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 Daily Feedback Quiz in Canvas – Take After Each Class

 Extra Credit 

for completing
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 Please classify your perspective on material covered in today’s 

class (53 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average –  6.16 (  -  f irst day f2023 - 6.79)  

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average –  5.55 ( -  f irst day f2023  -  5.66)

 Response rates:

 TCSS 462: 37/41 – 90.2% (enrol lment increase from Thurs 41 →  44)

 TCSS 562: 16/20 – 80.0% (enrol lment increase from Thurs 20 →  21)

October 1, 2024
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School of Engineering and Technology, University of Washington - Tacoma
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MATERIAL / PACE
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 If we didn’t have enough time in class to go over all of the 

slides, should we expect to review them during the next 

lecture, or do it on our own?

▪ In general, NO. We will continue coverage in the next 

class.

▪ Slides are often posted in-advance.

October 1, 2024
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FEEDBACK FROM 9/26

 I ’m pretty unfamiliar with the term “serverless” computing, is 
that synonymous with cloud computing, or is it a distinct 
paradigm? 

▪ Serverless computing is an attribute of cloud services

▪ Serverless cloud services do not require the user to provision 
infrastructure (i.e. virtual machines or servers)

▪ The paradigm of serverless cloud services did not become 
predominant until ~2016-2018

▪ Many services, such as Amazon RDS (Relational Database Service) 
are ‘serverful’. Using these services requires the user to provision an 
always-on device that sits idle and bills the customer for idle time

▪ Popular services such as Amazon DocumentDB (aka MongoDB), and 
ElasticCache (aka redis) can have fixed deployments where the user 
must specific a ‘VM’ size (# of cores, ram) 

▪ Serverful services may be limited to vertical scaling

October 1, 2024
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 Will we be going over SaaS (Sof tware -as-a-Service) in this 
course?

▪ What are examples of Software-as-a-Service ?

▪ Software-as-a-Service as software applications hosted as-a-service in 
the cloud

▪ Can you think of some you use everyday?

▪ MS Outlook

▪ Office 365

▪ Google Docs

▪ UW Workday

▪ GitHub

▪ A key feature of SaaS is customized configurations and deployments 
to support large scale users, i.e. University of Washington

▪ SaaS is cloud-provider hosted web applications where the user pays 
annual licensing fees for upkeep, etc.

October 1, 2024
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FEEDBACK - 3

 If  the cloud provider (e.g. Amazon) puts you on a slower cloud 

server, do you just pay more for less performance given it 

takes more overall time?

▪ YES – this is ‘double whammy’ of cloud computing

▪ ‘Double Whammy’ was made famous by a gameshow 

called ‘Press your Luck’

▪ A ‘double whammy’ is a twofold blow or setback

▪ INFLATION: when the price of a good increases, so does the sales tax 

▪ With cloud computing, when the cloud service bills based on time, 

then slow performance due to cloud provider hardware (type and 

state), results in a higher customer bill

▪ As customers, how can we avoid slow(er) servers ?

October 1, 2024
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 Please complete the ONLINE demographics survey:

We have received 19 of 65 responses so far.
Waiting on 46 responses.

Class Of fice hours are set based on demographics Survey

 https://forms.gle/6ER7PzfP521vdxYW9 

 Random drawing based on survey participants for two $20 Amazon 
or Starbucks gift cards –  October 8 th in class

 Linked from course webpage in Canvas:

 http://faculty.washington.edu/wlloyd/courses/tcss562/
announcements.html 

September 28, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L1.12

DEMOGRAPHICS SURVEY
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 Please complete the AWS Cloud Credits survey

 Please complete as part of Tutorial 0

 https://forms.gle/fmKkLZbxZECbAay16 


 Linked from course webpage in Canvas:

 http://faculty.washington.edu/wlloyd/courses/tcss562/

announcements.html 

September 28, 2023
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AWS CLOUD CREDITS SURVEY
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 CLOUD CREDITS will be dispersed starting Friday October 4 th

 AWS bills monthly, with charges applied to the credit card (or 

credit balance) on the last day of the month ,  for the month’s 

charges

 END OF MONTH:– **CHECK YOUR CLOUD BILL**  

at least a few days before the end of the month

 Billing Alarms – can be configured to generate email when 

there is a charge – can generate email if charges exceed 

$0.01

▪ With cloud credits, there should be no monthly charges

October 1, 2024
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma
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AWS CREDITS & BILLING

 Questions from Course Introduction

 Daily Feedback Surveys

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 0 - Getting Started with AWS

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?

