AT What Kind of processor are modern [CREEL

removal Intel CPUs ?
= Transiti .

= Symmetric core processor -multi-core CPU, all cores have the
same computational resources and speed

= Asymmetric core processor - on a multi-core CPU, some cores
have more resources and speed

= Dynamic core processor - processing resources and speed can
be dynamically configured among cores

= Observation: asymmetric processors offer a higher speedup

October 3, 2023 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] | 1353 |

School of Engineering and Technology, University of Washington - Tacoma

53

OBJECTIVES - 10/3

® Questions from 10/1
® Tutorial O, Tutorial 1, Tutorial 2

® Cloud Computing - How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

m Class Activity 1 - Implicit vs Explicit Parallelism

® SIMD architectures, vector processing, multimedia
extensions

® Graphics processing units
® Speed-up, Amdahl's Law, Scaled Speedup

= Properties of distributed systems |

= Modularity

October 3, 2024

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] 350
School of Engineering and Technology, University of Washington - Tacoma :

54

Slides by Wes J. Lloyd

[Fall 2024]

L3.27

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

DISTRIBUTED SYSTEMS

® Collection of autonomous computers, connected through a
network with distribution software called “middleware” that
enables coordination of activities and sharing of resources

= Key characteristics:

m Users perceive system as a single, integrated computing
facility.

= Compute nodes are autonomous

®m Scheduling, resource management, and security implemented
by every node

® Multiple points of control and failure

= Nodes may not be accessible at all times

= System can be scaled by adding additional nodes

= Availability at low levels of HW/software/network reliability

October 3, 2024 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] | 1355 |

School of Engineering and Technology, University of Washington - Tacoma

55

DISTRIBUTED SYSTEMS - 2

= Key non-functional attributes
= Known as “ilities” in software engineering

= Availability - 24/7 access?

= Reliability - Fault tolerance

m Accessibility - reachable?

® Usability - user friendly

= Understandability - can under

m Scalability - responds to variable demand

m Extensibility - can be easily modified, extended

= Maintainability - can be easily fixed

= Consistency - data is replicated correctly in timely manner

October 3, 2024 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] | 1356 |

School of Engineering and Technology, University of Washington - Tacoma

56

Slides by Wes J. Lloyd

[Fall 2024]

L3.28

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TRANSPARENCY PROPERTIES OF

DISTRIBUTED SYSTEMS

= Access transparency: local and remote objects accessed using
identical operations

= Location transparency: objects accessed w/o knowledge of
their location.

= Concurrency transparency: several processes run concurrently
using shared objects w/o interference among them

= Replication transparency: multiple instances of objects are
used to increase reliability
- users are unaware if and how the system is replicated

= Failure transparency: concealment of faults

= Migration transparency: objects are moved w/o affecting
operations performed on them

= Performance transparency: system can be reconfigured based
on load and quality of service requirements

= Scaling transparency: system and applications can scale w/o
change in system structure and w/o affecting applications

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] | 1357 |

October 3, 2024 School of Engineering and Technology, University of Washington - Tacoma

57

OBJECTIVES - 10/3

® Questions from 10/1
® Tutorial O, Tutorial 1, Tutorial 2

® Cloud Computing - How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

m Class Activity 1 - Implicit vs Explicit Parallelism

® SIMD architectures, vector processing, multimedia
extensions

® Graphics processing units
® Speed-up, Amdahl's Law, Scaled Speedup
® Properties of distributed systems

| = Modularity |

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] | 1358 |

Octoben3)2024 School of Engineering and Technology, University of Washington - Tacoma

58

Slides by Wes J. Lloyd

[Fall 2024]

L3.29

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TYPES OF MODULARITY

= Soft modularity: TRADITIONAL

= Divide a program into modules (classes) that call each other
and communicate with shared-memory

= A procedure calling convention is used (or method invocation)

= Enforced modularity: CLOUD COMPUTING

= Program is divided into modules that communicate only
through message passing

® The ubiquitous client-server paradigm

m Clients and servers are independent decoupled modules
= System is more robust if servers are stateless

= May be scaled and deployed separately

= May also FAIL separately!

October 3, 2024 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] | 1359 |

School of Engineering and Technology, University of Washington - Tacoma

59

CLOUD COMPUTING - HOW DID WE GET HERE?

SUMMARY OF KEY POINTS

® Multi-core CPU technology and hyper-threading

® What is a
= Heterogeneous system?
= Homogeneous system?
= Autonomous or self-organizing system?

