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OBJECTIVES - 10/2

| = Dally Feedback Surveys |
= Questions from Course Introduction

= Demographics Survey
= AWS Cloud Credits Survey

= Tutorial O - Getting Started with AWS
= Tutorial 1 - Intro to Linux
= Cloud Computing - How did we get here? (10/4)

Chapter 4 Marinescu 2" edition:
Introduction to parallel and distributed systems

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

‘ October2i2028 School of Engineering and Technology, University of Washington - Tacoma

DAILY FEEDBACK SURVEY

Online Daily Feedback Quiz in Canvas - Take After Each Class
1-point

Extra Credit

for completing
online

2-points

Extra Credit

for completing
in-person in class
36 points
possible

2.5% added to
final course

* Upcoming Assignments.

vity 1 - Impiicit vs. Explicit Parallelism

L e

* Past Assignments

e

School of Engineering and Technology, University of Washington - Tacoma

grade for o TCSS 562 - Online Daily Feedback Survey - 9/30
(36/36) P '
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WARNING

= DO NOT SUBMIT BOTH A PAPER AND AN ONLINE SURVEY
OR YOU WILL LOOSE POINTS

= CANVAS WILL AUTOMATICALLY REPLACE THE PAPER SURVEY
SCORE (2 PTS) WITH THE ONLINE SURVEY (1 PT)

= * COMPLETE ONLY ONE SURVEY FOR EACH CLASS SESSION *

= WE WILL NOT BE ABLE TO DUPLICATE CHECK SURVEYS FOR
EACH CLASS SESSION AND MAKE CORRECTIONS

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025

‘ October2,2025) School of Engineering and Technology, University of Washington - Tacoma

TCSS 562 - Online Daily Feedback Survey - 10/5

Startect Ot 7 at 1-13sm

Quiz Instructions

Question 1 05pts

Ona scale of 1 to 10, please classify your perspective on material covered in today's
class:

1 2 a 4 s & 7 8 9 1
mestay euar mostly
Question 2 osps

Please rate the pace of today's class:

1 2 3 4 s 3 7 8 ? 10

P et might Pt
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= Daily Feedback Surveys
|- Questions from Course Introduction |

= Demographics Survey
= AWS Cloud Credits Survey

= Tutorial O - Getting Started with AWS
= Tutorial 1 - Intro to Linux

= Cloud Computing - How did we get here?
Chapter 4 Marinescu 2" edition:
Introduction to parallel and distributed systems
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MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (49 respondents, 38 in-person, 11 online):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 7.20 (T - first day 2024 - 6.16)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.16 (| - first day f2024 - 5.55)

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

‘ October2i2025) School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK - 2

= How can the term project contribute to a thesis or
capstone project ?

= |f pursuing a thesis/capstone related to cloud computing
or distributed systems, then the skills learned in the
course will be important.

= If having an idea for a capstone/thesis project, it is
possible to explore the idea by proposing and conducting
preliminary research in the term project.

= Performance investigation projects may be extendable
into a capstone project
= Thesis is more difficult as there needs to be an original

(novel) research contribution

TCS462/562: (Software Engineering for) Cloud Computing [Fall 2025

October2, 2025 School of Engineering and Technology, University of Washington - Tacoma

[Fall 2025]

FEEDBACK FROM 9/30

= What Is the difference between the TCSS 462 and TCSS 562
term project ?
= TCSS 562 teams and hybrid-teams (462+562) submit a 4 to 6
page term paper
= TCSS 462-only teams submit a 10-15 minute presentation
recording with the option of submitting a term paper instead
= The content of the paper and presentation are the same
= A template is provided for both the term paper and
presentation
= The sections within are the same

= |s TCSS 562 credit transferrable ?
= Yes - if taking TCSS 562 as an undergraduate senior, the credit
will transfer to the UWT MS CSS program. There is a good
chance the credit can transfer other MS Computer Science
programs besides UW. This can save ~$8,000+.

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025

‘ October2i2028 School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK - 3

= | am unclear regarding the workload in the class

= Expect 1 tutorial per week throughout the quarter, 2 quizzes, plus
the term project. The term project become a heavy focus after ~
week 6.

= In general, this course is easier for students who have strong
computing skills including the ability to learn how to use new
services, troubleshoot issues/challenges, and solve problems.

= 462/562 is not a programming course, but a systems course.

= |s the project 100% from the slides, or will | need to do
addltlonal research?
= The term project involves applying and synthesizing what is
learned across the entire course into a final project

‘ October2, 2025 TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025 10

School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK - 4

= What is the difference in quizzes for TCSS 462 vs. 562 ?

= Each section (462 or 562) is graded using a separate
curve

=The 462 curve is usually more generous

= Term Project ? Jargon ?
= |t is normal for the term project to be confusing on day 1,
as we are just getting started

10
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OBJECTIVES - 10/2

= Daily Feedback Surveys
= Questions from Course Introduction

I' Demographics Survey I
= AWS Cloud Credits Survey

= Tutorial O - Getting Started with AWS
= Tutorial 1 - Intro to Linux
= Cloud Computing - How did we get here?

Chapter 4 Marinescu 2" edition:
Introduction to parallel and distributed systems

‘ October2, 2025 TCS3462/562:(Software Engineering for) Cloud Computing [Fall 2025] o

School of Engineering and Technology, University of Washington - Tacoma
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TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

DEMOGRAPHICS SURVEY

= Please complete the ONLINE demographics survey:
= https://forms.gle/QNUW2hUV7fR7BDmv7
= Linked from course webpage in Canvas:

= http://faculty.washington.edu/wlloyd/courses/tcss562
announcements.html

= Random drawing based on survey participants for two $20
Tango gift cards - October 9t" in class
= select from various options, i.e. Amazon, Starbucks, pizza, etc.