Chapter 4 Marinescu 2nd edition:

Introduction to parallel and distributed systems 
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Cloud Computing: How did we get here?

▪Parallel and distributed systems 

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

▪ Data, thread-level, task-level parallelism

▪ Parallel architectures

▪ SIMD architectures, vector processing, multimedia 

extensions

▪ Graphics processing units

▪ Speed-up, Amdahl's Law, Scaled Speedup

▪ Properties of distributed systems 

▪Modularity 

October 1, 2024
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma
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OBJECTIVES

 General interest in parallel computing

▪Moore’s Law - # of transistors doubles every 18 months

▪ Post 2004: heat dissipation challenges:

can no longer easily increase cloud speed

▪ Overclocking to 7GHz takes 

more than just liquid nitrogen:

▪ https://tinyurl.com/y93s2yz2

Solutions:

▪ Vary CPU clock speed

▪ Add CPU cores

▪Multi-core technology 

October 1, 2024
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma
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CLOUD COMPUTING: 

HOW DID WE GET HERE?
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 Modern CPUs provide multiple instruction pipelines,
supporting multiple execution threads, usually 2
to feed instructions to a single CPU core…

 Two hyper-threads 
are not equivalent 
to (2) CPU cores

 i7-4770 and i5-4760
same CPU, with and
without HTT

 Example: →
hyperthreads add
+32.9% 

October 1, 2024
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HYPER THREADING
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 Epyc Rome CPUs

 Announced August 2019

 EPYC 7H12 requires liquid cooling

October 1, 2024
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AMD’S 64-CORE 7NM CPUS

 Epyc Rome CPUs

 Announced August 2019

 EPYC 7H12 requires liquid cooling
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AMD’S 64-CORE <14NM CPUS

AMD EPYC 9654/9654P/9684X/9R14 (AWS OEM):
• June 2023: 96 cores, 192 hyper-threads CPUs

• Mixes 4nm:APU (combines CPUs+GPU), 5nm:L3 cache 
(8 CPU-chiplet), and 6nm:I/O dies, 2.25 to 3.7 burst 

GHz, up to 400 watts
• $10,625 to $14,756
AMD EPYC 9754: 128 cores, 256 hyperthreads !

• 2.25 to 3.1 burst GHz, 360 watts
• $11,900

AMD EPYC 9005: 192 cores, 384 threads, 3nm (in dev)

AMD EPYC 9654/9654P/9684X/9R14 (AWS OEM):
• June 2023: 96 cores, 192 hyper-threads CPUs

• Mixes 4nm:APU (combines CPUs+GPU), 5nm:L3 cache 
(8 CPU-chiplet), and 6nm:I/O dies, 2.25 to 3.7 burst 

GHz, up to 400 watts
• $10,625 to $14,756
AMD EPYC 9754: 128 cores, 256 hyperthreads !

• 2.25 to 3.1 burst GHz, 360 watts
• $11,900

AMD EPYC 9005: 192 cores, 384 threads, 3nm (in dev)
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 Cloud server virtual CPUs/host (x86_64)

 Growth since 2006 - Amazon Compute Cloud (EC2)

 1st generation Intel: m1 – 8 vCPUs / host  (Aug 2006)

 2nd generation Intel: m2 – 16 vCPUs / host (Oct 2009)

 3 rd generation Intel: m3  - 32 vCPUs / host (Oct 2012)

 4 th generation Intel: m4 – 48 vCPUs / host (June 2015)

 5 th generation Intel: m5 – 96 vCPUs / host (Nov 2017)

 6 th generation Intel: m6i – 128 vCPUs / host (Aug 2021)

 6 th generation AMD: m6a – 192 vCPUs / host  (Nov 2021)

 7 th generation Intel: m7i – 192 vCPUs / host (Aug 2023)

