TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TCSS 462/562:
(SOFTWARE ENGINEERING,
FOR) CLOUD COMPUTING

Introduction

Wes J. Lloyd

School of Engineering and Technology
University of Washington - Tacoma

OBJECTIVES - 10/2

= Daily Feedback Surveys
® Questions from Course Introduction

® Demographics Survey
= AWS Cloud Credits Survey

® Tutorial O - Getting Started with AWS
® Tutorial 1 - Intro to Linux

® Cloud Computing - How did we get here? (10/4)
Chapter 4 Marinescu 2" edition:
Introduction to parallel and distributed systems

October 2, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] 22
School of Engineering and Technology, University of Washington - Tacoma '

Slides by Wes J. Lloyd L2.1

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

DAILY FEEDBACK SURVEY

® Online Daily Feedback Quiz in Canvas - Take After Each Class

= 1-point
Extra Credit Announcements
for com p I et | n g ¥ Upcoming Assignments
online P—
Discussions [Class Activity 1 - Implicit vs. Explicit Parallelism
[] 2-p° ints Zoom = Available until Oct 11 at 11:59pm | Due Oct 7 at 7:50pm | -/10 pts
EXtra credlt Grades < Tutorial 1 - Linux
for completing b P Available until Oct 19 3¢ 11:59pm | Due Oct 15 3t 11:5%pm | /20 pis
. . 'eople
in-person in class
. Pages
® 36 points
. Files * Past Assignments
possible
Quizzes
® 2.5% added to % TCSS562 - Online Dally Feedback Survey - 10/5
f| na | course Collaborations - Available until Dec 18 at 11:59pm | Due Oct 6 at 8:59pm | -/1 pts
grade for UW Libraries s TCSS 562 -Online Daily Feedback Survey - 9/30
(3 6/ 3 6) UW Resources - Available until Dec 18 at 11:59pm | Due Oct 4 at 8:59pm | -/1 pts

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

October 2, 2025 School of Engineering and Technology, University of Washington - Tacoma

| 2.3

WARNING

= DO NOT SUBMIT BOTH A PAPER AND AN ONLINE SURVEY
OR YOU WILL LOOSE POINTS

= CANVAS WILL AUTOMATICALLY REPLACE THE PAPER SURVEY
SCORE (2 PTS) WITH THE ONLINE SURVEY (1 PT)

= * COMPLETE ONLY ONE SURVEY FOR EACH CLASS SESSION *

= WE WILL NOT BE ABLE TO DUPLICATE CHECK SURVEYS FOR
EACH CLASS SESSION AND MAKE CORRECTIONS

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

Gcicben2)2025 School of Engineering and Technology, University of Washington - Tacoma

| 2.4

Slides by Wes J. Lloyd

[Fall 2025]

L2.2

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TCSS 562 - Online Daily Feedback Survey - 10/5

Started: Oct 7 at 1:13am

Quiz Instructions

[| Question1 0.5 pts

On a scale of 1 to 10, please classify your perspective on material covered in today'’s
class:

1 2 3 4 b 6 7 8 9 10
Mostly Equal Mostly
Review To Me New and Review New to Me

[| Question 2 0.5 pts

Please rate the pace of today’s class:

1 2 3 4 5 6 7 8 9 10

Slow Just Right Fast

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

Qutober232025 School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 10/2

® Daily Feedback Surveys

® Questions from Course Introduction

® Demographics Survey
= AWS Cloud Credits Survey

® Tutorial O - Getting Started with AWS
® Tutorial 1 - Intro to Linux

® Cloud Computing - How did we get here?
Chapter 4 Marinescu 2" edition:
Introduction to parallel and distributed systems

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

Gcicben2)2025 School of Engineering and Technology, University of Washington - Tacoma

| L2.6 |

Slides by Wes J. Lloyd

[Fall 2025]

L2.3

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (49 respondents, 38 in-person, 11 online):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 7.20 (T - first day 2024 - 6.16)

= Please rate the pace of today’s class:
m 1-slow, 5-just right, 10-fast
= Average - 5.16 (| - first day f2024 - 5.55)

October 2, 2025 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] | 157 |

School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK FROM 9/30

= What is the difference between the TCSS 462 and TCSS 562

term project ?

= TCSS 562 teams and hybrid-teams (462+562) submit a 4 to 6
page term paper

= TCSS 462-only teams submit a 10-15 minute presentation
recording with the option of submitting a term paper instead

= The content of the paper and presentation are the same

= A template is provided for both the term paper and
presentation

= The sections within are the same

m |s TCSS 562 credit transferrable ?
= Yes - if taking TCSS 562 as an undergraduate senior, the credit
will transfer to the UWT MS CSS program. There is a good
chance the credit can transfer other MS Computer Science
programs besides UW. This can save ~$8,000+.

October 2, 2025

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] 28
School of Engineering and Technology, University of Washington - Tacoma :

Slides by Wes J. Lloyd

[Fall 2025]

L2.4

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

FEEDBACK - 2

= How can the term project contribute to a thesis or
capstone project ?

= |f pursuing a thesis/capstone related to cloud computing
or distributed systems, then the skills learned in the
course will be important.

= |f having an idea for a capstone/thesis project, it is
possible to explore the idea by proposing and conducting
preliminary research in the term project.
® Performance investigation projects may be extendable
into a capstone project
= Thesis is more difficult as there needs to be an original
(novel) research contribution

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
October 2, 2025 School of Engineering and Technology, University of Washington - Tacoma 129

FEEDBACK - 3

® | am unclear regarding the workload in the class

= Expect 1 tutorial per week throughout the quarter, 2 quizzes, plus

the term project. The term project become a heavy focus after ~
week 6.

= In general, this course is easier for students who have strong
computing skills including the ability to learn how to use new
services, troubleshoot issues/challenges, and solve problems.

= 462/562 is not a programming course, but a systems course.
m |s the project 100% from the slides, or will | need to do
additional research?

= The term project involves applying and synthesizing what is
learned across the entire course into a final project

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
Gcicben2)2025 School of Engineering and Technology, University of Washington - Tacoma 1210

10

Slides by Wes J. Lloyd

[Fall 2025]

L2.5

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

FEEDBACK - 4

= What is the difference in quizzes for TCSS 462 vs. 562 ?

= Each section (462 or 562) is graded using a separate
curve

=The 462 curve is usually more generous

= Term Project ? Jargon ?

