
TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

Slides by Wes J. Lloyd L3.1

 Cloud Computing –
 How did we get here? - II

 Wes J. Lloyd
 School of Engineering and Technology

 University of Washington - Tacoma

TCSS 462/562:

(SOFTWARE ENGINEERING

FOR) CLOUD COMPUTING  Questions from 10/3

 Tutorial 0, Tutorial 1, Tutorial 2

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.2

OBJECTIVES – 10/5

 Please classify your perspective on material covered in today’s

class (58 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.83 ( - previous 6.79)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 6.26 ( - previous 5.66)

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.3

MATERIAL / PACE

 Parallelism and paralle l a lgorithms

 Example:
Merge sor t divides an unsor ted
l ist into the smallest possible
sub-l ists, compares them with
the adjacent l ists, and merges
in a sor ted order

 As the data is divided,
operat ions can be made in
parallel because they are
independent

 The execut ion star ts sequential,
becomes increasingly parallel ,
and finishes as sequential

 Finding parallel algorithms
often requires a “trick” or
symmetry to enable parallel ism

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.4

FEEDBACK FROM 10/3

 Difference between hyperthread and vCPU

 vCPU stands for vir tual CPU

 This refers to the CPUs provided by a vir tual machine

 Since a vir tual machine is a vir tual server, the CPUs in vir tual
servers are called vir tual CPUs

 Instructions executed on a vir tual CPU get mapped to a
physical CPU for execution

▪ The virtual to physical mapping varies based on which physical CPUs
are free and available

▪ 4-core server, 2-core VM:

▪ vCPU 0 → (CPU 0, CPU 1, CPU 2, CPU 3) mapped based on availability

▪ vCPU 1 → (CPU 0, CPU 1, CPU 2, CPU 3) mapped based on availability

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.5

FEEDBACK - 2

 Modern CPUs provide multiple instruction pipelines,
supporting multiple execution threads, usually 2
to feed instructions to a single CPU core…

 Two hyper-threads
are not equivalent
to (2) CPU cores

 i7-4770 and i5-4760
same CPU, with and
without HTT

 Example: →
hyperthreads add
+32.9%

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.6

HYPER-THREADING

1 2

3 4

5 6

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

Slides by Wes J. Lloyd L3.2

 How do I use hyper-threading?

 Hyper-threading is automatic

 Modern CPUs expose each physical CPU core as two CPU cores

 cat /proc/cpuinfo command lists individual cores

 Operating system schedules processes & threads to run on a

hyper-thread

 On CPUs with hyper -threading, each CPU core has two hyper -

threads

 To the operating system they are seen as full -featured

independent CPU cores

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.7

HYPER-THREADING - 2

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.8

CAT /PROC/CPUINFO || LSCPU

If a CPU has hyper-threading
enabled, the “ht” flag is listed

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma L3.9

 When should we use hyper-threading, and when
should not?
▪ For personal computing, hyper-threading helps improve system

performance when many programs use only short bursts of
CPU time

▪ Databases, HPC (science) applications, and others may benefit
from disabling hyper-threading. Testing will help quantify
performance.

▪ Disabling hyper-threading (HW setting), cuts the number of CPU
cores available to operating system in half
▪ Can be disabled in the System BIOS or UEFI (uniform extensible

firmware interface) software

▪ BIOS / UEFI is a small resident program that can be accessed by
pressing a function-key when rebooting the computer

▪ BIOS / UEFI is used to configure hardware options

▪ Making changes requires rebooting the computer

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.10

HYPER-THREADING - 3

 The topic of SMD architectures and vector processing was new

and a little unclear

 SISD, SIMD, MIMD

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.11

FEEDBACK - 3

Michael Flynn’s proposed taxonomy of computer

architectures based on concurrent instructions and

number of data streams (1966)

 SISD (Single Instruction Single Data)

 SIMD (Single Instruction, Multiple Data)

 MIMD (Multiple Instructions, Multiple Data)

 LESS COMMON : MISD (Multiple Instructions, Single Data)

 Pipeline architectures: functional units perform different

operations on the same data

 For fault tolerance, may want to execute same instructions

redundantly to detect and mask errors – for task replication

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.12

MICHAEL FLYNN’S COMPUTER

ARCHITECTURE TAXONOMY

7 8

9 10

11 12

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

Slides by Wes J. Lloyd L3.3

 SISD (Single Instruction Single Data)

Scalar architecture with one processor/core.