 7 th generation AMD: m7a – 192 vCPUs / host (Aug 2023)

October 1, 2024
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X86_64 HOST SERVER VCPUS – AMAZON EC2

INFRASTRUCTURE-AS-A-SERVICE CLOUD

 Cloud server virtual CPUs/host (ARM64)

 Launched in 2018 on the Amazon Compute Cloud (EC2)

 64-bit ARM CPUs designed by AWS subsidiary Annapurna Labs

 Lower energy consumption compared to x86-64

 Fixed (non-variable) clock rates, No hyperthreading

 Each new release – performance boost of ~ 30%

 Cost savings of ~20% less for ARM resources on AWS

 1st generation Graviton: a1– 16 vCPUs / host  (Nov 2018)

 2nd generation Graviton2: m6g– 64 vCPUs/host (Dec 2019)

▪ AWS Lambda limited to Graviton2

 3 rd generation Graviton3: m7g- 64 vCPUs/host (May 2022)

 4 th generation Graviton4: m8g– 192 vCPUs/host (Sept 2024)

October 1, 2024
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ARM64 HOST SERVER VCPUS – AMAZON EC2

INFRASTRUCTURE-AS-A-SERVICE CLOUD
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 To make computing faster, we must go “parallel”

 Difficult to expose parallelism in scientific 

applications

 Not every problem solution has a parallel algorithm

▪ Chicken and egg problem…

 Many commercial efforts promoting pure parallel 

programming efforts have failed

 Enterprise computing world has been skeptical and 

less involved in parallel programming

October 1, 2024
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]
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CLOUD COMPUTING:

HOW DID WE GET HERE? - 2

Cloud computing provides access to “infinite” 

scalable compute infrastructure on demand

 Infrastructure availability is key to exploiting 

parallelism

Cloud applications 

▪Based on client-server paradigm

▪Thin clients leverage compute hosted on the cloud

▪Applications run many web service instances

▪Employ load balancing

October 1, 2024
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CLOUD COMPUTING:

HOW DID WE GET HERE? - 3

27

28



TCSS 462: Cloud Computing  
TCSS 562: Software Engineering for Cloud Computing  
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L2.15

Big Data requires massive amounts of compute 

resources

MAP – REDUCE

▪Single instruction, multiple data (SIMD)

▪Exploit data level parallelism

Bioinformatics example

October 1, 2024
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CLOUD COMPUTING:

HOW DID WE GET HERE? - 4

SMITH WATERMAN USE CASE

Applies dynamic programming to find best local 

alignment of two protein sequences

▪ Embarrassingly parallel, each task can run in isolation

▪ Use case for GPU acceleration 

AWS Lambda Serverless Computing Use Case:

Goal: Pair-wise comparison of all unique human 

protein sequences (20,336)

▪ Python client as scheduler

▪ C Striped Smith-Waterman (SSW) execution engine

From: Zhao M, Lee WP, Garrison EP, Marth GT: SSW library: an SIMD Smith-

Waterman C/C++ library for use in genomic applications. 

PLoS One 2013, 8:e82138

October 1, 2024
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma
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SMITH WATERMAN RUNTIME

 Laptop server and client (2-core, 4-HT): 8.7 hours

 AWS Lambda FaaS, laptop as client: 2.2 minutes

▪ Partitions 20,336 sequences into 41 sets

▪ Execution cost: ~ 82¢  (~237x speed-up)

 AWS Lambda server, EC2 instance as client: 1.28 
minutes

▪ Execution cost: ~ 87¢  (~408x speed-up)

 Hardware

▪ Laptop client: Intel i5-7200U 2.5 GHz :4 HT, 2 CPU

▪ Cloud client: EC2 Virtual Machine - m5.24xlarge: 96 vCPUs

▪ Cloud server: Lambda ~1000 Intel E5-2666v3 2.9GHz CPUs

October 1, 2024
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma
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Compute clouds are large-scale distributed 

systems

▪Heterogeneous systems

▪Homogeneous systems

▪Autonomous

▪Self organizing 

October 1, 2024
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CLOUD COMPUTING:

HOW DID WE GET HERE? - 3
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Cloud Computing: How did we get here?