® |t is normal for the term project to be confusing on day 1,
as we are just getting started

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma 2

October 2, 2025

11

OBJECTIVES - 10/2

® Daily Feedback Surveys
® Questions from Course Introduction

= Demographics Survey

= AWS Cloud Credits Survey

® Tutorial O - Getting Started with AWS
® Tutorial 1 - Intro to Linux

® Cloud Computing - How did we get here?
Chapter 4 Marinescu 2" edition:
Introduction to parallel and distributed systems

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma 212

October 2, 2025

12

Slides by Wes J. Lloyd

[Fall 2025]

L2.6

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

DEMOGRAPHICS SURVEY

= Please complete the ONLINE demographics survey:

" https://forms.gle/QNUW2hUV7fR7BDmv7

= Linked from course webpage in Canvas:

= http://faculty.washington.edu/wlloyd/courses/tcss562/
announcements.html

= Random drawing based on survey participants for two $20
Tango gift cards - October 9t" in class
= select from various options, i.e. Amazon, Starbucks, pizza, etc.

October 2, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 213 |

School of Engineering and Technology, University of Washington - Tacoma

13

OBJECTIVES - 10/2

® Daily Feedback Surveys
® Questions from Course Introduction

® Demographics Survey

= AWS Cloud Credits Survey

® Tutorial O - Getting Started with AWS
® Tutorial 1 - Intro to Linux

® Cloud Computing - How did we get here?
Chapter 4 Marinescu 2" edition:
Introduction to parallel and distributed systems

October 2, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] 214
School of Engineering and Technology, University of Washington - Tacoma .

14

Slides by Wes J. Lloyd

[Fall 2025]

L2.7

https://forms.gle/QNUW2hUV7fR7BDmv7
https://forms.gle/QNUW2hUV7fR7BDmv7
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

AWS CLOUD CREDITS SURVEY

= Please complete the AWS CLOUD CREDITS survey as part of
Tutorial O:

= https://forms.gle/Y4iWvBRFVLRPnPX37

= Linked from course webpage in Canvas:

= http://faculty.washington.edu/wlloyd/courses/tcss562/
announcements.html

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma s

15

AWS CREDITS & BILLING

= CLOUD CREDITS are being dispersed on request

= AWS bills monthly, with charges applied to the credit card (or
credit balance) on the last day of the month, for the month’s
charges

= END OF MONTH:- **CHECK YOUR CLOUD BILL**
at least a few days before the end of the month

= Billing Alarms - can be configured to generate email when
there is a charge - can generate email if charges exceed
$0.01

= With cloud credits, there should be no monthly charges

= PROBLEM: when accounts have a credit balance, they do not
generate billing alarms for high service usage - it is necessary to
manually inspect service usage

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
Gcicben2)2025 School of Engineering and Technology, University of Washington - Tacoma 1216

16

Slides by Wes J. Lloyd L2.8

https://forms.gle/Y4iWvBRFVLRPnPX37
https://forms.gle/Y4iWvBRFVLRPnPX37
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 10/2

® Questions from Course Introduction
® Daily Feedback Surveys

® Demographics Survey
= AWS Cloud Credits Survey

= Tutorial O - Getting Started with AWS

® Tutorial 1 - Intro to Linux

® Cloud Computing - How did we get here?
Chapter 4 Marinescu 2"9 edition:
Introduction to parallel and distributed systems

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

October 2, 2025 School of Engineering and Technology, University of Washington - Tacoma

1217

17

OBJECTIVES - 10/2

® Questions from Course Introduction
® Daily Feedback Surveys

® Demographics Survey
= AWS Cloud Credits Survey

® Tutorial O - Getting Started with AWS

= Tutorial 1 - Intro to Linux

® Cloud Computing - How did we get here?
Chapter 4 Marinescu 2" edition:
Introduction to parallel and distributed systems

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

Gcicben2)2025 School of Engineering and Technology, University of Washington - Tacoma

L2.18

18

Slides by Wes J. Lloyd

[Fall 2025]

L2.9

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 10/2

= Daily Feedback Surveys
® Questions from Course Introduction

® Demographics Survey
= AWS Cloud Credits Survey

® Tutorial O - Getting Started with AWS
® Tutorial 1 - Intro to Linux

= Cloud Computing - How did we get here?
Chapter 4 Marinescu 2" edition:
Introduction to parallel and distributed systems

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

October 2, 2025 School of Engineering and Technology, University of Washington - Tacoma

L2.19

19

OBJECTIVES

= Cloud Computing: How did we get here?
= Parallel and distributed systems
(Marinescu Ch. 2 - 15t edition, Ch. 4 - 2"? edition)
= Data, thread-level, task-level parallelism
= Parallel architectures

= SIMD architectures, vector processing, multimedia
extensions

= Graphics processing units

= Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems

= Modularity

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma 1220

October 2, 2025

20

Slides by Wes J. Lloyd L2.10

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CLOUD COMPUTING:

HOW DID WE GET HERE?

® General interest in parallel computing
= Moore’s Law - # of transistors doubles every 18 months

= Post 2004: heat dissipation challenges:
can no longer easily increase cloud speed

= Overclocking to 7GHz takes e 1"
more than just liquid nitrogen: g ;

https://tinyurl.com/y93s2yz2
=Solutions: |
=Vary CPU clock speed
= Add CPU cores
= Multi-core technology

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
October 2, 2025 School of Engineering and Technology, University of Washington - Tacoma 22

21

Each Year We Get><: More Processors

o s Historically:
o Dual-Core Itanium 2 - : W Boost SlngIE‘strEﬂm
Intel CPU Trends / performance via more
woma | AL W B ORI complex chips
'
10,000 "nw:
Deliver more cores per
- chip (+ GPU, NIC, SoC).
- The free lunch is over
. for today’s sequential
apps and many
S i AT seeesm - concurrent apps. We
awat — need killer apps with

o s e e ase s am mes ae 1OLS OF |atent parallelism.

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma 122

| October 2, 2025

22

Slides by Wes J. Lloyd

[Fall 2025]

L2.11

https://tinyurl.com/y93s2yz2
https://tinyurl.com/y93s2yz2

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

HYPER THREADING

® Modern CPUs provide multiple instruction pipelines,
supporting multiple execution threads, usually 2
to feed instructions to a single CPU core...

