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 Cloud Computing –
 How did we get here? - II

 Wes J. Lloyd
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TCSS 462/562: 

(SOFTWARE ENGINEERING 

FOR) CLOUD COMPUTING  Questions from 10/1

 Tutorial 0, Tutorial 1, Tutorial 2

 Cloud Computing –  How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Class Activity 1 –  Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia 

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

 Modularity 
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OBJECTIVES – 10/3

 Daily Feedback Quiz in Canvas – Take After Each Class

 Extra Credit 

for completing

 Tuesday class 

surveys close

11:59pm WED

 Thursday class

surveys close

11:59pm MON
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 

class (40 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average –  7.03  (  -  previous 6.16)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average –  5.48  (  -  previous 5.55) 

 Response rates:

 TCSS 462: 27/42 

 TCSS 562: 13/18
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MATERIAL / PACE

 Difference between hyperthread and vCPU

 vCPU stands for vir tual CPU

 This refers to the CPUs provided by a vir tual machine

 Since a vir tual machine is a vir tual server, the CPUs in vir tual 
servers are called vir tual CPUs

 Instructions executed on a vir tual CPU get mapped to logical 
CPU cores on the OS for execution (KVM)

▪ The virtual to physical mapping varies based on which physical CPUs 
are free and available

▪ 4-core server, 2-vCPU VM:

▪ vCPU 0 → (CPU 0, CPU 1, CPU 2, CPU 3) mapped based on availability

▪ vCPU 1 → (CPU 0, CPU 1, CPU 2, CPU 3) mapped based on availability
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FEEDBACK FROM 10/3
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 How do I  use hyper-threading?

 Hyper-threading is automatic

 Modern CPUs expose each physical CPU core as two CPU cores

 cat /proc/cpuinfo  command lists individual cores

 Operating system schedules processes & threads to run on a 

hyper-thread

 On CPUs with hyper -threading, each CPU core has two hyper -

threads

 To the operating system they are seen as full -featured 

independent CPU cores
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HYPER-THREADING - 2
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CAT /PROC/CPUINFO  ||  LSCPU

If a CPU has hyper-threading 
enabled, the “ht” flag is listed
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 When should we use hyper-threading, and when 
should not?
▪ For personal computing, hyper-threading helps improve system 

performance when many programs use only short bursts of 
CPU time 

▪ Databases, HPC (science) applications, and others may benefit 
from disabling hyper-threading. Testing will help quantify 
performance. 

▪ Disabling hyper-threading (HW setting), cuts the number of CPU 
cores available to operating system in half
▪ Can be disabled in the System BIOS or UEFI (uniform extensible 

firmware interface) software

▪ BIOS / UEFI is a small resident program that can be accessed by 
pressing a function-key when rebooting the computer

▪ BIOS / UEFI is used to configure hardware options

▪ Making changes requires rebooting the computer
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HYPER-THREADING - 3

 I t  is  st ill  not c lear to me why a core with two hyperthreads is  

faster than a core without hyperthreading that is  operating at  

100%?

 The hyperthreaded core is only faster if running a job that 

uses multiple threads at the same time (in parallel).

 If  the job is sequential, there is likely no dif ference.

 But for your laptop, the more hypertheads you have, the more 

web browser code you can execute in parallel across each tab 

of the browser

▪ Web browsers are multi-process (Chrome) or multi-threaded (Firefox)
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FEEDBACK - 2

EFFECTS OF HYPERTHREADING ON AWS LAMBDA

From: Cordingly, R., Heydari, N., Yu, H., Hoang, V., Sadeghi, Z., Lloyd, W., Enhancing Observability of Serverless
Computing with the Serverless Application Analytics Framework, Tutorial Paper. 2021 12th ACM/SPEC
International Conference on Performance Engineering (ICPE '21), Apr 19-23, 2021.