▪Parallel and distributed systems 

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

▪ Data, thread-level, task-level parallelism

▪ Parallel architectures

▪ SIMD architectures, vector processing, multimedia 

extensions

▪ Graphics processing units

▪ Speed-up, Amdahl's Law, Scaled Speedup

▪ Properties of distributed systems 

▪Modularity 

October 1, 2024
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OBJECTIVES

 Discovering parallelism and development of parallel 

algorithms requires considerable effort

 Example: numerical analysis problems, such as solving large 

systems of linear equations or solving systems of Partial 

Differential Equations (PDEs), require algorithms based on 

domain decomposition methods. 

 How can problems be split into independent chunks?

 Fine-grained parallelism

▪ Only small bits of code can run in parallel without coordination 

▪ Communication is required to synchronize state across nodes

 Coarse-grained parallelism

▪ Large blocks of code can run without coordination

October 1, 2024
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PARALLELISM
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 Coordination of nodes

 Requires message passing or shared memory

 Debugging parallel message passing  code is easier 
than parallel shared memory code

 Message passing : all of the interactions are clear

▪ Coordination via specific programming API (MPI)

 Shared memory : interactions can be implicit – must 
read the code!!

 Processing speed is orders of magnitude faster than 
communication speed (CPU > memory bus speed)

 Avoiding coordination achieves the best speed-up

October 1, 2024
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PARALLELISM - 2

Parallelism: 

▪Goal: Perform multiple operations at the same time 
to achieve a speed-up

 Thread-level parallelism (TLP)

▪Control flow architecture (Von Neumann architecture)

Data-level parallelism

▪Data flow architecture

Bit-level parallelism

 Instruction-level parallelism (ILP)

October 1, 2024
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.36

TYPES OF PARALLELISM
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 Number of threads an application runs at any one time

 Varies throughout program execution

 As a metric:

 Minimum: 1 thread

 Can measure average, maximum (peak)

 QUESTION: What are the consequences of average (TLP) 
for scheduling an application to run on a computer with a 
fixed number of CPU cores and hyperthreads? 

 Let’s say there are 4 cores, or 8 hyper -threads…

Key to avoiding waste of computing resources 
is knowing your application’s TLP…

October 1, 2024
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]
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THREAD LEVEL PARALLELISM (TLP)

 Multi-threaded prime number generation

 Compute-bound workload 

 Can use variable # of threads

 Generates n prime numbers

 Runtimes: 100,000 primes

 1 thread: 59.15 s 

 2 threads: 30.957 s

 4 threads: 15.539 s

 8 threads: 12.112 s

 Observe TLP with top

time ./primes8 30000 >/dev/null

October 1, 2024
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]
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TLP – PRIMES EXAMPLE
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 Typical architecture used today – w/ multiple threads

▪ Each thread runs a sequential program sequence

 By John von Neumann (1945), also called the Von 

Neumann architecture

 Dominant computer system 

architecture

 Program counter (PC) determines

next instruction to load

into instruction register

 Program execution is 

sequential

October 1, 2024
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CONTROL-FLOW ARCHITECTURE

Partition data into big chunks, run separate copies 
of the program on them with little or no 
communication

Problems are considered to be 
embarrassingly parallel

Also perfectly parallel or pleasingly parallel…

 Little or no effort needed to separate problem 
into a number of parallel tasks

MapReduce programming model is an example

October 1, 2024
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DATA-LEVEL PARALLELISM
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 Alternate architecture  used by network routers, digital 
signal processors, special purpose systems

 Operations performed when input (data) becomes 
available

 Envisioned to provide much higher parallelism

 Multiple problems has prevented wide-scale adoption

▪ Efficiently broadcasting data tokens in a massively 
parallel system

▪ Efficiently dispatching instruction tokens in a massively 
parallel system

▪ Building content addressable memory large enough to 
hold all of the dependencies of a real program

October 1, 2024
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]
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DATA FLOW ARCHITECTURE