= Two hyper-threads
are not equivalent 4770 with HTT Vs. 4670 without HTT - 25% improvement w/ HTT

to (2) CPU cores CPU Mark Relative to Top 10 Common CPUs
As of 7th of February 2014 - Higher results represent better performance

= j|7-4770 and i5-4760| —_— |
. ntel Core i @ z 2,965
same C PU ’ with and Intel Core i7-3770K @ 2.50GH: (N - = 2
without HTT Intel Core i7-3770 @ 3.40GHz 419
AMD FX-8350 Eight-Core (Y (15 |
n Example: 9 Intel Core i7-3820 @ 2.60GH: (N - 11 &
Intel Core i7-2600K @ 3.40GHz (s 37
hype I’t h reads ad d Intel Core i7-2600 @ 3.40GH: (S - - 16
+32.9% AMD F3-8320 Eight-Core (I - 12 1
I Intel Core 54670 @ 2.40GH: (I 7 = 1 I

PassMark Software @ 2008-2014

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

October 2, 2025 School of Engineering and Technology, University of Washington - Tacoma

23

AMD’S 64-CORE 7NM CPUS

= Epyc Rome CPUs
= Announced August 2019
= EPYC 7H12 requires liquid cooling
AMD EPYC 7002 Processors (2P)

Cores Frequency (GHz) Price
Threads
“
2.60 3.30 2

EPYC 7TH12 64 /128 256 MB 280 W
EPYC 7742 641128 2.25 3.40 256 MB 225W $6950
EPYC 7702 64 /128 2.00 3.35 256 MB 200 W $6450
EPYC 7642 48/ 96 2.30 3.20 256 MB 225W $4775
EPYC 7552 48 /96 2.20 3.30 192 MB 200 W $4025
October 2, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 1220 |

School of Engineering and Technology, University of Washington - Tacoma

24

Slides by Wes J. Lloyd

[Fall 2025]

L2.12

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

AMD’S 64-CORE <14NM CPUS

AMD EPYC 9654/9654P/9684X/9R14 (AWS OEM):
June 2023: 96 cores, 192 hyper-threads CPUs

Mixes 4nm:APU (combines crus+GPu), 5Nm:L3 cache

(8 CPU-chiplet), and 6nm:1/0 dies, 2.25 to 3.7 burst
GHz, up to 400 watts
$10,625 to $14,756
AMD EPYC 9754: 128 cores, 256 hyperthreads !
2.25 to 3.1 burst GHz, 360 watts
$11,900
AMD EPYC 9005: 192 cores, 384 threads, 3nm (in dev)

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma 122

| October 2, 2025

25

X86_64 HOST SERVER VCPUS - AMAZON EC2

INFRASTRUCTURE-AS-A-SERVICE CLOUD

® Cloud server virtual CPUs/host (x86_64)
® Growth since 2006 - Amazon Compute Cloud (EC2)

= 1st generation Intel: m1 - 8 vCPUs / host (Aug 2006)
m 27d geperation Intel: m2 - 16 vCPUs / host (Oct 2009)
= 3'd generation Intel: m3 - 32 vCPUs / host (Oct 2012)
m 4th generation Intel: m4 - 48 vCPUs / host (June 2015)
= 5th generation Intel: m5 - 96 vCPUs / host (Nov 2017)

= 6th generation Intel: m6i - 128 vCPUs / host (Aug 2021)
= 6th generation AMD: m6a - 192 vCPUs / host (Nov 2021)
m 7th generation Intel: m7i - 192 vCPUs / host (Aug 2023)
m 7th generation AMD: m7a - 192 vCPUs / host (Aug 2023)

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

2.26
School of Engineering and Technology, University of Washington - Tacoma -

October 2, 2025

26

Slides by Wes J. Lloyd

[Fall 2025]

L2.13

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

ARM64 HOST SERVER VCPUS - AMAZON EC2

INFRASTRUCTURE-AS-A-SERVICE CLOUD

= Cloud server virtual CPUs/host (ARM64)

= Launched in 2018 on the Amazon Compute Cloud (EC2)

64-bit ARM CPUs designed by AWS subsidiary Annapurna Labs
= Lower energy consumption compared to x86-64

= Fixed (non-variable) clock rates, No hyperthreading
® Each new release - performance boost of ~ 30%
m Cost savings of ~20% less for ARM resources on AWS

= 1st generation Graviton: al1- 16 vCPUs / host (Nov 2018)

m 2nd geperation Graviton2: m6g- 64 vCPUs/host (Dec 2019)
= AWS Lambda limited to Graviton2

= 3d generation Graviton3: m7g- 64 vCPUs/host (May 2022)

m 4th generation Graviton4: m8g- 192 vCPUs/host (Sept 2024)

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

October 2, 2025 School of Engineering and Technology, University of Washington - Tacoma

12.27 |

27

CLOUD COMPUTING:

HOW DID WE GET HERE? - 2

® To make computing faster, we must go “parallel”

m Difficult to expose parallelism in scientific
applications

= Not every problem solution has a parallel algorithm
= Chicken and egg problem...

= Many commercial efforts promoting pure parallel
programming efforts have failed

® Enterprise computing world has been skeptical and
less involved in parallel programming

October 2, 2025

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] 1228
School of Engineering and Technology, University of Washington - Tacoma '

28

Slides by Wes J. Lloyd

[Fall 2025]

L2.14

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CLOUD COMPUTING:

HOW DID WE GET HERE? - 3

= Cloud computing provides access to “infinite”
scalable compute infrastructure on demand

® Infrastructure availability is key to exploiting
parallelism

= Cloud applications
=Based on client-server paradigm
=*Thin clients leverage compute hosted on the cloud
= Applications run many web service instances

*Employ load balancing

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

October 2, 2025 School of Engineering and Technology, University of Washington - Tacoma

L2.29

29

CLOUD COMPUTING:

HOW DID WE GET HERE? - 4

= Big Data requires massive amounts of compute
resources

= MAP - REDUCE
=Single instruction, multiple data (SIMD)
=Exploit data level parallelism

®m Bioinformatics example

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

October 2, 2025 12.30

30

Slides by Wes J. Lloyd

[Fall 2025]

L2.15

TCSS 462: Cloud Computing [Fall 2025]

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

SMITH WATERMAN USE CASE

= Applies dynamic programming to find best local
alignment of two protein sequences
= Embarrassingly parallel, each task can run in isolation
= Use case for GPU acceleration
= AWS Lambda Serverless Computing Use Case:
Goal: Pair-wise comparison of all unique human
protein sequences (20,336)
= Python client as scheduler
= C Striped Smith-Waterman (SSW) execution engine

From: Zhao M, Lee WP, Garrison EP, Marth GT: SSW library: an SIMD Smith-
Waterman C/C++ library for use in genomic applications.
PLoS One 2013, 8:e82138

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
October 2, 2025 School of Engineering and Technology, University of Washington - Tacoma