Sysbench-prime number generation
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AWS LAMBDA: vCPUs ARE TIED TO MEMORY

From: Cordingly, R., Xu, S., Lloyd, W., Function Memory Optimization for Heterogeneous Serverless Platforms with
 CPU Time Accounting, 2022 10th IEEE International Conference on Cloud Engineering (IC2E 2022),
 Sept 26-30, 2022

 I f  I  use a  computer wi th 8 cores (c lient)  to  rent a  v i r tual  machine 
wi th 128 cores through a  c loud provider,  the computer  wi th less 
cores won’t  decrease the per formance o f  the v i r tual machine with  
more cores because they are separate?

 CORRECT, the  per formance wil l  not  decrease.

 The 8-core (laptop/desktop) is just  used to access the remote 
computer via ssh/graphical desktop

 The laptop/desktop acts as a cl ient  computer used to access the 
powerful  remote server

 Any applicat ions / jobs /workloads are run on the remote server,  
but  are launched by the cl ient  

▪ Through a terminal session (ssh), or remote graphical desktop

▪ Or by calling a web service hosted on the powerful server

 You may experience network latency between the cl ient  and server 
for large data transfers
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FEEDBACK - 3

 Thread level parallelism is  not c lear

 Thread level parallelism refers to when parallelism occurs as 

a result of  multiple threads performance operations in parallel 

typically on a multi -core computer

 As DevOps engineers, we often are responsible for deploying 

our applications in the cloud. Therefore, we need to 

understand the average number and peak number of threads 

our application requires.  

 In class, I demonstrated how this can be observed in Linux 

using “top” and a multi -threaded prime number generation 

program
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FEEDBACK - 4

 Please complete the ONLINE demographics survey:

We have received 37 responses so far.
We are waiting on ~23 responses.

 https://forms.gle/6ER7PzfP521vdxYW9 

 Linked from course webpage in Canvas:

 http://faculty.washington.edu/wlloyd/courses/tcss562/
announcements.html 
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DEMOGRAPHICS SURVEY

 Please complete the AWS Cloud Credits survey:

Please only complete survey after setting up AWS account

or if  requiring an IAM user (no-credit card option)

 https://forms.gle/fmKkLZbxZECbAay16 

 Linked from course webpage in Canvas:

 http://faculty.washington.edu/wlloyd/courses/tcss562/

announcements.html 

October 3, 2024
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.17

AWS CLOUD CREDITS SURVEY

 Questions from 10/1

 Tutorial 0,  Tutorial 1, Tutorial 2

 Cloud Computing –  How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Class Activity 1 –  Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia 

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

 Modularity
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OBJECTIVES – 10/3
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OBJECTIVES – 10/3
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OBJECTIVES – 10/3
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OBJECTIVES – 10/3

 Compute clouds are large-scale distributed systems

▪Heterogeneous systems

▪Many services/platforms w/ diverse hw + capabilities

▪Homogeneous systems

▪Within a platform – illusion of identical hardware

▪Autonomous

▪ Automatic management and maintenance- largely with 

little human intervention 

▪Self organizing 

▪ User requested resources organize themselves to satisfy 

requests on-demand
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CLOUD COMPUTING:

HOW DID WE GET HERE? - 5

Compute clouds are large-scale distributed 
systems

 Infrastructure-as-a-Service (IaaS) Cloud

▪Provide VMs on demand to users

▪ec2instances.info (AWS EC2)

Clouds can consist of 

▪Homogeneous hardware (servers, etc.)

▪Heterogeneous hardware (servers, etc.)

Which is preferable?
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CLOUD COMPUTING:

HOW DID WE GET HERE? - 6 

 If  providing IaaS, what are advantages/
disadvantages of using homogeneous hardware?

▪ Easier to provide same quality of service to end users

▪ Less performance variance

▪ Components with variable performance: CPUs, memory 
(speed differences), disks (SSDs, HDDs), network interfaces 
(caches?)

▪ Homogeneous hardware (servers): components are 
interchangeable

▪ As components fail, identical backups are 
immediately available

▪ Example: blade servers

▪ As clouds grow, why is HW homogeneity difficult to maintain?