▪ Individual cores of modern multicore processors are

“SISD”

 SIMD (Single Instruction, Multiple Data)

Supports vector processing

▪When SIMD instructions are issued, operations on

individual vector components are carried out concurrently

▪ Two 64-element vectors can be added in parallel

▪ Vector processing instructions added to modern CPUs

▪ Example: Intel MMX (multimedia) instructions

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.13

FLYNN’S TAXONOMY

 Exploit data-parallelism: vector operations enable speedups

 Vectors architecture provide vector registers that can store

entire matrices into a CPU register

 SIMD CPU extension (e.g. MMX) add support for vector

operations on traditional CPUs

 Vector operations reduce total number of instructions for

large vector operations

 Provides higher potential speedup vs. MIMD architecture

 Developers can think sequentially; not worry about

parallelism

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.14

(SIMD): VECTOR PROCESSING

ADVANTAGES

 MIMD (Multiple Instructions, Multiple Data) - system with

several processors and/or cores that function asynchronously

and independently

 At any time, dif ferent processors/cores may execute dif ferent

instructions on dif ferent data

 Multi-core CPUs are MIMD

 Processors share memory via interconnection networks

▪ Hypercube, 2D torus, 3D torus, omega network, other topologies

 MIMD systems have dif ferent methods of sharing memory

▪ Uniform Memory Access (UMA)

▪ Cache Only Memory Access (COMA)

▪ Non-Uniform Memory Access (NUMA)

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.15

FLYNN’S TAXONOMY - 2

 Please complete the ONLINE demographics survey:

We have received 54 of 69 responses so far.
We are waiting on 15 responses.

 https://forms.gle/QLiWGnHqbXDeNdYq7

 Linked from course webpage in Canvas:

 http://faculty.washington.edu/wlloyd/courses/tcss562/
announcements.html

October 5, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.16

DEMOGRAPHICS SURVEY

 Please complete the AWS Cloud Credits survey:

Please only complete survey after setting up AWS account

or if requiring an IAM user (no-credit card option)

 https://forms.gle/G722gMn5wg9VRZXU6

 Linked from course webpage in Canvas:

 http://faculty.washington.edu/wlloyd/courses/tcss562/

announcements.html

October 5, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.17

AWS CLOUD CREDITS SURVEY

 Questions from 10/3

 Tutorial 0, Tutorial 1, Tutorial 2

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.18

OBJECTIVES – 10/5

13 14

15 16

17 18

https://forms.gle/QLiWGnHqbXDeNdYq7
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
https://forms.gle/G722gMn5wg9VRZXU6
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

Slides by Wes J. Lloyd L3.4

 Questions from 10/3

 Tutorial 0, Tutorial 1 , Tutorial 2

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.19

OBJECTIVES – 10/5

 Questions from 10/3

 Tutorial 0, Tutorial 1, Tutorial 2

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.20

OBJECTIVES – 10/5

 Questions from 10/3

 Tutorial 0, Tutorial 1, Tutorial 2

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.21

OBJECTIVES – 10/5

 Compute clouds are large-scale distributed systems

▪Heterogeneous systems

▪Many services/platforms w/ diverse hw + capabilities

▪Homogeneous systems

▪Within a platform – illusion of identical hardware

▪Autonomous

▪ Automatic management and maintenance- largely with

little human intervention

▪Self organizing

▪ User requested resources organize themselves to satisfy

requests on-demand

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.22

CLOUD COMPUTING:

HOW DID WE GET HERE? - 5

Compute clouds are large-scale distributed
systems

 Infrastructure-as-a-Service (IaaS) Cloud

▪Provide VMs on demand to users

▪ec2instances.info (AWS EC2)

Clouds can consist of

▪Homogeneous hardware (servers, etc.)

▪Heterogeneous hardware (servers, etc.)

Which is preferable?

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.23

CLOUD COMPUTING:

HOW DID WE GET HERE? - 6

 If providing IaaS, what are advantages/
disadvantages of using homogeneous hardware?