TCS5462/562: (Software Engineering for) Cloud Computing [Fal 2025]
‘ October2i2025) School of Engineering and Technology, University of Washington - Tacoma 1213

OBJECTIVES - 10/2

= Daily Feedback Surveys
= Questions from Course Introduction

= Demographics Survey
| = AWS cloud Credits Survey |

= Tutorial O - Getting Started with AWS
= Tutorial 1 - Intro to Linux
= Cloud Computing - How did we get here?

Chapter 4 Marinescu 2" edition:
Introduction to parallel and distributed systems

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2025]
‘ October2i2028 School of Engineering and Technology, University of Washington - Tacoma 1214
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AWS CLOUD CREDITS SURVEY

= Please complete the AWS CLOUD CREDITS survey as part of
Tutorial O:

= https://forms.gle/Y4IWvBRFVLRPnPX37

= Linked from course webpage in Canvas:

= http://faculty.washington.edu/wlloyd/courses/tcss562
announcements.html

TCS5462/562: (Software Engineering for) Cloud Computing [Fal 2025]
‘ September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma s
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AWS CREDITS & BILLING

= CLOUD CREDITS are being dispersed on request

= AWS bills monthly, with charges applied to the credit card (or
credit balance) on the last day of the month, for the month’s
charges

= END OF MONTH:- **CHECK YOUR CLOUD BILL**
at least a few days before the end of the month

= Billing Alarms - can be configured to generate email when
there is a charge - can generate email if charges exceed
$0.01
= With cloud credits, there should be no monthly charges
= PROBLEM: when accounts have a credit balance, they do not
generate billing alarms for high service usage - it is necessary to
manually inspect service usage

TC55462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ October2, 2025 School of Engineering and Technology, University of Washington - Tacoma 1216
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OBJECTIVES - 10/2

= Questions from Course Introduction
= Daily Feedback Surveys

= Demographics Survey
= AWS Cloud Credits Survey

| = Tutorial 0 - Getting Started with AWS |
® Tutorial 1 - Intro to Linux

= Cloud Computing - How did we get here?
Chapter 4 Marinescu 2"? edition:
Introduction to parallel and distributed systems

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025]

‘ October2, 2025 School of Engineering and Technology, University of Washington - Tacoma
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OBJECTIVES - 10/2

= Questions from Course Introduction
= Daily Feedback Surveys

= Demographics Survey
= AWS Cloud Credits Survey

= Tutorial O - Getting Started with AWS
II Tutorial 1 - Intro to Linux

= Cloud Computing - How did we get here?
Chapter 4 Marinescu 2" edition:
Introduction to parallel and distributed systems

TCS5462/562(Software Engineering for) Cloud Computing [Fall 2025]
‘ CEHERETD School of Engineering and Technology, University of Washington - Tacoma 18
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OBJECTIVES - 10/2 OBJECTIVES

= Dally Feedback Surveys
= Questions from Course Introduction

= Cloud Computing: How did we get here?
= Parallel and distributed systems
= Demographics Survey (Marinescu Ch. 2 - 1st edition, Ch. 4 - 2"? edition)
= AWS Cloud Credits Survey = Data, thread-level, task-level parallelism
= Parallel architectures
=SIMD architectures, vector processing, multimedia

= Tutorial O - Getting Started with AWS
= Tutorial 1 - Intro to Linux

extensions
= Cloud Computing - How did we get here? ® Graphics processing units
Chapter 4 Marlnescu 29 edltlon: =Speed-up, Amdahl's Law, Scaled Speedup
Introduction to parallel and distributed systems = Properties of distributed systems

= Modularity

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025] TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ October2i2025) School of Engineering and Technology, University of Washington - Tacoma 1219 October2i2028 School of Engineering and Technology, University of Washington - Tacoma 1220
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Each Year We Get >><Cr More Processors
CLOUD COMPUTING: oo
oore’s Historically:
HOW DID WE GET HERE? * v
Losanse | Boost single-stream
. . . performance via more
= General interest in parallel computing e complex chips
= Moore’s Law - # of transistors doubles every 18 months Now:
"o o longer easily inereass ctoud apee - Delivenmore cores pet
e y SP o chip {+ GPU, NIC, SoC).
= Overclocking to 7GHz takes =
more than just liquid nitrogen: g o
https://tinyurl.com/y93s2yz2 fT:e f dE elunchis UVIEII'
. r today’s sequential
mSolutions: * Bigiss
apps and many
= Vary CPU clock speed . concurrent apps. We
= Add CPU cores need killer apps with
= Multl-core technolo 17 = v s o ww sm um mw we e lOtsOf latent parallelism.
[ oasbersam [ IS ottt o) Qo comt BN Il - ey o e e e an
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HYPER THREADING AMD’S 64-CORE 7NM CPUS

= Modern CPUs provide multiple instruction pipelines,
supporting multiple execution threads, usually 2
to feed instructions to a single CPU core... 0 AIOEIEEE ANEUsE 20

= EPYC 7H12 requires liquid cooling

AMD EPY

= Epyc Rome CPUs

= Two hyper-threads
are not equivalent 4770 with HTT Vs, 4670 without HTT - 25% improvement w/ HTT
to (2) CPU cores CPU Mark Relative to Top 10 Common CPUs Frequency (GHz)