12.31

31

SMITH WATERMAN RUNTIME

® Laptop server and client (2-core, 4-HT): 8.7 hours

® AWS Lambda FaaS, laptop as client: 2.2 minutes
= Partitions 20,336 sequences into 41 sets
= Execution cost: ~ 82¢ (~237x speed-up)

= AWS Lambda server, EC2 instance as client: 1.28
minutes
= Execution cost: ~ 87¢ (~408x speed-up)

= Hardware
= Laptop client: Intel i5-7200U 2.5 GHz :4 HT, 2 CPU
= Cloud client: EC2 Virtual Machine - m5.24xlarge: 96 vCPUs
= Cloud server: Lambda ~1000 Intel E5-2666v3 2.9GHz CPUs

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

Gcicben2)2025 School of Engineering and Technology, University of Washington - Tacoma 1232

32

Slides by Wes J. Lloyd L2.16

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CLOUD COMPUTING:

HOW DID WE GET HERE? - 5

® Compute clouds are large-scale distributed systems
= Heterogeneous systems
Many services/platforms w/ diverse hw + capabilities
= Homogeneous systems
Within a platform - illusion of identical hardware
= Autonomous

Automatic management and maintenance- largely with
little human intervention

=Self organizing

User requested resources organize themselves to satisfy
requests on-demand

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

October 2, 2025 School of Engineering and Technology, University of Washington - Tacoma

12.33

33

CLOUD COMPUTING:

HOW DID WE GET HERE? - 6

= Compute clouds are large-scale distributed
systems

® Infrastructure-as-a-Service (laaS) Cloud
= Provide VMs on demand to users
= ec2instances.info (AWS EC2)

= Clouds can consist of
*Homogeneous hardware (servers, etc.)
=Heterogeneous hardware (servers, etc.)

=Which is preferable?

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma 1234

October 2, 2025

34

Slides by Wes J. Lloyd

[Fall 2025]

L2.17

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

HARDWARE HETEROGENEITY

= If providing laaS, what are advantages/
disadvantages of using homogeneous hardware?
= Easier to provide same quality of service to end users
Less performance variance

Components with variable performance: CPUs, memory
(speed differences), disks (SSDs, HDDs), network interfaces
(caches?)

= Homogeneous hardware (servers): components are
interchangeable

As components fail, identical backups are
immediately available

Example: blade servers
= As clouds grow, why is HW homogeneity difficult to maintain?
= What are some advantages of using heterogeneous HW?

October 2, 2025 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] | 1235 |

School of Engineering and Technology, University of Washington - Tacoma

35

OBJECTIVES

= Cloud Computing: How did we get here?

= Parallel and distributed systems
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2"? edition)

= Data, thread-level, task-level parallelism
= Parallel architectures

= SIMD architectures, vector processing, multimedia
extensions

= Graphics processing units

= Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems

= Modularity

October 2, 2025

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] 1236
School of Engineering and Technology, University of Washington - Tacoma :

36

Slides by Wes J. Lloyd

[Fall 2025]

L2.18

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

PARALLELISM

= Discovering parallelism and development of parallel
algorithms requires considerable effort

= Example: nhumerical analysis problems, such as solving large
systems of linear equations or solving systems of Partial
Differential Equations (PDEs), require algorithms based on
domain decomposition methods.

= How can problems be split into independent chunks?

= Fine-grained parallelism
= Only small bits of code can run in parallel without coordination
= Communication is required to synchronize state across nodes

= Coarse-grained parallelism

= Large blocks of code can run without coordination

October 2, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 1237 |

School of Engineering and Technology, University of Washington - Tacoma

37

PARALLELISM - 2

® Coordination of nodes

= Requires message passing or shared memory

m Debugging parallel message passing code is easier
than parallel shared memory code

= Message passing: all of the interactions are clear
= Coordination via specific programming APl (MPI)

= Shared memotry: interactions can be implicit - must
read the code!!

® Processing speed is orders of magnitude faster than
communication speed (CPU > memory bus speed)
® Avoiding coordination achieves the best speed-up

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] 1238
School of Engineering and Technology, University of Washington - Tacoma :

October 2, 2025

38

Slides by Wes J. Lloyd L2.19

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TYPES OF PARALLELISM

® Parallelism:

= Goal: Perform multiple operations at the same time
to achieve a speed-up

= Thread-level parallelism (TLP)
=Control flow architecture (Von Neumann architecture)
®m Data-level parallelism
=Data flow architecture
= Bit-level parallelism
® |nstruction-level parallelism (ILP)

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

October 2, 2025 School of Engineering and Technology, University of Washington - Tacoma

L2.39

39

THREAD LEVEL PARALLELISM (TLP)

® Number of threads an application runs at any one time
= Varies throughout program execution

= As a metric:

® Minimum: 1 thread

= Can measure average, maximum (peak)

= QUESTION: What are the consequences of average (TLP)

for scheduling an application to run on a computer with a
fixed number of CPU cores and hyperthreads?

E Let’s say there are 4 cores, or 8 hyper-threads...

= Key to avoiding waste of computing resources
is knowing your application’s TLP...

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

October 2, 2025 12.40

40

Slides by Wes J. Lloyd

[Fall 2025]

L2.20

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TLP - PRIMES EXAMPLE

® Multi-threaded prime number generation
= Compute-bound workload

= Can use variable # of threads

= Generates n prime numbers

® Runtimes: 100,000 primes
= 1 thread: 59.15 s

® 2 threads: 30.957 s

® 4 threads: 15.539 s

m 8 threads: 12.112 s

® Observe TLP with top

time ./primes8 30000 >/dev/null

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

October 2, 2025 School of Engineering and Technology, University of Washington - Tacoma

| 12.41 |

41

CONTROL-FLOW ARCHITECTURE

® Typical architecture used today - w/ multiple threads

= Each thread runs a sequential program sequence

= By John von Neumann (1945), also called the Von

Neumann architecture
= Dominant computer system

arc h itect ure Central Processing Unit

= Program counter (PC) determines
next instruction to load
into instruction register | vevice

= Program execution is

sequential

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

Gcicben2)2025 School of Engineering and Technology, University of Washington - Tacoma

Input Arithmetic/Logic Unit

Output
Device

| 12.42 |

42

Slides by Wes J. Lloyd

[Fall 2025]

L2.21

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

DATA-LEVEL PARALLELISM

= Partition data into big chunks, run separate copies
of the program on them with little or no
communication

®EProblems are considered to be
embarrassingly parallel

m Also perfectly parallel or pleasingly parallel...

