TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TCSS 462/562:
(SOFTWARE ENGINEERING,
FOR) CLOUD COMPUT'NG : |'Questlonsfrom 10/1 I

OBJECTIVES - 10/3

= Tutorial O, Tutorial 1, Tutorial 2
Cloud COmputing - e = Cloud Computing - How did we get here?
How did we get here? - Il '

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
= Class Activity 1 - Implicit vs Explicit Parallelism
= SIMD architectures, vector processing, multimedia

Wes J. Lloyd extensions
School of Engineering and Technology = Graphics processing units
University of Washington - Tacoma = Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems
= Modularity
‘ October 3, 2024 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] 152

School of Engineering and Technology, University of Washington - Tacoma

TCSS 562 - Online Daily Feedback Survey - 10/5

Startect Ot 7 at 1-13sm

ONLINE DAILY FEEDBACK SURVEY Quiz Instructions

Question 1 05pts

= Daily Feedback Quiz in Canvas - Take After Each Class Ona scale of 1 to 10, please classify your perspective on material covered in today's
= Extra Credit e class
for completing

* Upcoming Assignments 1 2 3 4 5 3 7 8 o 18

Equa1 sty
, Class Activity 1 - Implicit vs. Explicit Paeallelism [[yt o

= Tuesday class "
surveys close =
11:59pm WED "

* Past Assigaments

Qui

= Thursday class
surveys close
11:59pm MON

Question 2 osps
line Doty Fesdbock Survy - 10/3 |

Please rate the pace of today's class:

wine Doty Feedback Survey - 9/30
[1 2 3 4 s 3 7 8] 10

P et might Pt

TCS462/562: (Software Engineering for) Cloud Computing [Fall 2024]

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

October3, 2024 153
‘ Ceubeis 2028 School of Engineering and Technology, University of Washington - Tacoma L54

MATERIAL / PACE FEEDBACK FROM 10/3

= Please classify your perspective on material covered in today’s = Difference between hyperthread and vCPU
class (40 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 7.03 (.L. previous 6.16) = This refers to the CPUs provided by a virtual machine

= yCPU stands for virtual CPU

= Since a virtual machine is a virtual server, the CPUs in virtual
= Please rate the pace of today’s class: servers are called virtual CPUs

= 1-slow, 5-just right, 10-fast

= [nstructions executed on a virtual CPU get mapped to logical
= Average - 5.48 (T - previous 5.55 CPU cores on the 0S for execution (KVM)
= The virtual to physical mapping varies based on which physical CPUs
= Response rates: are free and available
= 4-core server, 2-vCPU VM:
= TCSS 462: 27/42 !
/ vCPUO - (CPUO, CPU 1, CPU 2, CPU 3) mapped based on availability
= TCSS 562: 13/18 VCPU 1 - (CPU 0, CPU 1, CPU 2, CPU 3) mapped based on availability
TCSS462/562:(Software Er ring for) Cloud Cor [Fall 2024] TCS5462/562:(Soft: Er for) Cloud C ing [Fall 2024]
‘ October3, 204 | (G300l ecincaring and Techmoegy, riversyof Washingion Tacoma ‘ October3, 020 | L e ond echnoegy, niersyaf Washingion Tocoma

Slides by Wes J. Lloyd L3.1

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

HYPER-THREADING - 2

= How do I use hyper-threading?

= Hyper-threading is automatic
= Modern CPUs expose each physical CPU core as two CPU cores
" cat /proc/cpuinfo command lists individual cores

= Operating system schedules processes & threads to run on a
hyper-thread

= On CPUs with hyper-threading, each CPU core has two hyper-
threads

= To the operating system they are seen as full-featured
independent CPU cores

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

Ociousiianz School of Engineering and Technology, University of Washington - Tacoma

[Fall 2024]

CAT /PROC/CPUINFO || LSCPU

If a CPU has hyper-threading
enabled, the “ht” flag is listed

Hyper-Threading (HT)
Technology

* Provides more satisfactory solution

Figure 2: Processors without Hyper-Threading Tech

+ Single physical processor is shared as
two logical processors

Processor Execution | | Processr Exscution

Each logical processor has its own
architecture state

SOures Resources

Single set of execution units are shared
between logical processors

N-logical PUs are supported
Have the same gain % with only 5% die-

Processor Execution | Processor Execution

size penalty. Resouces Resouces
* HT allows single processor to fetch and
execute two separate code streams —_—
simultaneously. .] -
— per-Thesading

HYPER-THREADING - 3

= When should we use hyper-threading, and when
should not?
= For personal computing, hyper-threading helps improve system
performance when many programs use only short bursts of
CPU time
= Databases, HPC (science) applications, and others may benefit
from disabling hyper-threading. Testing will help quantify
performance.
= Disabling hyper-threading (HW setting), cuts the number of CPU
cores available to operating system in half
Can be disabled in the System BIOS or UEFI (uniform extensible
firmware interface) software
BIOS / UEFI is a small resident program that can be accessed by
pressing a function-key when rebooting the computer
BIOS / UEFI is used to configure hardware options
Making changes requires rebooting the computer

‘ October 3, 2024 TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024] 510

School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK - 2

= |t is still not clear to me why a core with two hyperthreads is
fi rthan re with h rthreading that I ratin,

100%?