 What are some advantages of using heterogeneous HW?
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HARDWARE HETEROGENEITY
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 Questions from 10/1

 Tutorial 0, Tutorial 1, Tutorial 2

 Cloud Computing –  How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Class Activity 1 –  Implicit vs  Explicit Parallelism

 SIMD architectures, vector processing, multimedia 

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

 Modularity 

October 3, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington  -  Tacoma

L3.25

OBJECTIVES – 10/3

 Form groups of ~3 - in class or with Zoom breakout rooms

 Each group will complete a MSWORD DOCX worksheet

 Be sure to add names at top of document as they appear in 
Canvas

 Activity can be completed in class or after class

 The activity can also be completed individually

 When completed, one person should submit a PDF of the 
documet to Canvas

 Instructor will score all group members based on the uploaded 
PDF file

 To get star ted:

▪ Follow the link: (link also available in Canvas)

https://faculty.washington.edu/wlloyd/courses/tcss562/
assignments/tcss462_562_f2024_tps1.docx 
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CLASS ACTIVITY 1

 Solutions to be discussed..
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CLASS ACTIVITY 1

 Implicit types: 

 Why are these methods available automatically without 

special developer effor t?

 Advantages:

 Disadvantages:
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IMPLICIT PARALLELISM 

 Explicit types:

 Advantages:

 Disadvantages:
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EXPLICIT PARALLELISM

 7. For bit-level parallelism, should a developer be 

concerned with the available number of virtual CPU 

processing cores when choosing a cloud-based virtual 

machine if wanting to obtain the best possible speed -up? 

(Yes / No)

 8. For instruction-level parallelism, should a developer be 

concerned with the physical CPU’s architecture used to 

host a cloud-based virtual machine if wanting to obtain 

the best possible speed-up? (Yes / No)
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PARALLELISM QUESTIONS
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 9. An application developer measures the average and 

peak thread level parallelism (TLP) of an application prior 

to deployment on the AWS EC2. The developer measures 

an average TLP of 2.3, and a peak TLP of 7.3. The 

application is to be deployed using a compute -optimized 

(c-series) ec2 instance. Using resources online, such as 

the websites below, propose a good virtual machine (ec2 

type) that satisfies average TLP, and a second for 

satisfying peak TLP. 

 https://docs.aws.amazon.com/ec2/latest/instancetypes/

co.html   

 https://instances.vantage.sh/  
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PARALLELISM QUESTIONS - 2

 What is a good ec2 c-series instance for average TLP ?

 Why is this instance good/sufficient for satisfying average 

TLP?

 What is a good ec2 c-series instance for peak TLP ?

 Why is this instance good/sufficient for satisfying peak TLP ?
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PARALLELISM QUESTIONS - 3

 Questions from 10/1

 Tutorial 0, Tutorial 1, Tutorial 2

 Cloud Computing –  How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Class Activity 1 –  Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia 

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

 Modularity 
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OBJECTIVES – 10/3

Michael Flynn’s proposed taxonomy of computer 

architectures based on concurrent instructions and 

number of data streams (1966)

 SISD (Single Instruction Single Data)

 SIMD (Single Instruction, Multiple Data)

 MIMD (Multiple Instructions, Multiple Data)

 LESS COMMON : MISD (Multiple Instructions, Single Data)  

 Pipeline architectures: functional units perform different 

operations on the same data 

 For fault tolerance, may want to execute same instructions 

redundantly to detect and mask errors – for task replication
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MICHAEL FLYNN’S COMPUTER 

ARCHITECTURE TAXONOMY

 SISD (Single Instruction Single Data)

Scalar architecture with one processor/core.