▪ Easier to provide same quality of service to end users

▪ Less performance variance

▪ Components with variable performance: CPUs, memory
(speed differences), disks (SSDs, HDDs), network interfaces
(caches?)

▪ Homogeneous hardware (servers): components are
interchangeable

▪ As components fail, identical backups are
immediately available

▪ Example: blade servers

▪ As clouds grow, why is HW homogeneity difficult to maintain?

 What are some advantages of using heterogeneous HW?

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.24

HARDWARE HETEROGENEITY

19 20

21 22

23 24

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

Slides by Wes J. Lloyd L3.5

 Questions from 10/3

 Tutorial 0, Tutorial 1, Tutorial 2

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.25

OBJECTIVES – 10/5

 Form groups of ~3 - in class or with Zoom breakout rooms

 Each group will complete a MSWORD DOCX worksheet

 Be sure to add names at top of document as they appear in
Canvas

 Activity can be completed in class or after class

 The activity can also be completed individually

 When completed, one person should submit a PDF of the
documet to Canvas

 Instructor will score all group members based on the uploaded
PDF file

 To get started:

▪ Follow the link: (link also available in Canvas)

https://faculty.washington.edu/wlloyd/courses/tcss562/
assignments/tcss462_562_f2023_tps1.docx

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.26

CLASS ACTIVITY 1

 Solutions to be discussed..

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.27

CLASS ACTIVITY 1

 Applies to:

 Advantages:

 Disadvantages:

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.28

IMPLICIT PARALLELISM

 Applies to:

 Advantages:

 Disadvantages:

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.29

EXPLICIT PARALLELISM

 7. For bit-level parallelism, should a developer be

concerned with the available number of virtual CPU

processing cores when choosing a cloud-based virtual

machine if wanting to obtain the best possible speed -up?

(Yes / No)

 8. For instruction-level parallelism, should a developer be

concerned with the physical CPU’s architecture used to

host a cloud-based virtual machine if wanting to obtain

the best possible speed-up? (Yes / No)

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.30

PARALLELISM QUESTIONS

25 26

27 28

29 30

https://faculty.washington.edu/wlloyd/courses/tcss562/assignments/tcss462_562_f2023_tps1.docx
https://faculty.washington.edu/wlloyd/courses/tcss562/assignments/tcss462_562_f2023_tps1.docx

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

Slides by Wes J. Lloyd L3.6

 9. For thread level parallelism (TLP) where a programmer

has spent considerable effort to parallelize their code and

algorithms, what consequences result when this code is

deployed on a virtual machine with too few virtual CPU

processing cores?

 What happens when this code is deployed on a virtual

machine with too many virtual CPU processing cores?

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.31

PARALLELISM QUESTIONS - 2

 Questions from 10/3

 Tutorial 0, Tutorial 1, Tutorial 2

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.32

OBJECTIVES – 10/5

 Arithmetic intensity: Ratio of work (W) to
 memory traffic r/w (Q)
Example: # of floating point ops per byte of data read

 Characterizes application scalability with SIMD support

▪ SIMD can perform many fast matrix operations in parallel

 High arithmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

 Low arithmetic intensity:
Programs with sparse matrix operations do not scale well
with problem size
(memory RW becomes bottleneck, not enough ops!)

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.33

ARITHMETIC INTENSITY

 When program reaches a given arithmetic intensity

performance of code running on CPU hits a “roof”

 CPU performance bottleneck changes from:

memory bandwidth (left) → f loating point performance (right)

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.34

ROOFLINE MODEL

Key take-aways:
When a program’s has low
Arithmetic Intensity, memory
bandwidth limits performance..

With high Arithmetic intensity,
the system has peak parallel
performance…
→ performance is limited by??

 Questions from 10/3

 Tutorial 0, Tutorial 1, Tutorial 2

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.35

OBJECTIVES – 10/5

 GPU provides multiple SIMD processors

 Typically 7 to 15 SIMD processors each

 32,768 total registers, divided into 16 lanes

(2048 registers each)

 GPU programming model:

single instruction, multiple thread

 Programmed using CUDA- C like programming

language by NVIDIA for GPUs

 CUDA threads – single thread associated with each

data element (e.g. vector or matrix)

 Thousands of threads run concurrently

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.36

GRAPHICAL PROCESSING UNITS (GPUS)

31 32

33 34

35 36

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

Slides by Wes J. Lloyd L3.7

 Questions from 10/3

 Tutorial 0, Tutorial 1, Tutorial 2

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.37

OBJECTIVES – 10/5

Parallel hardware and software systems allow:

▪ Solving problems needing resources not available on a
single system.