= The hyperthreaded core is only faster if running a job that
uses multiple threads at the same time (in parallel).

If the job is sequential, there is likely no difference.

But for your laptop, the more hypertheads you have, the more
web browser code you can execute in parallel across each tab
of the browser

= Web browsers are multi-process (Chrome) or multi-threaded (Firefox)

October3, 2024 TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024] G

School of Engineering and Technology, University of Washington - Tacoma

10

EFFECTS OF HYPERTHREADING ON AWS LAMBDA
= Cores = Speedup - Theoretical Speedup

-prime number g ion 20

Cores
g
Runtime Speed Up

2000 4000 6000 8000 10000
Memory (MBs)
Figure 1: AWS Lambda Performance Speedup for Sysbench
Prime Number Generation vs. Function Memory
From: Cordingly, R., Heydari, N., Yu, H., Hoang, V., Sadeghi, Z., Lloyd, W., Enhancing Observability of Serverless

Computing with the ppl Analytics . Tutorial Paper. 2021 12th ACM/SPEC
C on jneering (ICPE '21), Apr 19-23, 2021.

11

Slides by Wes J. Lloyd

12

TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

AWS LAMBDA: vCPUs ARE TIED TO MEMORY
FEEDBACK - 3

AWS IBM — Google — Digital Ocean
25
= If | use a computer with 8 cores (client) to rent a virtual machine

2 — with 12 r hrough 1 rovider, th m r with |
- won’l I h: rforman f the virtual machine with
é 15 more cores because they are separate?
o
é 1 = CORRECT, the performance will not decrease.
> = The 8-core (laptop/desktop) is just used to access the remote

05 computer via ssh/graphical desktop
The laptop/desktop acts as a client computer used to access the
powerful remote server
1000 1500 2000 2500 Any applications / jobs /workloads are run on the remote server,
Memory Setting (MBs) but are launched by the client
= Through a terminal session (ssh), or remote graphical desktop
= Or by calling a web service hosted on the powerful server
" You may experience network latency between the client and server
Platforms with for large data transfers

for
on Cloud Engineering (IC2E 2022), s TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024] s
4 School of Engineering and Technology, University of Washington - Tacoma

=
o
S
s
[l

Fig. 2. Allocated vCPUs available at each memory setting on each platform.

From: Cordingly, R., Xu, S., Lloyd, W., Function Memory Optii
CPU Time Accounting, 2022 10th IEEE ional C
Sept 26-30, 2022

13 14

FEEDBACK - 4 DEMOGRAPHICS SURVEY

= Thread level parallellsm Is not clear = Please complete the ONLINE demographics survey:

= Thread level parallelism refers to when parallelism occurs as We have received 37 responses so far
a result of multiple threads performance operations in parallel We are waiting on ~23 responses.
typically on a multi-core computer

= https://forms.gle/6ER7PzfP521vdxYW9

= As DevOps engineers, we often are responsible for deploying
our applications in the cloud. Therefore, we need to
understand the average number and peak number of threads

our application requires. = Linked from course webpage in Canvas:
= In class, | demonstrated how this can be observed in Linux = http://faculty.washington.edu/wlloyd/courses/tcss562
using “top” and a multi-threaded prime number generation announcements.html
program
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]

15 16

AWS CLOUD CREDITS SURVEY OBJECTIVES - 10/3

= Please complete the AWS Cloud Credits survey: = Questions from 10/1
= Tutorial O} Tutorial 1, Tutorial 2

= Cloud Computing - How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

= Class Activity 1 - Implicit vs Explicit Parallelism

= SIMD architectures, vector processing, multimedia
extensions

Please only complete survey after setting up AWS account
or if requiring an 1AM user (no-credit card option)

" https://forms.gle/fmKkLZbxZEChAay16

= Linked from course webpage in Canvas: i . .
= Graphics processing units

:
= http://faculty.washington.edu/wlloyd/courses/tcss562/ = Speed-up, Amdahl's Law, Scaled Speedup
announcements.html = Properties of distributed systems
= Modularity
TCSS462/562: (Softy Engir ing for) Cloud Cor tting [Fall 2024] TCSS462/562:(Softy Er for) Cloud C uting [Fall 2024]
‘ October3, 2024 e AT AT S Ay e et A e d ‘ October3, 2024 SE Al e ST T g U et e A - T b