▪ Individual cores of modern multicore processors are 

“SISD”

 SIMD (Single Instruction, Multiple Data)

Supports vector processing

▪When SIMD instructions are issued, operations on 

individual vector components are carried out concurrently

▪ Two 64-element vectors can be added in parallel

▪ Vector processing instructions added to modern CPUs

▪ Example: Intel MMX (multimedia) instructions
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FLYNN’S TAXONOMY

 Exploit data-parallelism: vector operations enable speedups

 Vectors architecture provide vector registers that can store 

entire matrices into a CPU register

 SIMD CPU extension (e.g. MMX) add support for vector 

operations on traditional CPUs

 Vector operations reduce total number of instructions for 

large vector operations 

 Provides higher potential speedup vs. MIMD architecture

 Developers can think sequentially; not worry about 

parallelism
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(SIMD): VECTOR PROCESSING

ADVANTAGES
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 MIMD (Multiple Instructions, Multiple Data)  - system with 

several processors and/or cores that function asynchronously 

and independently

 At any time, dif ferent processors/cores may execute dif ferent 

instructions on dif ferent data

 Multi-core CPUs are MIMD

 Processors share memory via interconnection networks

▪ Hypercube, 2D torus, 3D torus, omega network, other topologies

 MIMD systems have dif ferent methods of sharing memory

▪ Uniform Memory Access (UMA)

▪ Cache Only Memory Access (COMA)

▪ Non-Uniform Memory Access (NUMA)
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FLYNN’S TAXONOMY - 2

 Arithmetic intensity : Ratio of work (W) to 
    memory traffic r/w (Q) 
Example: # of floating point ops per byte of data read

 Characterizes application scalability with SIMD support

▪ SIMD can perform many fast matrix operations in parallel 

 High arithmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

 Low arithmetic intensity:  
Programs with sparse matrix operations do not scale well 
with problem size
(memory RW becomes bottleneck, not enough ops!)
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ARITHMETIC INTENSITY

 When program reaches a given arithmetic intensity 

performance of code running on CPU hits a “roof” 

 CPU performance bottleneck changes from:

memory bandwidth ( lef t)  →  f loating point performance (right)
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ROOFLINE MODEL

Key take-aways:
When a program’s has low 
Arithmetic Intensity, memory 
bandwidth limits performance..

With high Arithmetic intensity, 
the system has peak parallel 
performance…
→ performance is limited by??

 Questions from 10/1

 Tutorial 0, Tutorial 1, Tutorial 2

 Cloud Computing –  How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Class Activity 1 –  Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia 

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

 Modularity
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OBJECTIVES – 10/3

 GPU provides multiple SIMD processors 

 Typically 7 to 15 SIMD processors each

 32,768 total registers, divided into 16 lanes

(2048 registers each)

 GPU programming model: 

single instruction, multiple thread

 Programmed using CUDA- C like programming 

language by NVIDIA for GPUs

 CUDA threads –  single thread associated with each 

data element (e.g. vector or matrix)

 Thousands of threads run concurrently 
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GRAPHICAL PROCESSING UNITS (GPUS)

 Questions from 10/1

 Tutorial 0, Tutorial 1, Tutorial 2

 Cloud Computing –  How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Class Activity 1 –  Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia 

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

 Modularity 
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OBJECTIVES – 10/3
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Parallel hardware and software systems allow: 

▪ Solving problems needing resources not available on a 
single system.

▪ Reduced time required to obtain solution

 The speed-up (S) measures effectiveness of 
parallelization:

                            S(N) = T(1) / T(N) 

T(1) →  execution time of total sequential computation

T(N) →  execution time for performing N parallel 
computations in parallel 
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PARALLEL COMPUTING

 Consider embarrassingly parallel image processing

 Eight images (multiple data)

 Apply image transformation (greyscale) in parallel

 8-core CPU, 16 hyperthreads

 Sequential processing: perform transformations one at a time 
using a single program thread

▪ 8 images, 3 seconds each: T(1) = 24 seconds

 Parallel processing

▪ 8 images, 3 seconds each: T(N) = 3 seconds

 Speedup: S(N) = 24 / 3 = 8x speedup

 Called “perfect scaling”