A5 of 717 of Feoruary 2014 - Higner resuts regresent Detter performance
= {7-4770 and i5-4760
same CPU, with and

A EPYC 7HI12 641128 2860 230 256 B 280 W ]
without HTT
EPYCTI42 641128 225 340 256 MB 25W 56950
= Example: > EPYC 7702 641128 200 335 256 MB 200w $6450
hyperthreads add EPYC TBA2 48/98 230 320 256 B 225W  sa775
+32.9%
EPYC 7552 48/96 220 330 192 MB 200W  $4025

TCS5462/562: (Software Enginy for) Cloud Computing [Fall 2025] TC55462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ Gl School of Engineering and Technology, University of Washington - Tacoma 2 CEHERETD L

School of Engineering and Technology, University of Washington - Tacoma
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AMD’S 64-CORE <14NM CPUS X86_64 HOST SERVER VCPUS - AMAZON EC2

INFRASTRUCTURE-AS-A-SERVICE CLOUD

AMD EPYC 9654/9654P/9684X/9R14 (AWS OEM): = Cloud server virtual CPUs/host (x86_64)
June 2023: 96 cores, 192 hyper—threads CPUS = Growth since 2006 - Amazon Compute Cloud (EC2)
Mixes 4nm:APU (combines CPUSHGPU), 5nm:L3 cache = 15t generation Intel: m1 - 8 vCPUs / host (Aug 2006)
(8 CPU-chiplet), and 6nm:l/0 dies, 2.25 to 3.7 burst = 2nd generation Intel: m2 - 16 VCPUs / host (Oct 2009)
GHz, up to 400 watts = 3rd generation Intel: m3 - 32 vCPUs / host (Oct 2012)
$10 625 to $14 756 = 4th generation Intel: m4 - 48 vCPUs / host (June 2015)
’ ¢ = 5t generation Intel: m5 - 96 vCPUs / host (Nov 2017)
. 1
AMD EPYC 9754: 128 cores, 256 hyperthreads . = 6th generation Intel: m6i - 128 vCPUs / host (Aug 2021)
2.25 to 3.1 burst GHz, 360 watts = 6t" generation AMD: m6a - 192 vCPUs / host  (Nov 2021)
$11,900 = 7th generation Intel: m7i - 192 vCPUs / host  (Aug 2023)
AMD EPYC 9005: 192 cores, 384 threads, 3nm (in dev) = 7t generation AMD: m7a - 192 vCPUs / host  (Aug 2023)
‘ CEEETRETD e e e T ‘ October2, 2025 St of B and emmaogs ey of angion - Toma e
25 26

ARM64 HOST SERVER VCPUS - AMAZON EC2 CLOUD COMPUTING:

INFRASTRUCTURE-AS-A-SERVICE CLOUD HOW DID WE GET HERE? - 2

= Cloud server virtual CPUs/host (ARM64)

®= Launched in 2018 on the Amazon Compute Cloud (EC2)

= 64-bit ARM CPUs designed by AWS subsidiary Annapurna Labs
= Lower energy consumption compared to x86-64

= Fixed (non-variable) clock rates, No hyperthreading

= Each new release - performance boost of ~ 30% * Chicken and egg problem...
= Cost savings of ~20% less for ARM resources on AWS

= To make computing faster, we must go “parallel”

= Difficult to expose parallelism in scientific
applications
= Not every problem solution has a parallel algorithm

= Many commercial efforts promoting pure parallel

= 1st generation Graviton: al1- 16 vCPUs / host  (Nov 2018) programming efforts have failed
= 29 generation Graviton2: m6g- 64 vCPUs/host (Dec 2019) = Enterprise computing world has been skeptical and
= AWS Lambda limited to Graviton2 less involved in parallel programming

= 31 generation Graviton3: m7g- 64 vCPUs/host (May 2022)
= 4th generation Graviton4: m8g- 192 vCPUs/host(Sept 2024)

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025] o Detober 212025 TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025] s
School of Engineering and Technology, University of Washington - Tacoma 9 School of Engineering and Technology, University of Washington - Tacoma

‘ October2, 2025
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CLOUD COMPUTING: CLOUD COMPUTING:
HOW DID WE GET HERE? - 3 HOW DID WE GET HERE? - 4
= Cloud computing provides access to “infinite” = Big Data requires massive amounts of compute
scalable compute infrastructure on demand resources
= Infrastructure availability is key to exploiting

= MAP - REDUCE
=Single instruction, multiple data (SIMD)
= Cloud applications =Exploit data level parallelism
=Based on cllent-server paradigm
=Thin clients leverage compute hosted on the cloud
=Applications run many web service instances
=Employ load balancing

parallelism

= Bioinformatics example

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025]

Gl School of Engineering and Technology, University of Washington - Tacoma

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025]
GEEERATD School of Engineering and Technology, University of Washington - Tacoma 2
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School of Engineering and Technology, UW-Tacoma

SMITH WATERMAN USE CASE

SMITH WATERMAN RUNTIME

= Applies dynamic programming to find best local = Laptop server and client (2-core, 4-HT): 8.7 hours
alignment of two protein sequences
= Embarrassingly parallel, each task can run in isolation
= Use case for GPU acceleration

= AWS Lambda Serverless Computing Use Case:

= AWS Lambda FaaS, laptop as client: 2.2 minutes
= Partitions 20,336 sequences into 41 sets
= Execution cost: ~ 82¢ (~237x speed-up)