 Architecture not as popular as control -flow

 Modern CPUs emulate data flow architecture for dynamic 

instruction scheduling since the 1990s

▪ Out-of-order execution – reduces CPU idle time by not blocking 

for instructions requiring data by defining execution windows

▪ Execution windows: identify instructions that can be run by 

data dependency  

▪ Instructions are completed in data dependency order within 

execution window

▪ Execution window size typically 32 to 200 instructions

Utility of data flow architectures has been

much less than envisioned

October 1, 2024
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DATA FLOW ARCHITECTURE - 2
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WE WILL RETURN AT 

4:50PM

 Computations on large words (e.g. 64-bit integer) are 

performed as a single instruction

 Fewer instructions are required on 64-bit CPUs to process 

larger operands (A+B) providing dramatic performance 

improvements

 Processors have evolved: 4-bit, 8-bit, 16-bit, 32-bit, 64-bit

QUESTION: How many instructions are required to add two 

64-bit numbers on a 16-bit CPU?  (Intel 8088)

 64-bit MAX int = 9,223,372,036,854,775,807 (signed)

 16-bit MAX int = 32,767 (signed)

 Intel 8088 – limited to 16-bit registers
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BIT-LEVEL PARALLELISM
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 CPU pipelining architectures enable ILP

 CPUs have multi -stage processing pipelines

 Pipelining: split instructions into sequence of steps that 

can execute concurrently on different CPU circuitry 

 Basic RISC CPU - Each instruction has 5 pipeline stages:

 IF – instruction fetch

 ID- instruction decode

 EX – instruction execution

 MEM – memory access

 WB – write back
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INSTRUCTION-LEVEL PARALLELISM (ILP)
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CPU PIPELINING
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 RISC CPU:

 After 5 clock cycles, all 5 stages of an instruction are 

loaded

 Starting with 6 th clock cycle, one full instruction 

completes each cycle

 The CPU performs 5 tasks per clock cycle!

Fetch, decode, execute, memory read, memory write back

 Pentium 4 (CISC CPU) – processing pipeline w/ 35 stages!
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INSTRUCTION LEVEL PARALLELISM - 2

Cloud Computing: How did we get here?

▪Parallel and distributed systems 

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

▪ Data, thread-level, task-level parallelism

▪ Parallel architectures

▪ SIMD architectures, vector processing, multimedia 

extensions

▪ Graphics processing units

▪ Speed-up, Amdahl's Law, Scaled Speedup

▪ Properties of distributed systems 

▪Modularity 
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Michael Flynn’s proposed taxonomy of computer 

architectures based on concurrent instructions and 

number of data streams (1966)

 SISD (Single Instruction Single Data)

 SIMD (Single Instruction, Multiple Data)

 MIMD (Multiple Instructions, Multiple Data)

 LESS COMMON : MISD (Multiple Instructions, Single Data)  

 Pipeline architectures: functional units perform different 

operations on the same data 

 For fault tolerance, may want to execute same instructions 

redundantly to detect and mask errors – for task replication
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MICHAEL FLYNN’S COMPUTER 

ARCHITECTURE TAXONOMY

 SISD (Single Instruction Single Data)

Scalar architecture with one processor/core.

▪ Individual cores of modern multicore processors are 

“SISD”

 SIMD (Single Instruction, Multiple Data)

Supports vector processing

▪When SIMD instructions are issued, operations on 

individual vector components are carried out concurrently

▪ Two 64-element vectors can be added in parallel

▪ Vector processing instructions added to modern CPUs

▪ Example: Intel MMX (multimedia) instructions
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49

50



TCSS 462: Cloud Computing  
TCSS 562: Software Engineering for Cloud Computing  
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L2.26

 Exploit data-parallelism: vector operations enable speedups

 Vectors architecture provide vector registers that can store 

entire matrices into a CPU register

 SIMD CPU extension (e.g. MMX) add support for vector 

operations on traditional CPUs

 Vector operations reduce total number of instructions for 

large vector operations 

 Provides higher potential speedup vs. MIMD architecture

 Developers can think sequentially; not worry about 

parallelism
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(SIMD): VECTOR PROCESSING

ADVANTAGES

 MIMD (Multiple Instructions, Multiple Data)  - system with 

several processors and/or cores that function asynchronously 

and independently

 At any time, dif ferent processors/cores may execute dif ferent 

instructions on dif ferent data

 Multi-core CPUs are MIMD

 Processors share memory via interconnection networks

▪ Hypercube, 2D torus, 3D torus, omega network, other topologies

 MIMD systems have dif ferent methods of sharing memory

▪ Uniform Memory Access (UMA)