 Must consider data transfer and computation setup time
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SPEED-UP EXAMPLE

 Amdahl’s law is used to estimate the speed -up of a job 
using parallel computing

1. Divide job into two parts

2. Part A that will still be sequential

3. Part B that will be sped-up with parallel computing

 Portion of computation which cannot be parallelized will 
determine (i.e. limit) the overall speedup 

 Amdahl’s law assumes jobs are of a fixed size

 Also, Amdahl’s assumes no overhead for distributing the 
work, and a perfectly even work distribution
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AMDAHL’S LAW

 S = theoretical speedup of the whole task

 f= fraction of work that is parallel              (ex. 25% or 0.25)

 N= proposed speed up of the parallel part  ( ex. 5 t imes speedup )

 % improvement
of task execution     = 100 * (1 – (1 / S))

 Using Amdahl’s law, we can f ind the maximum possible 
speed-up (S) for a g iven scenario  (e.g. ~8x) …
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AMDAHL’S LAW

Speed-up formula
                           →

 Program with two independent parts:

▪ Part A is 75% of the execution time

▪ Part B is 25% of the execution time

 Part B is made 5 times faster with
parallel computing

 Estimate the percent improvement of task execution

 Original Part A is 3 seconds, Part B is 1 second

 N=5 (speedup of part B)

 f=.25 (only 25% of the whole job (A+B) will be sped -up)

 S=1 / ((1-f)  + f/S)

 S=1 / (( .75) + .25/5)

 S=1.25  (speed up is 1.25x faster)

 % improvement = 100 * (1 – 1/1.25) = 20%
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AMDAHL’S LAW EXAMPLE

from Wikipedia

 Calculates the scaled speed-up using “N” processors

                             S(N)  = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized 

(e.g. must run sequentially)

 Can be used to estimate runtime of parallel portion of 

program
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GUSTAFSON'S LAW
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 Calculates the scaled speed-up using “N” processors

                             S(N)  = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized 

(e.g. must run sequentially)

 Can be used to estimate runtime of parallel portion of 

program

 Where α =  / ( + )

 Where = sequential time,  =parallel time

 Our Amdahl’s example: = 3s,  =1s, α =.75
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GUSTAFSON'S LAW

 Calculates the scaled speed-up using “N” processors

                             S(N)  = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized 

(e.g. must run sequentially)

 Example:

Consider a program that is embarrassingly parallel, 

but 75% cannot be parallelized.  α=.75

QUESTION: I f  deploying the job on a 2 -core CPU, what 

scaled speedup is  possible assuming the use of two 

processes that run in parallel?
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GUSTAFSON'S LAW

 QUESTION:  

What is the maximum theoret ical speed -up on a 2-core CPU ?

S(N)  = N + (1 - N) α

N=2, α=.75

   S(N)  = 2 + (1 - 2) .75

   S(N) = ?

 What is the maximum theoret ical speed -up on a 16-core CPU?

S(N)  = N + (1 - N) α

N=16, α=.75

   S(N)  = 16 + (1 - 16) .75

   S(N) = ?
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GUSTAFSON’S EXAMPLE

 QUESTION:  

What is the maximum theoret ical speed -up on a 2-core CPU ?

S(N)  = N + (1 - N) α

N=2, α=.75

    S(N)  = 2 + (1 - 2) .75

   S(N) = ?

 What is the maximum theoret ical speed -up on a 16-core CPU?