= AWS Lambda server, EC2 instance as client: 1.28

Goal: Pair-wise comparison of all unique human minutes
protein sequences (20,336) = Execution cost: ~ 87¢ (~408x speed-up)
= Python client as scheduler = Hardware
= C Striped Smith-Waterman (SSW) execution engine = Laptop client: Intel i5-7200U 2.5 GHz :4 HT, 2 CPU
From: Zhao M, Lee WP, Garrison EP, Marth GT: SSW library: an SIMD Smith- = Cloud client: EC2 Virtual Machine - m5.24xlarge: 96 vCPUs
Waterman C/C++ library for use in genomic applications. - . - ¥
PLoS One 2013, 8:082138 Cloud server: Lambda ~1000 Intel E5-2666v3 2.9GHz CPUs
[ osobernams [ IS e e ) o s Il - s e e e e )
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CLOUD COMPUTING: CLOUD COMPUTING:
HOW DID WE GET HERE? - 5 HOW DID WE GET HERE? - 6
= Compute clouds are large-scale distributed systems = Compute clouds are large-scale distributed

*Heterogeneous systems systems

Many services/platforms w/ diverse hw + capabilities = Infrastructure-as-a-Service (laaS) Cloud
*Homogeneous systems = Provide VMs on demand to users

Within a platform - illusion of identical hardware = ec2instances.info (AWS EC2)
= Autonomous .

| |

Automatic management and maintenance- largely with Clouds can consist of

little human intervention *Homogeneous hardware (servers, etc.)
=Self organlzin *Heterogeneous hardware (servers, etc.)

User requested resources organize themselves to satisfy
requests on-demand

TCS5462/562:(Software Engineering for) Cloud Computing [Fal 2025] TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025]
‘ October2, 2025 School of Engineering and Technology, University of Washington - Tacoma 1233 October2, 2025 School of Engineering and Technology, University of Washington - Tacoma 123

®Which is preferable?

33 34

HARDWARE HETEROGENEITY fLLL| LLLLL ) OBJECTIVES

= If providing laaS, what are advantages/

L . o
disadvantages of using homogeneous hardware? = Cloud Computing: How did we get here?

= Easier to provide same quality of service to end users = Parallel and distributed systems
Less performance variance (Marinescu Ch. 2 - 15t edition, Ch. 4 - 2" edition)
Components with variable performance: CPUs, memory = Data, thread-level, task-level parallelism
Eigzﬁ:g)ﬁerences), disks (SSDs, HDDs), network interfaces S EarEllE] A eEEs
= Homogeneous hardware (servers): components are = SIMD architectures, vector processing, multimedia
interchangeable extensions
As components fail, identical backups are = Graphics processing units

immediately available

Example: blade servers = Speed-up, Amdahl's Law, Scaled Speedup

= As clouds grow, why is HW homogeneity difficult to maintain? * Properties of distributed systems
= What are some advantages of using heterogeneous HW? * Modularity
TCSS462/562:(Softw: Er for) Cloud Cc iting [Fall 2025] TCSS462/562: (Software Engir ring for) Cloud Cor it [Fall 2025]
‘ October2, 2025 e A AT e A T e T a3 ‘ October2, 2025 S e TR T o A s -t a3
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TCSS 462: Cloud Computing

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

PARALLELISM

= Discovering parallelism and development of parallel
algorithms requires considerable effort

= Example: numerical analysis problems, such as solving large
systems of linear equations or solving systems of Partial
Differential Equations (PDEs), require algorithms based on
domain decomposition methods.

= How can problems be split Into Independent chunks?
= Fine-grained parallelism

= Only small bits of code can run in parallel without coordination
= Communication is required to synchronize state across nodes
= Coarse-gralned parallellsm

= Large blocks of code can run without coordination

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ October2i2025) School of Engineering and Technology, University of Washington - Tacoma 1237

PARALLELISM - 2

= Coordination of nodes
= Requires message passing or shared memory

= Debugging parallel message passing code is easier
than parallel shared memory code

= Message passing: all of the interactions are clear
= Coordination via specific programming APl (MPI)

= Shared memory: interactions can be implicit - must
read the code!!

" Processing speed is orders of magnitude faster than
communication speed (CPU > memory bus speed)

= Avoiding coordination achieves the best speed-up

TC55462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ October2i2028 School of Engineering and Technology, University of Washington - Tacoma 1238
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TYPES OF PARALLELISM

= Parallelism:
= Goal: Perform multiple operations at the same time
to achieve a speed-up

= Thread-level parallelism (TLP)
=Control flow architecture (Von Neumann architecture)
= Data-level parallelism
=Data flow architecture
= Bit-level parallelism
= |nstruction-level parallelism (ILP)

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ October2, 2025 School of Engineering and Technology, University of Washington - Tacoma 1239

39

TLP - PRIMES EXAMPLE

= Multi-threaded prime number generation
= Compute-bound workload

= Can use variable # of threads

= Generates n prime numbers

= Runtimes: 100,000 primes
= 1 thread: 59.15 s

= 2 threads: 30.957 s

= 4 threads: 15.539 s

= 8 threads: 12.112 s

= Observe TLP with top

time ./primes8 30000 >/dev/null

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025]

‘ October2, 2025 School of Engineering and Technology, University of Washington - Tacoma
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THREAD LEVEL PARALLELISM (TLP)

= Number of threads an application runs at any one time
= Varies throughout program execution

= As a metric:

= Minlmum: 1 thread

= Can measure average, maximum (peak)

= QUESTION: What are the consequences of average (TLP)

for scheduling an application to run on a computer with a
flxed number of CPU cores and hyperthreads?