17 18

Slides by Wes J. Lloyd L3.3

https://forms.gle/6ER7PzfP521vdxYW9
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
https://forms.gle/fmKkLZbxZECbAay16
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html

TCSS 462: Cloud Computing

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 10/3

= Questions from 10/1

= Tutorial O Tutorlal 1,|Tutorial 2

= Cloud Computing - How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

= Class Activity 1 - Implicit vs Explicit Parallelism

= SIMD architectures, vector processing, multimedia
extensions

= Graphics processing units

= Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems

= Modularity

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

‘ Octobers2022 School of Engineering and Technology, University of Washington - Tacoma

519

19

OBJECTIVES - 10/3

= Questions from 10/1
= Tutorial O, Tutorial 1, Tutorial 2

= Cloud Computing - How did we get here?
(Marlnescu Ch. 2 - 1st edltlon, Ch. 4 - 2nd edltion

= Class Activity 1 - Implicit vs Explicit Parallelism

= SIMD architectures, vector processing, multimedia
extensions

= Graphics processing units

= Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems

= Modularity

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2024]

‘ October3, 2024 School of Engineering and Technology, University of Washington - Tacoma.

21

21

CLOUD COMPUTING:

HOW DID WE GET HERE? - 6

= Compute clouds are large-scale distributed
systems

= [nfrastructure-as-a-Service (laaS) Cloud
=Provide VMs on demand to users
= ec2instances.info (AWS EC2)

= Clouds can consist of
=Homogeneous hardware (servers, etc.)
=Heterogeneous hardware (servers, etc.)

=Which is preferable?

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]

‘ October3, 2024 School of Engineering and Technology, University of Washington - Tacoma

1323

[Fall 2024]

OBJECTIVES - 10/3

= Questions from 10/1

= Tutorial O, Tutorial 1,|Tutorlal 2

= Cloud Computing - How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

= Class Activity 1 - Implicit vs Explicit Parallelism

= SIMD architectures, vector processing, multimedia
extensions

= Graphics processing units

= Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems

= Modularity

‘ October3, 2024 TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024] 20

School of Engineering and Technology, University of Washington - Tacoma

20

CLOUD COMPUTING:

HOW DID WE GET HERE? - 5

= Compute clouds are large-scale distributed systems

= Heterogeneous systems

Many services/platforms w/ diverse hw + capabilities
*Homogeneous systems

Within a platform - illusion of identical hardware
= Autonomous

Automatic management and maintenance- largely with
little human intervention

= Self organizing
User requested resources organize themselves to satisfy
requests on-demand

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024] 522

School of Engineering and Technology, University of Washington - Tacoma

‘ October 3, 2024

22

W

KLLLLL
i
= If providing laaS, what are advantages/
disadvantages of using homogeneous hardware?
= Easier to provide same quality of service to end users
Less performance variance

Components with variable performance: CPUs, memory
(speed differences), disks (SSDs, HDDs), network interfaces
(caches?)

= Homogeneous hardware (servers): components are
interchangeable

As components fail, identical backups are
immediately available

Example: blade servers
= As clouds grow, why is HW homogeneity difficult to maintain?
= What are some advantages of using heterogeneous HW?

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024] s

School of Engineering and Technology, University of Washington - Tacoma

HARDWARE HETEROGENEITY

‘ October 3, 2024

23

Slides by Wes J. Lloyd

24

L3.4

TCSS 462: Cloud Computing

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 10/3

= Questions from 10/1

= Tutorial O, Tutorial 1, Tutorial 2

= Cloud Computing - How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

= Class Activity 1 - Implicit vs Explicit Parallelism |

= SIMD architectures, vector processing, multimedia
extensions

= Graphics processing units

= Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems

= Modularity

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

‘ Octobers2022 School of Engineering and Technology, University of Washington - Tacoma

525

[Fall 2024]

CLASS ACTIVITY 1

= Form groups of ~3 - in class or with Zoom breakout rooms
= Each group will complete a MSWORD DOCX worksheet

= Be sure to add names at top of document as they appear in
Canvas

= Activity can be completed in class or after class

= The activity can also be completed individually

= When completed, one person should submit a PDF of the
documet to Canvas

= Instructor will score all group members based on the uploaded
PDF file

= To get started:
= Follow the link: (link also available in Canvas)

https://faculty.washington.edu/wlloyd/courses/tcss562/
assignments/tcss462_562_f2024_tpsl.docx

‘ October3, 2024 TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024] 6

School of Engineering and Technology, University of Washington - Tacoma

25

CLASS ACTIVITY 1

= Solutions to be discussed..