▪ Reduced time required to obtain solution

 The speed-up (S) measures effectiveness of
parallelization:

 S(N) = T(1) / T(N)

T(1) → execution time of total sequential computation

T(N) → execution time for performing N parallel
computations in parallel

October 3, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.38

PARALLEL COMPUTING

 Consider embarrassingly parallel image processing

 Eight images (multiple data)

 Apply image transformation (greyscale) in parallel

 8-core CPU, 16 hyperthreads

 Sequential processing: perform transformations one at a time
using a single program thread

▪ 8 images, 3 seconds each: T(1) = 24 seconds

 Parallel processing

▪ 8 images, 3 seconds each: T(N) = 3 seconds

 Speedup: S(N) = 24 / 3 = 8x speedup

 Called “perfect scaling”

 Must consider data transfer and computation setup time

October 3, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.39

SPEED-UP EXAMPLE

 Amdahl’s law is used to estimate the speed -up of a job
using parallel computing

1. Divide job into two parts

2. Part A that will still be sequential

3. Part B that will be sped-up with parallel computing

 Portion of computation which cannot be parallelized will
determine (i.e. limit) the overall speedup

 Amdahl’s law assumes jobs are of a fixed size

 Also, Amdahl’s assumes no overhead for distributing the
work, and a perfectly even work distribution

October 3, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.40

AMDAHL’S LAW

 S = theoretical speedup of the whole task

 f= fraction of work that is parallel (ex. 25% or 0.25)

 N= proposed speed up of the parallel part (ex. 5 t imes speedup)

 % improvement
of task execution = 100 * (1 – (1 / S))

 Using Amdahl’s law, we can f ind the maximum possible
speed-up (S) for a g iven scenario (e.g. ~8x) …

October 3, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.41

AMDAHL’S LAW

Speed-up formula
 →

 Program with two independent parts:

▪ Part A is 75% of the execution time

▪ Part B is 25% of the execution time

 Part B is made 5 times faster with
parallel computing

 Estimate the percent improvement of task execution

 Original Part A is 3 seconds, Part B is 1 second

 N=5 (speedup of part B)

 f=.25 (only 25% of the whole job (A+B) will be sped -up)

 S=1 / ((1-f) + f/S)

 S=1 / ((.75) + .25/5)

 S=1.25 (speed up is 1.25x faster)

 % improvement = 100 * (1 – 1/1.25) = 20%

October 3, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.42

AMDAHL’S LAW EXAMPLE

from Wikipedia

37 38

39 40

41 42

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

Slides by Wes J. Lloyd L3.8

 Calculates the scaled speed-up using “N” processors

 S(N) = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized

(e.g. must run sequentially)

 Can be used to estimate runtime of parallel portion of

program

October 3, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.43

GUSTAFSON'S LAW

 Calculates the scaled speed-up using “N” processors

 S(N) = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized

(e.g. must run sequentially)

 Can be used to estimate runtime of parallel portion of

program

 Where α =  / ( + )

 Where = sequential time,  =parallel time

 Our Amdahl’s example: = 3s,  =1s, α =.75

October 3, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.44

GUSTAFSON'S LAW

 Calculates the scaled speed-up using “N” processors

 S(N) = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized

(e.g. must run sequentially)

 Example:

Consider a program that is embarrassingly parallel,

but 75% cannot be parallelized. α=.75

QUESTION: I f deploying the job on a 2 -core CPU, what

scaled speedup is possible assuming the use of two

processes that run in parallel?

October 3, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.45

GUSTAFSON'S LAW

 QUESTION:

What is the maximum theoret ical speed -up on a 2-core CPU ?

S(N) = N + (1 - N) α

N=2, α=.75

 S(N) = 2 + (1 - 2) .75

 S(N) = ?

 What is the maximum theoret ical speed -up on a 16-core CPU?

S(N) = N + (1 - N) α

N=16, α=.75

 S(N) = 16 + (1 - 16) .75

 S(N) = ?