= Let’s say there are 4 cores, or 8 hyper-threads...

= Key to avoiding waste of computing resources
is knowing your application’s TLP...

‘ RS ‘ TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025] o

School of Engineering and Technology, University of Washington - Tacoma

40

CONTROL-FLOW ARCHITECTURE

= Typical architecture used today - w/ multiple threads
= Each thread runs a sequential program sequence

= By John von Neumann (1945), also called the Von
Neumann architecture

= Dominant computer system
architecture

= Program counter (PC) determines
next instruction to load
into instruction register

= Program execution is
sequential

Central Processing Unit

Memory Unit

‘ October2, 2025 TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025] a2

School of Engineering and Technology, University of Washington - Tacoma
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TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

DATA-LEVEL PARALLELISM DATA FLOW ARCHITECTURE
= Partition data into big chunks, run separate copies = Alternate architecture used by network routers, digital
of the program on them with little or no signal processors, special purpose systems

communication = Operations performed when input (data) becomes

i available
=Problems are considered to be
emba"assingm parallel = Envisioned to provide much higher parallelism

= Multiple problems has prevented wide-scale adoption

- .
ol ety il bl o el e el = Efficiently broadcasting data tokens in a massively

= Little or no effort needed to separate problem e eElem ) ) )
into a number of parallel tasks L] ’E;frl;::a;tls);il‘:;atchmg instruction tokens in a massively
= MapReduce programming model is an example = Building content addressable memory large enough to
hold all of the dependencies of a real program
[ ommernaons | s [ o [ el S e T
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DATA FLOW ARCHITECTURE - 2

= Architecture not as popular as control-flow

= Modern CPUs emulate data flow architecture for dynamic
instruction scheduling since the 1990s

= Out-of-order execution - reduces CPU idle time by not blocking
for instructions requiring data by defining execution windows
= Execution windows: identify instructions that can be run by
data dependency
= Instructions are completed in data dependency order within
execution window
Execution window size typically 32 to 200 instructions

Utility of data flow architectures has been
much less than envisloned

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
October 2, 2025 School of Engineering and Technology, i ington - Tacoma

45 46

BIT-LEVEL PARALLELISM INSTRUCTION-LEVEL PARALLELISM (ILP)

= Computations on large words (e.g. 64-bit integer) are = CPU pipelining architectures enable ILP
performed as a single instruction

= Fewer instructions are required on 64-bit CPUs to process
larger operands (A+B) providing dramatic performance
improvements

= Processors have evolved: 4-bit, 8-bit, 16-bit, 32-bit, 64-bit ® Basic RISC CPU - Each instruction has 5 pipeline stages:

= |F - instruction fetch

= CPUs have multi-stage processing pipelines

= Pipelining: split instructions into sequence of steps that
can execute concurrently on different CPU circuitry

QUESTION: How many instructions are required to add two " "
T AR T (T DI RGN GRS

= EX - instruction execution
= 64-bit MAX int = 9,223,372,036,854,775,807 (signed)
= 16-bit MAX int = 32,767 (signed)

= Intel 8088 - limited to 16-bit registers

= MEM - memory access
= WB - write back

‘ October2, 2025 TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025]

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma 2 ‘ GEEERATD
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CPU PIPELINING INSTRUCTION LEVEL PARALLELISM - 2

Clock Cycla = RISC CPU:

= After 5 clock cycles, all 5 stages of an instruction are
loaded

= Starting with 6" clock cycle, one full instruction
completes each cycle

waiting
Instructions

u = The CPU performs 5 tasks per clock cycle!

§ Fetch, decode, execute, memory read, memory write back
= Pentium 4 (CISC CPU) - processing pipeline w/ 35 stages!

Complated

Instructions

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025] TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ October2i2025) School of Engineering and Technology, University of Washington - Tacoma 1249 October2i2028 School of Engineering and Technology, University of Washington - Tacoma 1250
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MICHAEL FLYNN’S COMPUTER

SR E L ARCHITECTURE TAXONOMY
= Cloud Computing: How did we get here? = Michael Flynn’s proposed taxonomy of computer

= Parallel and distributed systems architectures based on concurrent instructions and
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2" edition) number of data streams (1966)

= Data, thread-level, task-level parallelism = SISD (Single Instructlon Single Data)

= Parallel architectures = SIMD (Single Instruction, Multiple Data)

| =SIMD architectures, vector processing, multimedia = MIMD (Multiple Instructions, Multiple Data)

extensions

= L[ESS COMMON: MISD (Multiple Instructions, Single Data)

= Pipeline architectures: functional units perform different
operations on the same data
= For fault tolerance, may want to execute same instructions

= Graphics processing units
= Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems

= Modularity redundantly to detect and mask errors - for task replication
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ CEEin 2D School of Engineering and Technology, University of Washington - Tacoma st ‘ October2, 2025 School of Engineering and Technology, University of Washington - Tacoma o
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(SIMD): VECTOR PROCESSING

FLYNN’'S TAXONOMY ADVANTAGES

= SISD (Single Instruction Single Data) = Exploit data-parallelism: vector operations enable speedups

Scalar architecture with one processor/core. . . .
= Vectors architecture provide vector registers that can store

= Individual cores of modern multicore processors are entire matrices into a CPU register