TCS462/562: (Software Engineering for) Cloud Computing [Fall 2024]

‘ October3, 2024 School of Engineering and Technology, University of Washington - Tacoma

327

26

IMPLICIT PARALLELISM

= Implicit types:

= Why are these methods available automatically without
special developer effort?

= Advantages:

= Disadvantages:

‘ TR TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024] 52

School of Engineering and Technology, University of Washington - Tacoma

27

EXPLICIT PARALLELISM

= Explicit types:

= Advantages:

= Disadvantages:

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]

‘ e School of Engineering and Technology, University of Washington - Tacoma

1329

28

PARALLELISM QUESTIONS

= 7. For bit-level parallelism, should a developer be
concerned with the available number of virtual CPU
processing cores when choosing a cloud-based virtual
machine if wanting to obtain the best possible speed-up?
(Yes / No)

= 8. For instruction-level parallelism, should a developer be
concerned with the physical CPU’s architecture used to
host a cloud-based virtual machine if wanting to obtain
the best possible speed-up? (Yes / No)

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024] 30

‘ CEEELED School of Engineering and Technology, University of Washington - Tacoma

29

Slides by Wes J. Lloyd

30

L3.5

https://faculty.washington.edu/wlloyd/courses/tcss562/assignments/tcss462_562_f2024_tps1.docx
https://faculty.washington.edu/wlloyd/courses/tcss562/assignments/tcss462_562_f2024_tps1.docx

TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

PARALLELISM QUESTIONS - 2 PARALLELISM QUESTIONS - 3

= 9. An application developer measures the average and = What is a good ec2 c-series instance for average TLP ?
peak thread level parallelism (TLP) of an application prior
to deployment on the AWS EC2. The developer measures
an average TLP of 2.3, and a peak TLP of 7.3. The = Why is this instance good/sufficient for satisfying average
application is to be deployed using a compute-optimized TLP?
(c-series) ec2 instance. Using resources online, such as
the websites below, propose a good virtual machine (ec2
type) that satisfies average TLP, and a second for
satisfying peak TLP.

= https://docs.aws.amazon.com/ec2/latest/instancetypes,
co.html

= https://instances.vantage.sh/

= What is a good ec2 c-series instance for peak TLP ?

= Why is this instance good/sufficient for satisfying peak TLP ?

TCS5462/562:(Software Engineering for) Cloud Computing [Fa 2024] TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ Octobers2022 School of Engineering and Technology, University of Washington - Tacoma 1331 Octobersi202 School of Engineering and Technology, University of Washington - Tacoma 1332

31 32

OBJECTIVES - 10,3 MICHAEL FLYNN’S COMPUTER

ARCHITECTURE TAXONOMY

"= Questions from 10/1 = Michael Flynn's proposed taxonomy of computer
= Tutorial O, Tutorial 1, Tutorial 2 architectures based on concurrent instructions and
= Cloud Computing - How did we get here? number of data streams (1966)

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
= Class Activity 1 - Implicit vs Explicit Parallelism
= SIMD architectures, vector processing, multimedia

= SISD (Single Instructlon Single Data)
= SIMD (Single Instruction, Multiple Data)
= MIMD (Multiple Instructions, Multiple Data)

extenslons
= Graphics processing units = L[ESS COMMON: MISD (Multiple Instructions, Single Data)
= Speed-up, Amdahl's Law, Scaled Speedup = Pipeline architectures: functional units perform different
= Properties of distributed systems operations on the same data
= Modularity = For fault tolerance, may want to execute same instructions
redundantly to detect and mask errors - for task replication
[osobersas TGS et o) covd o [oo] [oumername I e e o s | o]
33 34

(SIMD): VECTOR PROCESSING

FLYNN’'S TAXONOMY

ADVANTAGES
= SISD (Single Instruction Single Data) = Exploit data-parallelism: vector operations enable speedups
Scalar architecture with one processor/core. . . .
. i = Vectors architecture provide vector registers that can store
= Individual cores of modern multicore processors are entire matrices into a CPU register
“SISD”

= SIMD CPU extension (e.g. MMX) add support for vector
= SIMD (Single Instruction, Multiple Data) operations on traditional CPUs

Supports vector processing

= When SIMD instructions are issued, operations on
individual vector components are carried out concurrently

= Two 64-element vectors can be added in parallel

= Vector operations reduce total number of instructions for
large vector operations

= Provides higher potential speedup vs. MIMD architecture

= Vector processing instructions added to modern CPUs = Developers can think sequentially; not worry about
= Example: Intel MMX (multimedia) instructions parallelism
TCSS462/562: (Softy Engir ing for) Cloud Cor tting [Fall 2024] TCSS462/562: (Software Engi ing for) Cloud Cor iting [Fall 2024]
[ouobersaon [T ot) cod compune o202 s [ommername I o b o