October 3, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.46

GUSTAFSON’S EXAMPLE

 QUESTION:

What is the maximum theoret ical speed -up on a 2-core CPU ?

S(N) = N + (1 - N) α

N=2, α=.75

 S(N) = 2 + (1 - 2) .75

 S(N) = ?

 What is the maximum theoret ical speed -up on a 16-core CPU?

S(N) = N + (1 - N) α

N=16, α=.75

 S(N) = 16 + (1 - 16) .75

 S(N) = ?

October 3, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.47

GUSTAFSON’S EXAMPLE

For 2 CPUs, speed up is 1.25x

For 16 CPUs, speed up is 4.75x

For 2 CPUs, speed up is 1.25x

For 16 CPUs, speed up is 4.75x

 Transistors on a chip doubles approximately every 1.5 years

 CPUs now have billions of transistors

 Power dissipation issues at faster clock rates leads to heat

removal challenges

▪ Transition from: increasing clock rates → to adding CPU cores

 Symmetric core processor –multi-core CPU, all cores have the

same computational resources and speed

 Asymmetric core processor – on a multi -core CPU, some cores

have more resources and speed

 Dynamic core processor – processing resources and speed can

be dynamically configured among cores

 Observation: asymmetric processors of fer a higher speedup

October 3, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.48

MOORE’S LAW

What kind of processor are modern
Intel CPUs ?

What kind of processor are modern
Intel CPUs ?

43 44

45 46

47 48

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

Slides by Wes J. Lloyd L3.9

 Questions from 10/3

 Tutorial 0, Tutorial 1, Tutorial 2

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.49

OBJECTIVES – 10/5

 Collection of autonomous computers, connected through a

network with distribution software called “middleware” that

enables coordination of activities and sharing of resources

 Key characteristics:

 Users perceive system as a single, integrated computing

facility.

 Compute nodes are autonomous

 Scheduling, resource management, and security implemented

by every node

 Multiple points of control and failure

 Nodes may not be accessible at all times

 System can be scaled by adding additional nodes

 Availability at low levels of HW/software/network reliability

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.50

DISTRIBUTED SYSTEMS

 Key non-functional attributes

▪ Known as “ilities” in software engineering

 Availability – 24/7 access?

 Reliability - Fault tolerance

 Accessibility – reachable?

 Usability – user fr iendly

 Understandability – can under

 Scalability – responds to variable demand

 Extensibility – can be easily modified, extended

 Maintainability – can be easily fixed

 Consistency – data is replicated correctly in timely manner

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.51

DISTRIBUTED SYSTEMS - 2

 Access transparency: local and remote objects accessed using
identical operations

 Location transparency: objects accessed w/o knowledge of
their location.

 Concurrency transparency: several processes run concurrently
using shared objects w/o interference among them

 Replication transparency: multiple instances of objects are
used to increase reliability
- users are unaware if and how the system is replicated

 Failure transparency: concealment of faults

 Migration transparency: objects are moved w/o affecting
operations performed on them

 Performance transparency: system can be reconfigured based
on load and quality of service requirements

 Scaling transparency: system and applications can scale w/o
change in system structure and w/o affecting applications

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.52

TRANSPARENCY PROPERTIES OF

DISTRIBUTED SYSTEMS

 Questions from 10/3

 Tutorial 0, Tutorial 1, Tutorial 2

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.53

OBJECTIVES – 10/5

 Soft modularity: TRADITIONAL

 Divide a program into modules (classes) that call each other

and communicate with shared-memory

 A procedure calling convention is used (or method invocation)

 Enforced modularity: CLOUD COMPUTING

 Program is divided into modules that communicate only

through message passing

 The ubiquitous client -server paradigm

 Clients and servers are independent decoupled modules

 System is more robust if servers are stateless

 May be scaled and deployed separately

 May also FAIL separately!

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.54

TYPES OF MODULARITY

49 50

51 52

53 54

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

Slides by Wes J. Lloyd L3.10

 Multi-core CPU technology and hyper -threading

 What is a

▪ Heterogeneous system?

▪ Homogeneous system?

▪ Autonomous or self-organizing system?