= Little or no effort needed to separate problem
into a number of parallel tasks

= MapReduce programming model is an example

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

October 2, 2025 School of Engineering and Technology, University of Washington - Tacoma

L2.43

43

DATA FLOW ARCHITECTURE

= Alternate architecture used by network routers, digital
signal processors, special purpose systems

® Operations performed when input (data) becomes
available

= Envisioned to provide much higher parallelism

® Multiple problems has prevented wide-scale adoption
= Efficiently broadcasting data tokens in a massively
parallel system
= Efficiently dispatching instruction tokens in a massively
parallel system
= Building content addressable memory large enough to
hold all of the dependencies of a real program

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma 124

October 2, 2025

44

Slides by Wes J. Lloyd

[Fall 2025]

L2.22

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

DATA FLOW ARCHITECTURE - 2

m Architecture not as popular as control-flow

= Modern CPUs emulate data flow architecture for dynamic
instruction scheduling since the 1990s

= Qut-of-order execution - reduces CPU idle time by not blocking
for instructions requiring data by defining execution windows
= Execution windows: identify instructions that can be run by
data dependency
= |[nstructions are completed in data dependency order within
execution window
= Execution window size typically 32 to 200 instructions

Utility of data flow architectures has been
much less than envisioned

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

October 2, 2025 | 12.45 |

45

46

Slides by Wes J. Lloyd L2.23

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

BIT-LEVEL PARALLELISM

= Computations on large words (e.g. 64-bit integer) are
performed as a single instruction

® Fewer instructions are required on 64-bit CPUs to process
larger operands (A+B) providing dramatic performance
improvements

® Processors have evolved: 4-bit, 8-bit, 16-bit, 32-bit, 64-bit

QUESTION: How many instructions are required to add two
64-bit numbers on a 16-bit CPU? (Intel 8088)

® 64-bit MAX int = 9,223,372,036,854,775,807 (signed)
® 16-bit MAX int = 32,767 (signed)
® Intel 8088 - limited to 16-bit registers

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma 247

October 2, 2025

47

INSTRUCTION-LEVEL PARALLELISM (ILP)

® CPU pipelining architectures enable ILP
® CPUs have multi-stage processing pipelines

® Pipelining: split instructions into sequence of steps that
can execute concurrently on different CPU circuitry

® Basic RISC CPU - Each instruction has 5 pipeline stages:
u |[F - instruction fetch

= ID- instruction decode

m EX - instruction execution

= MEM - memory access

= WB - write back

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

October 2, 2025 12.48

48

Slides by Wes J. Lloyd

[Fall 2025]

L2.24

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CPU PIPELINING

Clock Cycle
|
Wai_ting . .
Instructions
CONEER
MEEEEIE] | 1 1 PP
2 Jrwree |51 @ I DX X X
] <o (515400 1 @ I 8 M 54 X
i NN KD HEEX|
LI
Complatad D . .
Instructions D .
L]

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

October 2, 2025 School of Engineering and Technology, University of Washington - Tacoma

L2.49

49

INSTRUCTION LEVEL PARALLELISM - 2

= RISC CPU:

= After 5 clock cycles, all 5 stages of an instruction are
loaded

m Starting with 6" clock cycle, one full instruction
completes each cycle

= The CPU performs 5 tasks per clock cycle!
Fetch, decode, execute, memory read, memory write back

® Pentium 4 (CISC CPU) - processing pipeline w/ 35 stages!

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

Gcicben2)2025 School of Engineering and Technology, University of Washington - Tacoma

L2.50

50

Slides by Wes J. Lloyd

[Fall 2025]

L2.25

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES

= Cloud Computing: How did we get here?

= Parallel and distributed systems

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2"? edition)
= Data, thread-level, task-level parallelism
= Parallel architectures

= SIMD architectures, vector processing, multimedia
extensions

= Graphics processing units

= Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems

= Modularity

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

October 2, 2025 School of Engineering and Technology, University of Washington - Tacoma

L2.51

51

MICHAEL FLYNN'S COMPUTER

ARCHITECTURE TAXONOMY

® Michael Flynn’s proposed taxonomy of computer
architectures based on concurrent instructions and
number of data streams (1966)

= SISD (Single Instruction Single Data)

= SIMD (Single Instruction, Multiple Data)

= MIMD (Multiple Instructions, Multiple Data)

®m [ESS COMMON: MISD (Multiple Instructions, Single Data)

® Pipeline architectures: functional units perform different
operations on the same data

® For fault tolerance, may want to execute same instructions
redundantly to detect and mask errors - for task replication

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma 1252

October 2, 2025

52

Slides by Wes J. Lloyd

[Fall 2025]

L2.26

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

FLYNN'S TAXONOMY

= SISD (Single Instruction Single Data)
Scalar architecture with one processor/core.

= Individual cores of modern multicore processors are
“SISD”

= SIMD (Single Instruction, Multiple Data)
Supports vector processing

= When SIMD instructions are issued, operations on
individual vector components are carried out concurrently

= Two 64-element vectors can be added in parallel
= Vector processing instructions added to modern CPUs
= Example: Intel MMX (multimedia) instructions

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

October 2, 2025 School of Engineering and Technology, University of Washington - Tacoma

| L2.53

53

(SIMD): VECTOR PROCESSING

ADVANTAGES

= Exploit data-parallelism: vector operations enable speedups

® Vectors architecture provide vector registers that can store
entire matrices into a CPU register

= SIMD CPU extension (e.g. MMX) add support for vector
operations on traditional CPUs

® Vector operations reduce total number of instructions for
large vector operations

® Provides higher potential speedup vs. MIMD architecture

® Developers can think sequentially; not worry about
parallelism

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

Gcicben2)2025 School of Engineering and Technology, University of Washington - Tacoma

| L2.54

54

Slides by Wes J. Lloyd

[Fall 2025]

L2.27

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

FLYNN'S TAXONOMY - 2

= MIMD (Multiple Instructions, Multiple Data) - system with
several processors and/or cores that function asynchronously
and independently

= At any time, different processors/cores may execute different
instructions on different data

® Multi-core CPUs are MIMD

= Processors share memory via interconnection networks
= Hypercube, 2D torus, 3D torus, omega network, other topologies
= MIMD systems have different methods of sharing memory
Uniform Memory Access (UMA)
Cache Only Memory Access (COMA)
Non-Uniform Memory Access (NUMA)

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
October 2, 2025 School of Engineering and Technology, University of Washington - Tacoma 123

55

ARITHMETIC INTENSITY

= Arithmetic intensity: Ratio of work (W) to I w

memory traffic r/w (Q) Q
Example: # of floating-point ops per byte of data read

® Characterizes application scalability with SIMD support

= SIMD can perform many fast matrix operations in parallel

® High arithmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

= | ow arithmetic intensity:
Programs with sparse matrix operations do not scale well
with problem size
(memory RW becomes bottleneck, not enough ops!)