S(N)  = N + (1 - N) α

N=16, α=.75

   S(N)  = 16 + (1 - 16) .75

   S(N) = ?
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GUSTAFSON’S EXAMPLE

For 2 CPUs, speed up is 1.25x

For 16 CPUs, speed up is 4.75x

For 2 CPUs, speed up is 1.25x

For 16 CPUs, speed up is 4.75x

 Transistors on a chip doubles approximately every 1.5 years

 CPUs now have billions of transistors

 Power dissipation issues at faster clock rates leads to heat 

removal challenges

▪ Transition from: increasing clock rates → to adding CPU cores

 Symmetric core processor  –multi-core CPU, all cores have the 

same computational resources and speed  

 Asymmetric core processor  – on a multi -core CPU, some cores 

have more resources and speed  

 Dynamic core processor  – processing resources and speed can 

be dynamically configured among cores

 Observation: asymmetric processors of fer a higher speedup
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MOORE’S LAW

What kind of processor are modern
Intel CPUs ?

What kind of processor are modern
Intel CPUs ?

 Questions from 10/1

 Tutorial 0, Tutorial 1, Tutorial 2

 Cloud Computing –  How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Class Activity 1 –  Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia 

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

 Modularity 
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OBJECTIVES – 10/3
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 Collection of autonomous computers, connected through a 

network with distribution software called “middleware” that 

enables coordination of activities and sharing of resources

 Key characteristics:

 Users perceive system as a single, integrated computing 

facility. 

 Compute nodes are autonomous

 Scheduling, resource management, and security implemented 

by every node 

 Multiple points of control and failure

 Nodes may not be accessible at all times 

 System can be scaled by adding additional nodes

 Availability at low levels of HW/software/network reliability
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DISTRIBUTED SYSTEMS

 Key non-functional attributes

▪ Known as “ilities” in software engineering

 Availability –  24/7 access?

 Reliability -  Fault tolerance 

 Accessibility – reachable?

 Usability – user fr iendly

 Understandability – can under

 Scalability – responds to variable demand

 Extensibility –  can be easily modified, extended

 Maintainability – can be easily fixed

 Consistency –  data is replicated correctly in timely manner

October 3, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.56

DISTRIBUTED SYSTEMS - 2

 Access transparency: local and remote objects accessed using 
identical operations

 Location transparency: objects accessed w/o knowledge of 
their location.

 Concurrency transparency: several processes run concurrently 
using shared objects w/o inter ference among them

 Replication transparency: multiple instances of objects are 
used to increase reliability
-  users are unaware if and how the system is replicated

 Failure transparency: concealment of faults

 Migration transparency: objects are moved w/o affecting 
operations performed on them

 Performance transparency: system can be reconfigured based 
on load and quality of service requirements

 Scaling transparency: system and applications can scale w/o 
change in system structure and w/o affecting applications
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TRANSPARENCY PROPERTIES OF 

DISTRIBUTED SYSTEMS

 Questions from 10/1

 Tutorial 0, Tutorial 1, Tutorial 2

 Cloud Computing –  How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Class Activity 1 –  Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia 

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

 Modularity 
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OBJECTIVES – 10/3

 Soft modularity:  TRADITIONAL 

 Divide a program into modules (classes) that call each other 

and communicate with shared-memory

 A procedure calling convention is used (or method invocation)

 Enforced modularity:  CLOUD COMPUTING

 Program is divided into modules that communicate only 

through message passing 

 The ubiquitous client -server paradigm 

 Clients and servers are independent decoupled modules

 System is more robust if  servers are stateless

 May be scaled and deployed separately

 May also FAIL separately!
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TYPES OF MODULARITY

 Multi-core CPU technology and hyper -threading

 What is a 

▪ Heterogeneous system?

▪ Homogeneous system?

▪ Autonomous or self-organizing system?

 Fine grained vs. coarse grained parallelism

 Parallel message passing code is easier to debug than 

shared memory (e.g. p-threads)

 Know your application’s max/avg Thread Level 

Parallelism (TLP )

 Data-level parallelism: Map-Reduce, (SIMD) Single 

Instruction Multiple Data, Vector processing & GPUs
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CLOUD COMPUTING –  HOW DID WE GET HERE?