 Fine grained vs. coarse grained parallelism

 Parallel message passing code is easier to debug than

shared memory (e.g. p-threads)

 Know your application’s max/avg Thread Level

Parallelism (TLP)

 Data-level parallelism: Map-Reduce, (SIMD) Single

Instruction Multiple Data, Vector processing & GPUs

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.55

CLOUD COMPUTING – HOW DID WE GET HERE?

SUMMARY OF KEY POINTS

 Bit-level parallelism

 Instruction-level parallelism (CPU pipelining)

 Flynn’s taxonomy : computer system architecture classification

▪ SISD – Single Instruction, Single Data (modern core of a CPU)

▪ SIMD – Single Instruction, Multiple Data (Data parallelism)

▪ MIMD – Multiple Instruction, Multiple Data

▪ MISD is RARE; application for fault tolerance…

 Arithmetic intensity : ratio of calculations vs memory RW

 Roofline model:

Memory bottleneck with low arithmetic intensity

 GPUs: ideal for programs with high arithmetic intensity

▪ SIMD and Vector processing supported by many large registers

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.56

CLOUD COMPUTING – HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 2

 Speed-up (S)

S(N) = T(1) / T(N)

 Amdahl’s law:
S = 1/ α
α = percent of program that must be sequential

 Scaled speedup with N processes:
S(N) = N – α(N-1)

 Moore’s Law

 Symmetric core, Asymmetric core, Dynamic core CPU

 Distributed Systems Non-function quality attributes

 Distributed Systems – Types of Transparency

 Types of modularity - Soft, Enforced

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.57

CLOUD COMPUTING – HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 3 QUESTIONS

October 5, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma L3.58

55 56

57 58

	Slide 1: TCSS 462/562: (Software Engineering for) Cloud Computing
	Slide 2: OBJECTIVES – 10/5
	Slide 3: Material / pace
	Slide 4: Feedback from 10/3
	Slide 5: Feedback - 2
	Slide 6: Hyper-threading
	Slide 7: Hyper-threading - 2
	Slide 8: Cat /proc/cpuinfo || lscpu
	Slide 9
	Slide 10: Hyper-threading - 3
	Slide 11: Feedback - 3
	Slide 12: Michael Flynn’s computer architecture taxonomy
	Slide 13: Flynn’s taxonomy
	Slide 14: (Simd): VECtOR PROCESSING advantages
	Slide 15: Flynn’s taxonomy - 2
	Slide 16: Demographics survey
	Slide 17: AWS Cloud Credits survey
	Slide 18: OBJECTIVES – 10/5
	Slide 19: OBJECTIVES – 10/5
	Slide 20: OBJECTIVES – 10/5
	Slide 21: OBJECTIVES – 10/5
	Slide 22: cloud computing: How did we get here? - 5
	Slide 23: cloud computing: How did we get here? - 6
	Slide 24: Hardware heterogeneity
	Slide 25: OBJECTIVES – 10/5
	Slide 26: Class activity 1
	Slide 27: Class Activity 1
	Slide 28: Implicit parallelism
	Slide 29: Explicit parallelism
	Slide 30: Parallelism questions
	Slide 31: Parallelism questions - 2
	Slide 32: OBJECTIVES – 10/5
	Slide 33: Arithmetic intensity
	Slide 34: Roofline model
	Slide 35: OBJECTIVES – 10/5
	Slide 36: Graphical processing units (gpus)
	Slide 37: OBJECTIVES – 10/5
	Slide 38: Parallel computing
	Slide 39: Speed-up example
	Slide 40: Amdahl’s law
	Slide 41: Amdahl’s law
	Slide 42: Amdahl’s law example
	Slide 43: Gustafson's Law
	Slide 44: Gustafson's Law
	Slide 45: Gustafson's Law
	Slide 46: Gustafson’s example
	Slide 47: Gustafson’s example
	Slide 48: Moore’s law
	Slide 49: OBJECTIVES – 10/5
	Slide 50: Distributed systems
	Slide 51: Distributed systems - 2
	Slide 52: Transparency properties of distributed systems
	Slide 53: OBJECTIVES – 10/5
	Slide 54: Types of modularity
	Slide 55: Cloud computing – how did we get here? Summary of key points
	Slide 56: Cloud computing – how did we get here? Summary of key points - 2
	Slide 57: Cloud computing – how did we get here? Summary of key points - 3
	Slide 58: Questions