“SISD”
= SIMD CPU extension (e.g. MMX) add support for vector

= SIMD (Single Instruction, Multiple Data) operations on traditional CPUs

Supports vector processing

= When SIMD instructions are issued, operations on
individual vector components are carried out concurrently

= Two 64-element vectors can be added in parallel

= Vector operations reduce total number of instructions for
large vector operations

= Provides higher potential speedup vs. MIMD architecture

= Vector processing instructions added to modern CPUs = Developers can think sequentially; not worry about
= Example: Intel MMX (multimedia) instructions parallelism
TCSS462/562: (Softy Engir ing for) Cloud Cor tting [Fall 2025] TCSS462/562: (Software Engi ing for) Cloud Cor iting [Fall 2025]
[ ouobernaoss [T ot o) cot compane o120 [ ommernams I e ot b as
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FLYNN’S TAXONOMY - 2 ARITHMETIC INTENSITY
= MIMD (Multiple Instructlons, Multiple Data) - system with = Arlthmetlc Intenslity: Ratio of work (W) to I= w
several processors and/or cores that function asynchronously memory traffic r/w (Q) Q
and independently Example: # of floating-point ops per byte of data read
= At any time, different processors/cores may execute different = Characterizes application scalability with SIMD support
instructions on different data = SIMD can perform many fast matrix operations in parallel

= Multi-core CPUs are MIMD
= Processors share memory via interconnection networks

= High arithmetic Intensity:
Programs with dense matrix operations scale up nicely

= Hypercube, 2D torus, 3D torus, omega network, other topologies (many calcs vs memory RW, supports lots of parallelism)

= MIMD systems have different methods of sharing memory

Uniform Memory Access (UMA) = Low arlthme_tlc Intensity: _ _
Cache Only Memory Access (COMA) Programs with sparse matrix operations do not scale well

with problem size

Non-Unif M A NUMA
EIBIIENGD L (s ) (memory RW becomes bottleneck, not enough ops!)

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025] TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ October2i2025) School of Engineering and Technology, University of Washington - Tacoma 1235 October2i2028 School of Engineering and Technology, University of Washington - Tacoma 1256
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ROOFLINE MODEL OBJECTIVES

= When program reaches a given arithmetic intensity = Cloud computing: How did we get here?

performance of code running on CPU hits a “roof” P Ilel and distributed "
.
= CPU performance bottleneck changes from: araitelian Istributed systems

memory bandwidth (left) > floating point performance (right) (Marinescu Ch. 2 - 1%t edition, Ch. 4 - 2" edition)
= Data, thread-level, task-level parallelism
enimbatnee K€Y take-aways: = Parallel architectures

When a program’s has low

Arithmetic Intensity, memory =SIMD architectures, vector processing, multimedia

Performance

ot bandwidth limits performance.. extensions
| = Graphics processing units |
With high Arithmetic intensity, = Speed-up, Amdahl's Law, Scaled Speedup

the system has peak parallel = Properties of distributed systems

performance... i
— . .
Arkthmetic ntensity > performance is limited by?? Modularity
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ October2, 2025 School of Engineering and Technology, University of Washington - Tacoma zs? ‘ October2, 2025 School of Engineering and Technology, University of Washington - Tacoma 1258
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- - GRAPHICAL PROCESSING UNITS (GPUs)
oyl -
ALY ALy -
-
_ =) = GPU provides multiple SIMD processors
-
- = Typically 7 to 15 SIMD processors each
* Low compute density * High compute density = 32,768 total registers, divided into 16 lanes
* Complex control logic * High Computations per Memory Access (2048 registers each)
* Large caches (L1$/L28, etc.) *  Built for parallel operations .
+ Oplimized for serial operations . allel execution units (ALUS = GPU programming model:
v anits (ALUS) : ve bt kmcim Cne ol paral el single instruction, multiple thread
Highe ads * Deep pipelines (hundreds of stages) ) ) i
Shallow pipelines (<30 stages) * High Throughput = Programmed using CUDA- C like programming
* Low Latency Tolerance * High Latency Tolerance language by NVIDIA for GPUs
* Newer CPUs have more parallelism *  Newer GPUs: N a -
£ o Gater i sing mors CPU-ike) = CUDA threads - single thread associated with each
£ data element (e.g. vector or matrix)
o - " Thousands of threads run concurrently
Coes D = il e gt b e o [ ouobernans [Tt Cevare b ) cow conpune P20
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OBJECTIVES PARALLEL COMPUTING
= Cloud Computing: How did we get here? = Parallel hardware and software systems allow:
= Parallel and distributed systems = Solve problems demanding resources not available on

single system.

(Marinescu Ch. 2 - 15t edition, Ch. 4 - 2" edition)
= Reduce time required to obtain solution

= Data, thread-level, task-level parallelism

= Parallel architectures i
=The speed-up (S) measures effectiveness of

=SIMD architectures, vector processing, multimedia h )
parallelization:

extensions

= Graphics processing units S(N) = T(1) / T(N)

L] = ' . . . .
|__Speed-up, Amdahl's Law, Scaled Speedup I T(1) > execution time of total sequential computation

= Properties of distributed systems T(N) > execution time for performing N parallel

= Modularity computations in parallel

TCSS462/562: (Softy Engir ing for) Cloud Cc ing [Fall 2025] TCSS462/562: (Softy Engil ring for) Cloud Cor ing [Fall 2025)
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SPEED-UP EXAMPLE AMDAHL'S LAW

= Consider embarrassingly parallel image processing = Amdahl’s law is used to estimate the speed-up of a job
= Eight images (multiple data) using parallel computing