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
Gcicben2)2025 School of Engineering and Technology, University of Washington - Tacoma 1236

56

Slides by Wes J. Lloyd L2.28

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

ROOFLINE MODEL

= When program reaches a given arithmetic intensity
performance of code running on CPU hits a “roof”

= CPU performance bottleneck changes from:
memory bandwidth (left) > floating point performance (right)

Paak performance
‘@@ oxmbaance [KEY take-aways:

& When a program’s has low

g & Arithmetic Intensity, memory

AR Moz bandwidth limits performance..

P
Aot With high Arithmetic intensity,
the system has peak parallel
performance...
Arithmetic intensity = performance is limited by??

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

October 2, 2025 School of Engineering and Technology, University of Washington - Tacoma

| L2.57

57

OBJECTIVES

= Cloud Computing: How did we get here?
= Parallel and distributed systems
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2"? edition)
= Data, thread-level, task-level parallelism
= Parallel architectures

= SIMD architectures, vector processing, multimedia
extensions

| =Graphics processing units |
= Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems
= Modularity

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

Gcicben2)2025 School of Engineering and Technology, University of Washington - Tacoma

| 12.58

58

Slides by Wes J. Lloyd

[Fall 2025]

L2.29

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

" Control AU | AL = L1
[|
AU | AU - It 1L LI
| - |
I | WTTTTTT] ! :
= ——
-_ L
mml [TITTITIT]
* Low compute density * High compute density
* Complex control logic * High Computations per Memory Access
* Large caches (L1$/L2$, etc.) * Built for parallel operations
* Optimized for serial operations * Many parallel execution units (ALUs)
+ Fewer execution units (ALUs) * Graphics is the best known case of parallelism
+ Higher clock speeds * Deep pipelines (hundreds of stages)
* Shallow pipelines (<30 stages) * High Throughput
* Low Latency Tolerance * High Latency Tolerance
* Newer CPUs have more parallelism * Newer GPUs:
* Better flow control logic (becoming more CPU-like)
¢ Scatter/Gather Memory Access
* Don't have one-way pipelines anymore
From: https://hypertec.com/blog/gpus-taking-over-cpus/
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
dutobeg232025 School of Engineering and Technology, University of Washington - Tacoma L2.59
59

GRAPHICAL PROCESSING UNITS (GPUs)

® GPU provides multiple SIMD processors
® Typically 7 to 15 SIMD processors each

m 32,768 total registers, divided into 16 lanes
(2048 registers each)

B GPU programming model:
single instruction, multiple thread

= Programmed using CUDA- C like programming
language by NVIDIA for GPUs

®m CUDA threads - single thread associated with each
data element (e.g. vector or matrix)

® Thousands of threads run concurrently

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 1260 |

Gcicben2)2025 School of Engineering and Technology, University of Washington - Tacoma

60

Slides by Wes J. Lloyd

[Fall 2025]

L2.30

https://hypertec.com/blog/gpus-taking-over-cpus/
https://hypertec.com/blog/gpus-taking-over-cpus/
https://hypertec.com/blog/gpus-taking-over-cpus/
https://hypertec.com/blog/gpus-taking-over-cpus/
https://hypertec.com/blog/gpus-taking-over-cpus/
https://hypertec.com/blog/gpus-taking-over-cpus/
https://hypertec.com/blog/gpus-taking-over-cpus/

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES

= Cloud Computing: How did we get here?
= Parallel and distributed systems
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2"? edition)
= Data, thread-level, task-level parallelism
= Parallel architectures

= SIMD architectures, vector processing, multimedia
extensions

= Graphics processing units

| =Speed-up, Amdahl's Law, Scaled Speedup |
= Properties of distributed systems
= Modularity

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.61

| October 2, 2025

61

PARALLEL COMPUTING

= Parallel hardware and software systems allow:

= Solve problems demanding resources not available on
single system.

= Reduce time required to obtain solution

®The speed-up (S) measures effectiveness of
parallelization:

S(N) =T(1) / T(N)

T(1) - execution time of total sequential computation

T(N) > execution time for performing N parallel
computations in parallel

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma 1262

October 2, 2025

62

Slides by Wes J. Lloyd L2.31

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

SPEED-UP EXAMPLE

= Consider embarrassingly parallel image processing

= Eight images (multiple data)

= Apply image transformation (greyscale) in parallel

= 8-core CPU, 16 hyper threads

= Sequential processing: perform transformations one at a time

using a single program thread
= 8 images, 3 seconds each: T(1) = 24 seconds

= Parallel processing

= 8 images, 3 seconds each: T(N) = 3 seconds
= Speedup: S(N) = 24 / 3 = 8x speedup
= Called “perfect scaling”

® Must consider data transfer and computation setup time

October 2, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 12.63 |

School of Engineering and Technology, University of Washington - Tacoma

63

AMDAHL'S LAW

= Amdahl’s law is used to estimate the speed-up of a job
using parallel computing

1. Divide job into two parts
2. Part A that will still be sequential
3. Part B that will be sped-up with parallel computing

= Portion of computation which cannot be parallelized will
determine (i.e. limit) the overall speedup

= Amdahl’s law assumes jobs are of a fixed size

= Also, Amdahl’s assumes no overhead for distributing the
work, and a perfectly even work distribution

October 2, 2025

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] L26a
School of Engineering and Technology, University of Washington - Tacoma .

64

Slides by Wes J. Lloyd

[Fall 2025]

L2.32

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

AMDAHL'S LAW

1

=
1-f+£

m S = theoretical speedup of the whole task
= f= fraction of work that is parallel (ex. 25% or 0.25)
m N= proposed speed up of the parallel part (ex. 5 times speedup)

= % improvement
of task execution =100 * (1 -(1/9))

= Using Amdahl’s law, what is the maximum possible speed-up?