= Fine grained vs. coarse grained parallelism

= Parallel message passing code is easier to debug than
shared memory (e.g. p-threads)

= Knhow your application’s max/avg Thread Level
Parallelism (TLP)

= Data-level parallelism: Map-Reduce, (SIMD) Single
Instruction Multiple Data, Vector processing & GPUs

October 3, 2024

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] 13.60
School of Engineering and Technology, University of Washington - Tacoma :

60

Slides by Wes J. Lloyd

[Fall 2024]

L3.30

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CLOUD COMPUTING - HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 2

= Bit-level parallelism
= |nstruction-level parallelism (CPU pipelining)
= Flynn’s taxonomy: computer system architecture classification
= SISD - Single Instruction, Single Data (modern core of a CPU)
= SIMD - Single Instruction, Multiple Data (Data parallelism)
= MIMD - Multiple Instruction, Multiple Data
= MISD is RARE; application for fault tolerance...
= Arithmetic intensity: ratio of calculations vs memory RW

= Roofline model:
Memory bottleneck with low arithmetic intensity

= GPUs: ideal for programs with high arithmetic intensity
= SIMD and Vector processing supported by many large registers

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

October 3, 2024 School of Engineering and Technology, University of Washington - Tacoma

| 13.61

61

CLOUD COMPUTING - HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 3

= Speed-up (S)
S(N) = T(1) / T(N)

= Amdahl’s law:
S=1/«
o = percent of program that must be sequential
m Scaled speedup with N processes:
S(N) =N - a(N-1)
= Moore's Law
® Symmetric core, Asymmetric core, Dynamic core CPU
® Distributed Systems Non-function quality attributes
® Distributed Systems - Types of Transparency
= Types of modularity- Soft, Enforced

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

Octoben3)2024 School of Engineering and Technology, University of Washington - Tacoma

| 13.62

62

Slides by Wes J. Lloyd

[Fall 2024]

L3.31

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

QUESTIONS

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2048

(Ol &) A School of Engineering and Technology, University of Washington -

63

Slides by Wes J. Lloyd

[Fall 2024]

L3.32

	Slide 1: TCSS 462/562: (Software Engineering for) Cloud Computing
	Slide 2: OBJECTIVES – 10/3
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 10/3
	Slide 7: Hyper-threading - 2
	Slide 8: Cat /proc/cpuinfo || lscpu
	Slide 9
	Slide 10: Hyper-threading - 3
	Slide 11: Feedback - 2
	Slide 12: Effects of hyperthreading on aws lambda
	Slide 13
	Slide 14: Feedback - 3
	Slide 15: Feedback - 4
	Slide 16: Demographics survey
	Slide 17: AWS Cloud Credits survey
	Slide 18: OBJECTIVES – 10/3
	Slide 19: OBJECTIVES – 10/3
	Slide 20: OBJECTIVES – 10/3
	Slide 21: OBJECTIVES – 10/3
	Slide 22: cloud computing: How did we get here? - 5
	Slide 23: cloud computing: How did we get here? - 6
	Slide 24: Hardware heterogeneity
	Slide 25: OBJECTIVES – 10/3
	Slide 26: Class activity 1
	Slide 27: Class Activity 1
	Slide 28: Implicit parallelism
	Slide 29: Explicit parallelism
	Slide 30: Parallelism questions
	Slide 31: Parallelism questions - 2
	Slide 32: Parallelism questions - 3
	Slide 33: OBJECTIVES – 10/3
	Slide 34: Michael Flynn’s computer architecture taxonomy
	Slide 35: Flynn’s taxonomy
	Slide 36: (Simd): VECtOR PROCESSING advantages
	Slide 37: Flynn’s taxonomy - 2
	Slide 38: Arithmetic intensity
	Slide 39: Roofline model
	Slide 40: OBJECTIVES – 10/3
	Slide 41: Graphical processing units (gpus)
	Slide 42: OBJECTIVES – 10/3
	Slide 43: Parallel computing
	Slide 44: Speed-up example
	Slide 45: Amdahl’s law
	Slide 46: Amdahl’s law
	Slide 47: Amdahl’s law example
	Slide 48: Gustafson's Law
	Slide 49: Gustafson's Law
	Slide 50: Gustafson's Law
	Slide 51: Gustafson’s example
	Slide 52: Gustafson’s example
	Slide 53: Moore’s law
	Slide 54: OBJECTIVES – 10/3
	Slide 55: Distributed systems
	Slide 56: Distributed systems - 2
	Slide 57: Transparency properties of distributed systems
	Slide 58: OBJECTIVES – 10/3
	Slide 59: Types of modularity
	Slide 60: Cloud computing – how did we get here? Summary of key points
	Slide 61: Cloud computing – how did we get here? Summary of key points - 2
	Slide 62: Cloud computing – how did we get here? Summary of key points - 3
	Slide 63: Questions