Apply image transformation (greyscale) in parallel
8-core CPU, 16 hyper threads

1. Divide job into two parts
2. Part A that will still be sequential
3. Part B that will be sped-up with parallel computing

Sequential processing: perform transformations one at a time
using a single program thread

- ke, & Sl ceuliy W) = 20 gosemet = Portion of computation which cannot be parallelized will
= Parallel processing determine (i.e. limit) the overall speedup

= 8 images, 3 seconds each: T(N) = 3 seconds = Amdahl’s law assumes jobs are of a fixed size
= Speedup: S(N) = 24 / 3 = 8x speedup = Also, Amdahl’s assumes no overhead for distributing the
= Called “perfect scallng” work, and a perfectly even work distribution
= Must consider data transfer and computation setup time

TCSS462/562: (Softy Engir ing for) Cloud Cor ing [Fall 2025) TCSS462/562: (Software Engir ing for) Cloud Cor [Fall 2025]
\ Odtober2, 2025 | et Technology, Universy of Washingion - Tocoma ‘ October2, 2025 School of Engireeing and Technology, Unversity of Washagton - Tacoma s

AMDAHL'S LAW AMDAHL'S LAW EXAMPLE

o independentparts A B
1 = Program with two independent parts;|
S 0 —— = Part A is 75% of the execution time
(11— Jf] - 4\[ = Part B is 25% of the execution time uake B Sctaster
: = Part B is made 5 times faster with .
parallel computing

* S = theoretical speedup of the whole task = Estimate the percent improvement of task execution
= f= fraction of work that is parallel (ex. 25% or 0.25) = Original Part A is 3 seconds, Part B is 1 second

= N= proposed speed up of the parallel part (ex.5 times speedup)
= N=5 (speedup of part B)
= f=.25 (only 25% of the whole job (A+B) will be sped-up)

" % improvement = S=1/ ((1-f) + f/S)

of task execution =100*(1-(1/9))
= S=1/((.75) + .25/5)
= Using Amdahl’s law, what is th i possible speed-up? Sk
sing Amdahl’s law, what is the maximum possible speed-up? X
= % improvement = 100 * (1 - 1/1.25) = 20%
TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025] TCS$462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ CEETD School of Engineering and Technology, University of Washington - Tacoma e ‘ CEHERETD School of Engineering and Technology, University of Washington - Tacoma 2
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GUSTAFSON'S LAW GUSTAFSON'S LAW
= Calculates the scaled speed-up using “N” processors = Calculates the scaled speed-up using “N” processors
S(N) =N+ (1-N)« S(N) =N+ (1-N)«

N: Number of processors N: Number of processors

o: fraction of program run time which can’t be parallelized a: fraction of program run time which can’t be parallelized
(e.g. must run sequentially) (e.g. must run sequentially)

= Can be used to estimate runtime of parallel portion of = Can be used to estimate runtime of parallel portion of
program program

= Where a =6 / (n + o)
= Where o= sequential time, ©= =parallel time
= Qur Amdahl’s example: 6= 3s, © =1s, a =.75

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] 67 ‘ October 2, 2025 TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025] s

‘ s, 2D School of Engineering and Technology, University of Washington - Tacoma School of Engineering and Technology, University of Washington - Tacoma
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GUSTAFSON'S LAW GUSTAFSON’S EXAMPLE
= Calculates the scaled speed-up using “N” processors = QUESTION:
_ ; What is the maximum theoretical speed-up on a 2-core CPU ?
S0 =W @@=t S(N) =N+ (1-N) «
N: Number of processors N=2, a=.75
o: fraction of program run time which can’t be parallelized :(N) _=?2 +(1-2).75
(e.g. must run sequentially) (N) =72
= Example: = What is the maximum theoretical speed-up on a 16-care CPU?
Consider a program that is embarrassingly parallel, S(N) =N+ (1-N)«
but 75% cannot be parallelized. a=.75 N=16, a=.75
QUESTION: If deploying the job on a 2-core CPU, what S(N) =16 + (1 - 16) .75
scaled speedup Is possible assuming the use of two S(N)=2?
processes that run In parallel?
‘ October 2, 2025 ;c:sa‘szﬁsz: (Soflwarejr\Tgin:zrilng folr]) Cloud Cor;\;nlnir:'g [F:\I ZOTZS] 1269 ‘ October 2, 2025 15:_:54:52‘5:1: [Suftware;nTgin:erilng lolrJ] Cloud!CoTs‘llml:'g [F'al\ Nr25] w70
d chool of Engineering and Technology, University of Washington - Tacoma d 0ol of Engineering and Technology, University of Washington - Tacoma
69 70
GUSTAFSON’S EXAMPLE MOORE’S LAW

R = Transistors on a chip doubles approximately every 1.5 years
What is the maximum theoretical speed-up on a 2-core CPU ? = CPUs now have billions of transistors

N) =N+ (1-N
z(_z) o ( & = Power dissipation issues at faster clock rates leads to heat
INOE  For 2 CPUs, speed up is 1.25x LCLUEICIELL S
S(N) = = Transition from: increasing clock rates - to adding CPU cores
For 16 CPUs, speed up is 4.75x = Symmetric core processor -multi-core CPU, all cores have the
= What is tiTeemme i i & CPU? same computational resources and speed
S(N) =N+ (1-N)«a = Asymmetric core processor - on a multi-core CPU, some cores
N=16, a=.75 have more resources and speed
S(N) =16 + (1 - 16) .75 = Dynamlc core processor - processing resources and speed can
S(N) =2 be dynamically configured among cores
= Observation: asymmetric processors offer a higher speedup
[ onomrnaons | e b e e ot [ onovernams | Gl o e o S e
71 72
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OBJECTIVES DISTRIBUTED SYSTEMS