October 2, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 12.65 |

School of Engineering and Technology, University of Washington - Tacoma

65

AMDAHL'S LAW EXAMPLE

Two independentparts A B
= Program with two independent parts:
= Part A is 75% of the execution time Original process I

= Part B is 25% of the execution time Make B Sxfaster NN

= Part B is made 5 times faster with

. Make A 2xfaste |
parallel computing il

i i) from Wikipedia
= Estimate the percent improvement of task execution

® Original Part A is 3 seconds, Part B is 1 second

m N=5 (speedup of part B)

= f=25 (only 25% of the whole job (A+B) will be sped-up)
®S=1/ ((1-f) + f/S)

= S=1/ ((.75) + .25/5)

= S=1.25

= % improvement = 100 * (1 - 1/1.25) = 20%

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 1266 |

Gcicben2)2025 School of Engineering and Technology, University of Washington - Tacoma

66

Slides by Wes J. Lloyd

[Fall 2025]

L2.33

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

GUSTAFSON'S LAW

® Calculates the scaled speed-up using “N” processors
S(N) =N+ (1-N)«

N: Number of processors

o: fraction of program run time which can’t be parallelized
(e.g. must run sequentially)

® Can be used to estimate runtime of parallel portion of
program

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

October 2, 2025 School of Engineering and Technology, University of Washington - Tacoma

| L2.67

67

GUSTAFSON'S LAW

® Calculates the scaled speed-up using “N” processors
S(N) =N+ (1-N)«

N: Number of processors

o: fraction of program run time which can’t be parallelized
(e.g. must run sequentially)

® Can be used to estimate runtime of parallel portion of
program

®" Where a« = o / (m + o)
® Where o= sequential time, m =parallel time
® Qur Amdahl’s example: o= 3s, 1 =1s, a« =.75

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

Gcicben2)2025 School of Engineering and Technology, University of Washington - Tacoma

| L2.68

68

Slides by Wes J. Lloyd

[Fall 2025]

L2.34

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

GUSTAFSON'S LAW

® Calculates the scaled speed-up using “N” processors
S(N) =N+ (1-N)«

N: Number of processors

o: fraction of program run time which can’t be parallelized
(e.g. must run sequentially)

= Example:
Consider a program that is embarrassingly parallel,

but 75% cannot be parallelized. «=.75

QUESTION: If deploying the job on a 2-core CPU, what
scaled speedup is possible assuming the use of two
processes that run in parallel?

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma 1269

October 2, 2025

69

GUSTAFSON’S EXAMPLE

= QUESTION:

What is the maximum theoretical speed-up on a 2-core CPU ?

S(N) =N+ (1-N) «

N=2, a=.75
S(N) =2+ (1-2).75
S(N) =?

® What is the maximum theoretical speed-up on a 16-core CPU?

S(N) =N+ (1-N) «

N=16, a=.75
S(N) =16 + (1 -16) .75
S(N) =?

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

October 2, 2025 12.70

70

Slides by Wes J. Lloyd

[Fall 2025]

L2.35

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

GUSTAFSON’S EXAMPLE

= QUESTION:

What is the maximum theoretical speed-up on a 2-core CPU ?

S(N) =N+ (1-N) «

S(N) =3 For 2 CPUs, speed up is 1.25x

For 16 CPUs, speed up is 4.75x

= What is thHe™ia ’ ore gu-up o .
S(N) =N+ (1-N)«x
N=16, a=.75
S(N) =16 + (1 - 16) .75
S(N) = ?
October 2, 2025

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] 271
School of Engineering and Technology, University of Washington - Tacoma .

71

MOORE’S LAW

® Transistors on a chip doubles approximately every 1.5 years
= CPUs now have billions of transistors

® Power dissipation issues at faster clock rates leads to heat
removal challenges

= Transition from: increasing clock rates - to adding CPU cores

= Symmetric core processor -multi-core CPU, all cores have the
same computational resources and speed

= Asymmetric core processor - on a multi-core CPU, some cores
have more resources and speed

= Dynamic core processor - processing resources and speed can
be dynamically configured among cores

= Observation: asymmetric processors offer a higher speedup

October 2, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 272 |

School of Engineering and Technology, University of Washington - Tacoma

72

Slides by Wes J. Lloyd

[Fall 2025]

L2.36

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES

= Cloud Computing: How did we get here?
= Parallel and distributed systems
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2"? edition)
= Data, thread-level, task-level parallelism
= Parallel architectures

= SIMD architectures, vector processing, multimedia
extensions

= Graphics processing units
= Speed-up, Amdahl's Law, Scaled Speedup

= Properties of distributed systems |

= Modularity

October 2, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 273 |

School of Engineering and Technology, University of Washington - Tacoma

73

DISTRIBUTED SYSTEMS

® Collection of autonomous computers, connected through a
network with distribution software called “middleware” that
enables coordination of activities and sharing of resources

= Key characteristics:

= Users perceive system as a single, integrated computing
facility.

= Compute nodes are autonomous

®m Scheduling, resource management, and security implemented
by every node

® Multiple points of control and failure

= Nodes may not be accessible at all times

= System can be scaled by adding additional nodes

m Availability at low levels of HW/software/network reliability

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

Gcicben2)2025 School of Engineering and Technology, University of Washington - Tacoma

| L2.74

74

Slides by Wes J. Lloyd

[Fall 2025]

L2.37

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

DISTRIBUTED SYSTEMS - 2

= Key non-functional attributes
= Known as “ilities” in software engineering

® Availability - 24/7 access?

= Reliability - Fault tolerance

m Accessibility - reachable?

= Usability - user friendly

= Understandability - can under

m Scalability - responds to variable demand

= Extensibility - can be easily modified, extended

= Maintainability - can be easily fixed

® Consistency - data is replicated correctly in timely manner

October 2, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 1275 |

School of Engineering and Technology, University of Washington - Tacoma

75

TRANSPARENCY PROPERTIES OF

DISTRIBUTED SYSTEMS

= Access transparency: local and remote objects accessed using
identical operations

= Location transparency: objects accessed w/o knowledge of
their location.

= Concurrency transparency: several processes run concurrently
using shared objects w/o interference among them

= Replication transparency: multiple instances of objects are
used to increase reliability
- users are unaware if and how the system is replicated

= Failure transparency: concealment of faults

= Migration transparency: objects are moved w/o affecting
operations performed on them

= Performance transparency: system can be reconfigured based
on load and quality of service requirements

= Scaling transparency: system and applications can scale w/o
change in system structure and w/o affecting applications

October 2, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 1276 |

School of Engineering and Technology, University of Washington - Tacoma

76

Slides by Wes J. Lloyd

[Fall 2025]

L2.38

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES

= Cloud Computing: How did we get here?
= Parallel and distributed systems
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2"? edition)
= Data, thread-level, task-level parallelism
= Parallel architectures

= SIMD architectures, vector processing, multimedia
extensions

= Graphics processing units
= Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems

= Modularity |

October 2, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 277 |

School of Engineering and Technology, University of Washington - Tacoma

TYPES OF MODULARITY

= Soft modularity: TRADITIONAL

= Dijvide a program into modules (classes) that call each other
and communicate with shared-memory

= A procedure calling convention is used (or method invocation)

= Enforced modularity: CLOUD COMPUTING

= Program is divided into modules that communicate only
through message passing

= The ubiquitous client-server paradigm

® Clients and servers are independent decoupled modules
= System is more robust if servers are stateless

= May be scaled and deployed separately

= May also FAIL separately!