35 36

Slides by Wes J. Lloyd L3.6

https://docs.aws.amazon.com/ec2/latest/instancetypes/co.html
https://docs.aws.amazon.com/ec2/latest/instancetypes/co.html
https://instances.vantage.sh/

TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

FLYNN’S TAXONOMY - 2 ARITHMETIC INTENSITY
= MIMD (Multiple Instructlons, Multiple Data) - system with = Arlthmetlc Intenslity: Ratio of work (W) to I= w
several processors and/or cores that function asynchronously memory traffic r/w (Q) Q
and independently Example: # of floating point ops per byte of data read
= At any time, different processors/cores may execute different = Characterizes application scalability with SIMD support
instructions on different data = SIMD can perform many fast matrix operations in parallel

= Multi-core CPUs are MIMD
= Processors share memory via interconnection networks

= High arithmetic Intensity:

Programs with dense matrix operations scale up nicely

= Hypercube, 2D torus, 3D torus, omega network, other topologies (many calcs vs memory RW, supports lots of parallelism)

= MIMD systems have different methods of sharing memory

Uniform Memory Access (UMA) = Low arlthme_tlc Intensity: _ _
Cache Only Memory Access (COMA) Programs with sparse matrix operations do not scale well

with problem size

Non-Unif M A NUMA
EIBIIENGD L (s) (memory RW becomes bottleneck, not enough ops!)

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2024] TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ Octobers2022 School of Engineering and Technology, University of Washington - Tacoma 1337 Octobersi202 School of Engineering and Technology, University of Washington - Tacoma 1338

37 38

ROOFLINE MODEL OBJECTIVES - 10/3

= When program reaches a given arithmetic intensity = Questions from 10/1
performance of code running on CPU hits a “roof” = Tutorial 0, Tutorial 1, Tutorial 2

= CPU performance bottleneck changes from: = Cloud Com o .
N N N . puting - How did we get here?
memory bandwidth (left) > floating point performance (right) (Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

. = Class Activity 1 - Implicit vs Explicit Parallelism
4t imbalance Key take-aways: S.’) v D P . R .
a — Whenaprogram’s has low = SIMD architectures, vector processing, multimedia
g Arithmetic Intensity, memory extensions
5 Alg2 N A
5 bandwidth limits performance.. | = Graphlcs processing unlts |
With high Arithmetic intensity, = Speed-up, Amdahl's Law, Scaled Speedup
the system has peak parallel = Properties of distributed systems
performance... = Modularity
Arithmetic intensity - performance is limited by??
\ October3, 2028 | B g sy Unversy o oo - Tatoms a \ Otober3, 8| B g and sy Unvrey o oo - acoma aw

39 40

GRAPHICAL PROCESSING UNITS (GPUSs) OBJECTIVES - 10/3
= GPU provides multiple SIMD processors = Questions from 10/1
= Typically 7 to 15 SIMD processors each ® Tutorial 0, Tutorial 1, Tutorial 2

= Cloud Computing - How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
= Class Activity 1 - Implicit vs Explicit Parallelism

= 32,768 total registers, divided into 16 lanes
(2048 registers each)

= GPU programming model:
single instruction, multiple thread

= Programmed using CUDA- C like programming

= SIMD architectures, vector processing, multimedia
extensions

= Graphics processing units

language by NVIDIA for GPUs | = Speed-up, Amdahl's Law, Scaled Speedup |
= CUDA threads - single thread associated with each = Properties of distributed systems
data element (e.g. vector or matrix) = Modularity

= Thousands of threads run concurrently

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024] Ga ‘ L TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024] a2

‘ October 3, 2024

School of Engineering and Technology, University of Washington - Tacoma School of Engineering and Technology, University of Washington - Tacoma

41 42

Slides by Wes J. Lloyd L3.7

TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

PARALLEL COMPUTING SPEED-UP EXAMPLE
= Parallel hardware and software systems allow: = Consider embarrassingly parallel image processing
= Solving problems needing resources not available on a = Eight images (multiple data)

single system. = Apply image transformation (greyscale) in parallel

= Reduced time required to obtain solution = 8-core CPU, 16 hyperthreads

= Sequential processing: perform transformations one at a time

. using a single program thread
=" The speed-up (S) measures effectiveness of - B e, B Comeneh Codi B = 24 cemah

parallelization: .
= Parallel processing

S(N) =T(1) / T(N) = 8 images, 3 seconds each: T(N) = 3 seconds

= Speedup: S(N) = 24 3 =28 d
T(1) > execution time of total sequential computation > “p () ,/ m Epeeey
. . . = Called “perfect scallng'
T(N) = execution time for performing N parallel

computations in parallel = Must consider data transfer and computation setup time