▪ Cache Only Memory Access (COMA)

▪ Non-Uniform Memory Access (NUMA)
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FLYNN’S TAXONOMY - 2
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 Arithmetic intensity: Ratio of work (W) to 
    memory traffic r/w (Q) 
Example: # of floating-point ops per byte of data read

 Characterizes application scalability with SIMD support

▪ SIMD can perform many fast matrix operations in parallel 

 High arithmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

 Low arithmetic intensity:  
Programs with sparse matrix operations do not scale well 
with problem size
(memory RW becomes bottleneck, not enough ops!)
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ARITHMETIC INTENSITY

 When program reaches a given arithmetic intensity 

performance of code running on CPU hits a “roof” 

 CPU performance bottleneck changes from:

memory bandwidth (left) → f loating point performance (right)
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ROOFLINE MODEL

Key take-aways:
When a program’s has low 
Arithmetic Intensity, memory 
bandwidth limits performance..

With high Arithmetic intensity, 
the system has peak parallel 
performance…
→ performance is limited by??
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Cloud Computing: How did we get here?

▪Parallel and distributed systems 

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

▪ Data, thread-level, task-level parallelism

▪ Parallel architectures

▪ SIMD architectures, vector processing, multimedia 

extensions

▪ Graphics processing units

▪ Speed-up, Amdahl's Law, Scaled Speedup

▪ Properties of distributed systems 

▪Modularity 
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From: https://hypertec.com/blog/gpus-taking-over-cpus/ 
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 GPU provides multiple SIMD processors 

 Typically 7 to 15 SIMD processors each

 32,768 total registers, divided into 16 lanes

(2048 registers each)

 GPU programming model: 

single instruction, multiple thread

 Programmed using CUDA- C like programming 

language by NVIDIA for GPUs

 CUDA threads – single thread associated with each 

data element (e.g. vector or matrix)

 Thousands of threads run concurrently 
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GRAPHICAL PROCESSING UNITS (GPUS)

Cloud Computing: How did we get here?

▪Parallel and distributed systems 

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

▪ Data, thread-level, task-level parallelism

▪ Parallel architectures

▪ SIMD architectures, vector processing, multimedia 

extensions

▪ Graphics processing units

▪ Speed-up, Amdahl's Law, Scaled Speedup

▪ Properties of distributed systems 

▪Modularity 
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Parallel hardware and software systems allow: 

▪ Solve problems demanding resources not available on 
single system.

▪ Reduce time required to obtain solution

 The speed-up (S) measures effectiveness of 
parallelization:

                            S(N) = T(1) / T(N) 

T(1) → execution time of total sequential computation

T(N) → execution time for performing N parallel 
computations in parallel 
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PARALLEL COMPUTING

 Consider embarrassingly parallel image processing

 Eight images (multiple data)

 Apply image transformation (greyscale) in parallel

 8-core CPU, 16 hyper threads

 Sequential processing: perform transformations one at a time 
using a single program thread

▪ 8 images, 3 seconds each: T(1) = 24 seconds

 Parallel processing

▪ 8 images, 3 seconds each: T(N) = 3 seconds

 Speedup: S(N) = 24 / 3 = 8x speedup

 Called “perfect scaling”

 Must consider data transfer and computation setup time
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SPEED-UP EXAMPLE
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 Amdahl’s law is used to estimate the speed -up of a job 
using parallel computing

1. Divide job into two parts

2. Part A that will still be sequential

3. Part B that will be sped-up with parallel computing

 Portion of computation which cannot be parallelized will 
determine (i.e. limit) the overall speedup 

 Amdahl’s law assumes jobs are of a fixed size

 Also, Amdahl’s assumes no overhead for distributing the 
work, and a perfectly even work distribution
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AMDAHL’S LAW

 S = theoretical speedup of the whole task

 f= fraction of work that is parallel              (ex. 25% or 0.25)

 N= proposed speed up of the parallel part  ( ex. 5 t imes speedup )

 % improvement

of task execution     = 100 * (1 – (1 / S))