October 2, 2025

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] 1278
School of Engineering and Technology, University of Washington - Tacoma .

78

Slides by Wes J. Lloyd

[Fall 2025]

L2.39

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CLOUD COMPUTING - HOW DID WE GET HERE?

SUMMARY OF KEY POINTS

® Multi-core CPU technology and hyper-threading

® What is a
= Heterogeneous system?
= Homogeneous system?
= Autonomous or self-organizing system?

= Fine grained vs. coarse grained parallelism

= Parallel message passing code is easier to debug than
shared memory (e.g. p-threads)

= Know your application’s max/avg Thread Level
Parallelism (TLP)

= Data-level parallelism: Map-Reduce, (SIMD) Single
Instruction Multiple Data, Vector processing & GPUs

October 2, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 1279 |

School of Engineering and Technology, University of Washington - Tacoma

79

CLOUD COMPUTING - HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 2

= Bit-level parallelism
= |Instruction-level parallelism (CPU pipelining)
= Flynn’s taxonomy: computer system architecture classification
= SISD - Single Instruction, Single Data (modern core of a CPU)
= SIMD - Single Instruction, Multiple Data (Data parallelism)
= MIMD - Multiple Instruction, Multiple Data
= MISD is RARE; application for fault tolerance...

= Arithmetic intensity: ratio of calculations vs memory RW

= Roofline model:
Memory bottleneck with low arithmetic intensity

® GPUs: ideal for programs with high arithmetic intensity
= SIMD and Vector processing supported by many large registers

October 2, 2025

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] 12.80
School of Engineering and Technology, University of Washington - Tacoma :

80

Slides by Wes J. Lloyd

[Fall 2025]

L2.40

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CLOUD COMPUTING - HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 3

= Speed-up (S)
S(N) = T(1) / T(N)

= Amdahl’s law:
S=1 / ((1-f) + f/N),s=latency, f=parallel fraction, N=speed-up

= x = percent of program that must be sequential
= Scaled speedup with N processes:
S(N) =N - a(N-1)
® Moore's Law
® Symmetric core, Asymmetric core, Dynamic core CPU
® Distributed Systems Non-function quality attributes
® Distributed Systems - Types of Transparency
= Types of modularity- Soft, Enforced

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

October 2, 2025 School of Engineering and Technology, University of Washington - Tacoma

L2.81

81

QUESTIONS

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 208]

October 2, 2025 School of Engineering and Technology, University of Washington -

82

Slides by Wes J. Lloyd

[Fall 2025]

L2.41

	Slide 1: TCSS 462/562: (Software Engineering for) Cloud Computing
	Slide 2: OBJECTIVES – 10/2
	Slide 3: daily feedback survey
	Slide 4: WARNING
	Slide 5
	Slide 6: OBJECTIVES – 10/2
	Slide 7: Material / pace
	Slide 8: Feedback from 9/30
	Slide 9: Feedback - 2
	Slide 10: Feedback - 3
	Slide 11: Feedback - 4
	Slide 12: OBJECTIVES – 10/2
	Slide 13: Demographics survey
	Slide 14: OBJECTIVES – 10/2
	Slide 15: AWS Cloud Credits survey
	Slide 16: Aws credits & billing
	Slide 17: OBJECTIVES – 10/2
	Slide 18: OBJECTIVES – 10/2
	Slide 19: OBJECTIVES – 10/2
	Slide 20: objectives
	Slide 21: Cloud computing: How did we get here?
	Slide 22
	Slide 23: Hyper threading
	Slide 24: AMD’s 64-core 7nm CPUs
	Slide 25: AMD’s 64-core <14nm CPUs
	Slide 26: X86_64 Host server vcpus – amazon ec2 infrastructure-as-a-service cloud
	Slide 27: ARM64 Host server vcpus – amazon ec2 infrastructure-as-a-service cloud
	Slide 28: Cloud computing: How did we get here? - 2
	Slide 29: cloud computing: How did we get here? - 3
	Slide 30: Cloud computing: how did we get here? - 4
	Slide 31: Smith Waterman Use Case
	Slide 32: Smith waterman runtime
	Slide 33: cloud computing: How did we get here? - 5
	Slide 34: cloud computing: How did we get here? - 6
	Slide 35: Hardware heterogeneity
	Slide 36: objectives
	Slide 37: parallelism
	Slide 38: Parallelism - 2
	Slide 39: Types of parallelism
	Slide 40: Thread level parallelism (TLP)
	Slide 41: Tlp – primes example
	Slide 42: Control-Flow architecture
	Slide 43: Data-level Parallelism
	Slide 44: Data flow architecture
	Slide 45: Data flow architecture - 2
	Slide 46: We will return at 4:50pm
	Slide 47: Bit-level parallelism
	Slide 48: Instruction-level parallelism (ILP)
	Slide 49: Cpu pipelining
	Slide 50: Instruction level parallelism - 2
	Slide 51: objectives
	Slide 52: Michael Flynn’s computer architecture taxonomy
	Slide 53: Flynn’s taxonomy
	Slide 54: (Simd): VECtOR PROCESSING advantages
	Slide 55: Flynn’s taxonomy - 2
	Slide 56: Arithmetic intensity
	Slide 57: Roofline model
	Slide 58: objectives
	Slide 59
	Slide 60: Graphical processing units (gpus)
	Slide 61: objectives
	Slide 62: Parallel computing
	Slide 63: Speed-up example
	Slide 64: Amdahl’s law
	Slide 65: Amdahl’s law
	Slide 66: Amdahl’s law example
	Slide 67: Gustafson's Law
	Slide 68: Gustafson's Law
	Slide 69: Gustafson's Law
	Slide 70: Gustafson’s example
	Slide 71: Gustafson’s example
	Slide 72: Moore’s law
	Slide 73: objectives
	Slide 74: Distributed systems
	Slide 75: Distributed systems - 2
	Slide 76: Transparency properties of distributed systems
	Slide 77: objectives
	Slide 78: Types of modularity
	Slide 79: Cloud computing – how did we get here? Summary of key points
	Slide 80: Cloud computing – how did we get here? Summary of key points - 2
	Slide 81: Cloud computing – how did we get here? Summary of key points - 3
	Slide 82: Questions