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
October=72023 1343 School of Engineering and Technology, University of Washington - Tacoma

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma Octobersi2023 1B

43 44

AMDAHL'S LAW AMDAHL'S LAW

= Amdahl’s law is used to estimate the speed-up of a job Speed-up formula 1
using parallel computing > §— 7‘[
1-f)+4
1. Divide job into two parts { N+x%
2. Part A that will still be sequential = S = theoretical speedup of the whole task
3. Part B that will be sped-up with parallel computing = f= fraction of work that is parallel (ex. 25% or 0.25)

= N= proposed speed up of the parallel part (ex.5 timesspeedu
= Portion of computation which cannot be parallelized will prop p P P P (p P)

determine (i.e. limit) the overall speedup 0 G I HETE0En
b

= Amdahl’s law assumes jobs are of a fixed size of task execution =100 * (1 -(1/8))
= Also, Amdahl’s assumes no overhead for distributing the
work, and a perfectly even work distribution = Using Amdahl's law, we can find the maximum posslble
speed-up (S) for a glven scenarlo (e.g. ~8x) ...
TCSS462/562:(Software Engil ring for) Cloud C ing [Fall 2024] TCS5462/562:(Soft: Er for) Cloud C ing [Fall 2024]
[ouobersaons [Iinaeius et o v ompui) [oommnmn o e s s s

GUSTAFSON'S LAW

AMDAHL'S LAW EXAMPLE

T Indepengentparts A B
= Program with two independent parts: = Calculates the scaled speed-up using “N” processors
= Part A is 75% of the execution time o S(N) =N+ (1-N) «
= Part B is 25% of the execution time Mike B Sctaser NN
= Part B is made 5 times faster with . — N: Number of processors
parallel computing

a: fraction of program run time which can’t be parallelized

= Estimate the percent improvement of task execution N
(e.g. must run sequentially)

= Original Part A is 3 seconds, Part B is 1 second
= Can be used to estimate runtime of parallel portion of

= N=5 (speedup of part B) program

= f=.25 (only 25% of the whole job (A+B) will be sped-up)
= S=1/ ((1-f) + f/S)

= S=1/((.75) + .25/5)

= S=1.25 (speed up is 1.25x faster)

= % improvement = 100 * (1 - 1/1.25) = 20%

TCS$462/562:(Software Engineering for) Cloud Computing [Fall 2024] a7 October3, 2023 TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024] a8
School of Engineering and Technology, University of Washington - Tacoma 2 School of Engineering and Technology, University of Washington - Tacoma

‘ October 3, 2023

47 48

Slides by Wes J. Lloyd L3.8

TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

GUSTAFSON'S LAW GUSTAFSON'S LAW
= Calculates the scaled speed-up using “N” processors = Calculates the scaled speed-up using “N” processors
S(N) =N+(1-N)« S(N) =N+ (1-N)a
N: Number of processors N: Number of processors
o: fraction of program run time which can’t be parallelized a: fraction of program run time which can’t be parallelized
(e.g. must run sequentially) (e.g. must run sequentially)
= Can be used to estimate runtime of parallel portion of = Example:
program Consider a program that is embarrassingly parallel,
= Where a =c / (1 + o) but 75% cannot be parallelized. a=.75
= Where o= sequential time, © =parallel time QUESTION: If deploying the job on a 2-core CPU, what

scaled speedup Is possible assumling the use of two
processes that run in parallel?

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024] TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ October=72023 School of Engineering and Technology, University of Washington - Tacoma 1349 Octobersi2023 School of Engineering and Technology, University of Washington - Tacoma 1350

= Qur Amdahl’s example: 6= 3s, © =1s, a =.75

49 50

GUSTAFSON’S EXAMPLE GUSTAFSON’S EXAMPLE

QUESTION: QUESTION:
What is the maximum theoretical speed-up on a 2-core CPU ? What is the maximum theoretical speed-up on a 2-core CPU ?

S(N) =N+(1-N)«x S(N) =N+ (1-N)«

N=2, a=.75 N=2, o= .