= Cloud Computing: How did we get here? = Collection of autonomous computers, connected through a
network with distribution software called “middleware” that
enables coordination of activities and sharing of resources

= Key characterlstlcs:

= Parallel and distributed systems
(Marinescu Ch. 2 - 15t edition, Ch. 4 - 2" edition)

" Data, thread-level, task-level parallelism = Users perceive system as a single, integrated computing
= Parallel architectures facility.
=SIMD architectures, vector processing, multimedia = Compute nodes are autonomous
extensions = Scheduling, resource management, and security implemented

= Graphics processing units by e\{ery no-de )
= Speed-up, Amdahl's Law, Scaled Speedup Multiple points of control and failure

" P = Nodes may not be accessible at all times
| =Properties of distributed systems | ) o
Modularit = System can be scaled by adding additional nodes
.
odufarity Availability at low levels of HW/software/network reliability

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025] TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025]
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TRANSPARENCY PROPERTIES OF

DISTRIBUTED SYSTEMS - 2 DISTRIBUTED SYSTEMS

Key non-functional attributes = Access transparency: local and remote objects accessed using
identical operations

= Location transparency: objects accessed w/o knowledge of
their location.

= Concurrency transparency: several processes run concurrently

= Known as “ilities” in software engineering

Availability - 24/7 access?

= Reliability - Fault tolerance using shared objects w/o interference among them

= Accessibility - reachable? = Replicatlon transparency: multiple instances of objects are
used to increase reliability

= Usability - user friendly - users are unaware if and how the system is replicated

Fallure transparency: concealment of faults

Migratlon transparency: objects are moved w/o affecting
operations performed on them

Understandability - can under
Scalability - responds to variable demand

® Extensibility - can be easily modified, extended = Performance transparency: system can be reconfigured based
= Maintainability - can be easily fixed on load and quality of service requirements
= Consistency - data is replicated correctly in timely manner ® Scallng transparency: system and applications can scale w/o
change in system structure and w/o affecting applications
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ October2, 2025 School of Engineering and Technology; Uiversty of Washington - Tocoma 275 ‘ October2, 2025 School of Enginesring and Technology, Universty of Washingion - Tacoma 1276
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OBJECTIVES TYPES OF MODULARITY
= Cloud Computing: How did we get here? = Soft modularity: TRADITIONAL
= Parallel and distributed systems = Divide a program into modules (classes) that call each other
(Marinescu Ch. 2 - 1%t edition, Ch. 4 - 2" edition) and communicate with shared-memory

. = A procedure calling convention is used (or method invocation)
= Data, thread-level, task-level parallelism

= Parallel architectures = Enforced modularlty: CLOUD COMPUTING
= SIMD architectures, vector processing, multimedia = Program is divided into modules that communicate only
extensions through message passing

= Graphics processing units = The ubiquitous client-server paradigm

= Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems
| = Modularity |

= Clients and servers are independent decoupled modules
= System is more robust if servers are stateless

= May be scaled and deployed separately

= May also FAIL separately!

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025] TC55462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ Gl School of Engineering and Technology, University of Washington - Tacoma 27 CEHERETD School of Engineering and Technology, University of Washington - Tacoma o
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CLOUD COMPUTING - HOW DID WE GET HERE?

SUMMARY OF KEY POINTS

= Multi-core CPU technology and hyper-threading

= What is a
= Heterogeneous system?
= Homogeneous system?
= Autonomous or self-organizing system?

= FIine gralned vs. coarse gralned parallellsm

= Parallel message passing code is easier to debug than
shared memory (e.g. p-threads)

= Know your application’s max/avg Thread Level
Parallelism (TLP)

= Data-level parallelism: Map-Reduce, (SIMD) Single
Instruction Multiple Data, Vector processing & GPUs

TCS5462/562: (Software Engineering for) Cloud Computing (Fall 2025] e
School of Engineering and Technology, University of Washington - Tacoma

l October2, 2025

CLOUD COMPUTING - HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 2

= Blt-level parallellsm
= |nstruction-level parallelism (CPU pipelining)
= Flynn’s taxonomy: computer system architecture classification
= SISD - Single Instruction, Single Data (modern core of a CPU)
= SIMD - Single Instruction, Multiple Data (Data parallelism)
= MIMD - Multiple Instruction, Multiple Data
= MISD is RARE; application for fault tolerance...
= Arithmetlc Intenslty: ratio of calculations vs memory RW
= Roofline model:
Memory bottleneck with low arithmetic intensity
= GPUs: ideal for programs with high arithmetic intensity
= SIMD and Vector processing supported by many large registers

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] 280
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CLOUD COMPUTING - HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 3

= Speed-up (S)

S(N) =T(1) / T(N)
= Amdahl’s law:

S=1/ ((1-f) + f/N),s=latency, f=parallel fraction, N=speed-up
= o = percent of program that must be sequential
= Scaled speedup with N processes:

S(N) =N - a( N-1)
= Moore’s Law
= Symmetric core, Asymmetric core, Dynamic core CPU
= Distributed Systems Non-function quality attributes
= Distributed Systems - Types of Transparency
= Types of modularity- Soft, Enforced

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] 281
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QUESTIONS

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2
School of Engineering and Technology, University of Washington -

October 2, 2025
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