SUMMARY OF KEY POINTS
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 Bit-level parallelism

 Instruction-level parallelism (CPU pipelining)

 Flynn’s taxonomy : computer system architecture classification

▪ SISD – Single Instruction, Single Data (modern core of a CPU) 

▪ SIMD – Single Instruction, Multiple Data (Data parallelism)

▪ MIMD – Multiple Instruction, Multiple Data

▪ MISD is RARE; application for fault tolerance…

 Arithmetic intensity : ratio of calculations vs memory RW

 Roofline model: 

Memory bottleneck with low arithmetic intensity

 GPUs: ideal for programs with high arithmetic intensity

▪ SIMD and Vector processing supported by many large registers 
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CLOUD COMPUTING – HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 2

 Speed-up (S)

S(N) = T(1) / T(N)

 Amdahl’s law:
S = 1/ α
α = percent of program that must be sequential

 Scaled speedup with N processes:
S(N)  = N –  α( N-1)

 Moore’s Law

 Symmetric core, Asymmetric core, Dynamic core CPU

 Distributed Systems Non-function quality attributes 

 Distributed Systems –  Types of Transparency

 Types of modularity - Soft, Enforced
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CLOUD COMPUTING – HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 3

QUESTIONS

October 3, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma L3.63

61 62

63


	Slide 1:  TCSS 462/562:  (Software Engineering  for) Cloud Computing
	Slide 2: OBJECTIVES – 10/3
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 10/3
	Slide 7: Hyper-threading - 2
	Slide 8: Cat /proc/cpuinfo  ||  lscpu
	Slide 9
	Slide 10: Hyper-threading - 3
	Slide 11: Feedback - 2
	Slide 12: Effects of hyperthreading on aws lambda
	Slide 13
	Slide 14: Feedback - 3
	Slide 15: Feedback - 4
	Slide 16: Demographics survey
	Slide 17: AWS Cloud Credits survey
	Slide 18: OBJECTIVES – 10/3
	Slide 19: OBJECTIVES – 10/3
	Slide 20: OBJECTIVES – 10/3
	Slide 21: OBJECTIVES – 10/3
	Slide 22: cloud computing: How did we get here? - 5
	Slide 23: cloud computing: How did we get here? - 6 
	Slide 24: Hardware heterogeneity
	Slide 25: OBJECTIVES – 10/3
	Slide 26: Class activity 1
	Slide 27: Class Activity 1
	Slide 28: Implicit parallelism 
	Slide 29: Explicit parallelism
	Slide 30: Parallelism questions
	Slide 31: Parallelism questions - 2
	Slide 32: Parallelism questions - 3
	Slide 33: OBJECTIVES – 10/3
	Slide 34: Michael Flynn’s computer architecture taxonomy
	Slide 35: Flynn’s taxonomy
	Slide 36: (Simd): VECtOR PROCESSING advantages
	Slide 37: Flynn’s taxonomy - 2
	Slide 38: Arithmetic intensity
	Slide 39: Roofline model
	Slide 40: OBJECTIVES – 10/3
	Slide 41: Graphical processing units (gpus)
	Slide 42: OBJECTIVES – 10/3
	Slide 43: Parallel computing
	Slide 44: Speed-up example
	Slide 45: Amdahl’s law
	Slide 46: Amdahl’s law
	Slide 47: Amdahl’s law example
	Slide 48: Gustafson's Law
	Slide 49: Gustafson's Law
	Slide 50: Gustafson's Law
	Slide 51: Gustafson’s example
	Slide 52: Gustafson’s example
	Slide 53: Moore’s law
	Slide 54: OBJECTIVES – 10/3
	Slide 55: Distributed systems
	Slide 56: Distributed systems - 2
	Slide 57: Transparency properties of distributed systems
	Slide 58: OBJECTIVES – 10/3
	Slide 59: Types of modularity
	Slide 60: Cloud computing – how did we get here? Summary of key points
	Slide 61: Cloud computing – how did we get here? Summary of key points - 2
	Slide 62: Cloud computing – how did we get here? Summary of key points - 3
	Slide 63: Questions