S(N) =2 + (1-2).75 S(N) = For 2 CPUs, speed up is 1.25x
S(N) =2 S(N) = 2

For 16 CPUs, speed up is 4.75x

= What is the maximum theoretical speed-up on a 16-core CPU? = What is the maximum theoretical speed-up on a PU?
S(N) =N+(1-N)«x S(N) =N+ (1-N)«
N=16, a=.75 N=16, a=.75
S(N) =16 + (1 -16) .75 S(N) =16 + (1 -16) .75
S(N)=? S(N) =72
TCS5462/562:(Software Engil ring for) Cloud Cc ing [Fall 2024] TCS5462/562:(Soft: Ei for) Cloud C ing [Fall 2024]
[oumobersams [ISk oo o oy [oommnmn o e s s o=

51 52

MOORE’S LAW OBJECTIVES - 10/3

= Transistors on a chip doubles approximately every 1.5 years = Questions from 10/1

= CPUs no = Tutorial O, Tutorial 1, Tutorial 2

LRIV What kind of processor are modern [LEEN = Cloud Computing - How did we get here?
removal Intel CPUs ? (Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
= Transiti ores = Class Activity 4 - Implicit vs Explicit Parallelism

= Symmetric core processor -multi-core CPU, all cores have the = SIMD architectures, vector processing, multimedia
same computational resources and speed extensions

= Asymmetric core processor - on a multi-core CPU, some cores
have more resources and speed

= Dynamlic core processor - processing resources and speed can
be dynamically configured among cores

= Graphics processing units

= Speed-up, Amdahl's Law, Scaled Speedup

= Properties of distributed systems |
= Modularity

= Observation: asymmetric processors offer a higher speedup

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024] TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ CElTRITD School of Engineering and Technology, University of Washington - Tacoma o OEEETRAED School of Engineering and Technology, University of Washington - Tacoma s

53 54

Slides by Wes J. Lloyd L3.9

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

DISTRIBUTED SYSTEMS

= Collection of autonomous computers, connected through a
network with distribution software called “middleware” that
enables coordination of activities and sharing of resources

= Key characterlstics:

= Users perceive system as a single, integrated computing
facility.

= Compute nodes are autonomous

= Scheduling, resource management, and security implemented
by every node

= Multiple points of control and failure

= Nodes may not be accessible at all times

= System can be scaled by adding additional nodes

= Availability at low levels of HW/software/network reliability

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024 s
School of Engineering and Technology, University of Washington - Tacoma

‘ October3, 2024

DISTRIBUTED SYSTEMS - 2

= Key non-functional attributes
= Known as “ilities” in software engineering

= Availability - 24/7 access?

= Reliability - Fault tolerance

= Accessibility - reachable?

= Usability - user friendly

= Understandability - can under

= Scalability - responds to variable demand

= Extensibility - can be easily modified, extended

= Maintainability - can be easily fixed

= Consistency - data is replicated correctly in timely manner

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ Octobersi202 School of Engineering and Technology, University of Washington - Tacoma 1356

55

56

TRANSPARENCY PROPERTIES OF
DISTRIBUTED SYSTEMS

= Access transparency: local and remote objects accessed using
identical operations

= Location transparency: objects accessed w/o knowledge of
their location.

= Concurrency transparency: several processes run concurrently
using shared objects w/o interference among them

= Replicatlon transparency: multiple instances of objects are
used to increase reliability
- users are unaware if and how the system is replicated

= Fallure transparency: concealment of faults

= Migratlon transparency: objects are moved w/o affecting
operations performed on them

= Performance transparency: system can be reconfigured based
on load and quality of service requirements

= Scallng transparency: system and applications can scale w/o
change in system structure and w/o affecting applications

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ October3, 2024 School of Engineering and Technology, University of Washington - Tacoma s7

OBJECTIVES - 10/3

= Questions from 10/1
= Tutorial O, Tutorial 1, Tutorial 2

= Cloud Computing - How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

= Class Activity 1 - Implicit vs Explicit Parallelism

= SIMD architectures, vector processing, multimedia
extensions

= Graphics processing units
= Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems

| = Modularity |

‘ TR TC55462/562:(Software Engineering for) Cloud Computing [Fal 2024] e

School of Engineering and Technology, University of Washington - Tacoma

57

TYPES OF MODULARITY

= Soft modularity: TRADITIONAL

= Divide a program into modules (classes) that call each other
and communicate with shared-memory

= A procedure calling convention is used (or method invocation)

= Enforced modularity: CLOUD COMPUTING

= Program is divided into modules that communicate only
through message passing

= The ubiquitous client-server paradigm

= Clients and servers are independent decoupled modules

= System is more robust if servers are stateless

= May be scaled and deployed separately

= May also FAIL separately!

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ CElRIT) School of Engineering and Technology, University of Washington - Tacoma 50

59

Slides by Wes J. Lloyd

58

CLOUD COMPUTING - HOW DID WE GET HERE?
SUMMARY OF KEY POINTS

= Multi-core CPU technology and hyper-threading

= What is a
= Heterogeneous system?
= Homogeneous system?
= Autonomous or self-organizing system?

= Fine grained vs. coarse grained parallelism

= Parallel message passing code is easier to debug than
shared memory (e.g. p-threads)

= Know your application’s max/avg Thread Level
Parallellsm (TLP)

= Data-level parallellsm: Map-Reduce, (SIMD) Single
Instruction Multiple Data, Vector processing & GPUs

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024] 60

‘ CEEELED School of Engineering and Technology, University of Washington - Tacoma

60

L3.10

TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing

School of Engineering and Technology, UW-Tacoma

CLOUD COMPUTING - HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 2

= Blt-level parallelism
= |Instruction-level parallelism (CPU pipelining)
= Flynn’s taxonomy: computer system architecture classification
= SISD - Single Instruction, Single Data (modern core of a CPU)
= SIMD - Single Instruction, Multiple Data (Data parallelism)
= MIMD - Multiple Instruction, Multiple Data
= MISD is RARE; application for fault tolerance...
= Arlthmetlc Intenslty: ratio of calculations vs memory RW
= Roofline model:
Memory bottleneck with low arithmetic intensity
= GPUs: ideal for programs with high arithmetic intensity
= SIMD and Vector processing supported by many large registers

l T TCS462/562:(Software Engineering for) Cloud Computing [Fall 2024] et

School of Engineering and Technology, University of Washington - Tacoma

CLOUD COMPUTING - HOW DID WE GET HERE?
SUMMARY OF KEY POINTS - 3

= Speed-up (S)
S(N) = T(1) / T(N)
= Amdahl’s law:
S=1/«
o = percent of program that must be sequential

= Scaled speedup with N processes:
S(N) =N - a(N-1)

= Moore’s Law

= Symmetric core, Asymmetric core, Dynamic core CPU
= Distributed Systems Non-function quality attributes
= Distributed Systems - Types of Transparency

= Types of modularity- Soft, Enforced

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

l Octonersi2020 School of Engineering and Technology, University of Washington - Tacoma

61

QUESTIONS

TCS$462/562:(Software Engineering for) Cloud Computing [Fall 20}
School of Engineering and Technology, University of Washington -

October 3, 2024

63

Slides by Wes J. Lloyd

62

L3.11

	Slide 1: TCSS 462/562: (Software Engineering for) Cloud Computing
	Slide 2: OBJECTIVES – 10/3
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 10/3
	Slide 7: Hyper-threading - 2
	Slide 8: Cat /proc/cpuinfo || lscpu
	Slide 9
	Slide 10: Hyper-threading - 3
	Slide 11: Feedback - 2
	Slide 12: Effects of hyperthreading on aws lambda
	Slide 13
	Slide 14: Feedback - 3
	Slide 15: Feedback - 4
	Slide 16: Demographics survey
	Slide 17: AWS Cloud Credits survey
	Slide 18: OBJECTIVES – 10/3
	Slide 19: OBJECTIVES – 10/3
	Slide 20: OBJECTIVES – 10/3
	Slide 21: OBJECTIVES – 10/3
	Slide 22: cloud computing: How did we get here? - 5
	Slide 23: cloud computing: How did we get here? - 6
	Slide 24: Hardware heterogeneity
	Slide 25: OBJECTIVES – 10/3
	Slide 26: Class activity 1
	Slide 27: Class Activity 1
	Slide 28: Implicit parallelism
	Slide 29: Explicit parallelism
	Slide 30: Parallelism questions
	Slide 31: Parallelism questions - 2
	Slide 32: Parallelism questions - 3
	Slide 33: OBJECTIVES – 10/3
	Slide 34: Michael Flynn’s computer architecture taxonomy
	Slide 35: Flynn’s taxonomy
	Slide 36: (Simd): VECtOR PROCESSING advantages
	Slide 37: Flynn’s taxonomy - 2
	Slide 38: Arithmetic intensity
	Slide 39: Roofline model
	Slide 40: OBJECTIVES – 10/3
	Slide 41: Graphical processing units (gpus)
	Slide 42: OBJECTIVES – 10/3
	Slide 43: Parallel computing
	Slide 44: Speed-up example
	Slide 45: Amdahl’s law
	Slide 46: Amdahl’s law
	Slide 47: Amdahl’s law example
	Slide 48: Gustafson's Law
	Slide 49: Gustafson's Law
	Slide 50: Gustafson's Law
	Slide 51: Gustafson’s example
	Slide 52: Gustafson’s example
	Slide 53: Moore’s law
	Slide 54: OBJECTIVES – 10/3
	Slide 55: Distributed systems
	Slide 56: Distributed systems - 2
	Slide 57: Transparency properties of distributed systems
	Slide 58: OBJECTIVES – 10/3
	Slide 59: Types of modularity
	Slide 60: Cloud computing – how did we get here? Summary of key points
	Slide 61: Cloud computing – how did we get here? Summary of key points - 2
	Slide 62: Cloud computing – how did we get here? Summary of key points - 3
	Slide 63: Questions