 Using Amdahl’s law, what is the maximum possible speed -up?
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AMDAHL’S LAW
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 Program with two independent parts:

▪ Part A is 75% of the execution time

▪ Part B is 25% of the execution time

 Part B is made 5 times faster with
parallel computing

 Estimate the percent improvement of task execution

 Original Part A is 3 seconds, Part B is 1 second

 N=5 (speedup of part B)

 f=.25 (only 25% of the whole job (A+B) will be sped -up)

 S=1 / ((1-f) + f/S)

 S=1 / ((.75) + .25/5)

 S=1.25

 % improvement = 100 * (1 – 1/1.25) = 20%
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AMDAHL’S LAW EXAMPLE

from Wikipedia

 Calculates the scaled speed-up using “N” processors

                             S(N)  = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized 

(e.g. must run sequentially)

 Can be used to estimate runtime of parallel portion of 

program
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 Calculates the scaled speed-up using “N” processors

                             S(N)  = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized 

(e.g. must run sequentially)

 Can be used to estimate runtime of parallel portion of 

program

 Where α =  / ( + )

 Where = sequential time,  =parallel time

 Our Amdahl’s example: = 3s,  =1s, α =.75
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GUSTAFSON'S LAW

 Calculates the scaled speed-up using “N” processors

                             S(N)  = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized 

(e.g. must run sequentially)

 Example:

Consider a program that is embarrassingly parallel, 

but 75% cannot be parallelized.  α=.75

QUESTION: If deploying the job on a 2 -core CPU, what 

scaled speedup is possible assuming the use of two 

processes that run in parallel?
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 QUESTION:  

What is the maximum theoretical speed-up on a 2-core CPU ?

S(N)  = N + (1 - N) α

N=2, α=.75

S(N)  = 2 + (1 - 2) .75

S(N) = ?

 What is the maximum theoretical speed-up on a 16-core CPU?

S(N)  = N + (1 - N) α

N=16, α=.75

S(N)  = 16 + (1 - 16) .75

S(N) = ?
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GUSTAFSON’S EXAMPLE

 QUESTION:  

What is the maximum theoretical speed-up on a 2-core CPU ?

S(N)  = N + (1 - N) α

N=2, α=.75

S(N)  = 2 + (1 - 2) .75

S(N) = ?

 What is the maximum theoretical speed-up on a 16-core CPU?

S(N)  = N + (1 - N) α

N=16, α=.75

S(N)  = 16 + (1 - 16) .75

S(N) = ?
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GUSTAFSON’S EXAMPLE

For 2 CPUs, speed up is 1.25x

For 16 CPUs, speed up is 4.75x

For 2 CPUs, speed up is 1.25x

For 16 CPUs, speed up is 4.75x
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 Transistors on a chip doubles approximately every 1.5 years

 CPUs now have billions of transistors

 Power dissipation issues at faster clock rates leads to heat 

removal challenges

▪ Transition from: increasing clock rates → to adding CPU cores

 Symmetric core processor  –multi-core CPU, all cores have the 

same computational resources and speed  

 Asymmetric core processor  – on a multi -core CPU, some cores 

have more resources and speed  

 Dynamic core processor  – processing resources and speed can 

be dynamically configured among cores

 Observation: asymmetric processors offer a higher speedup
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MOORE’S LAW

Cloud Computing: How did we get here?

▪Parallel and distributed systems 

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

▪ Data, thread-level, task-level parallelism

▪ Parallel architectures

▪ SIMD architectures, vector processing, multimedia 

extensions

▪ Graphics processing units

▪ Speed-up, Amdahl's Law, Scaled Speedup

▪ Properties of distributed systems 

▪Modularity 
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 Collection of autonomous computers, connected through a 

network with distribution software called “middleware” that 

enables coordination of activities and sharing of resources

 Key characteristics:

 Users perceive system as a single, integrated computing 

facility. 

 Compute nodes are autonomous

 Scheduling, resource management, and security implemented 

by every node 

 Multiple points of control and failure

 Nodes may not be accessible at all times 

 System can be scaled by adding additional nodes

 Availability at low levels of HW/software/network reliability
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DISTRIBUTED SYSTEMS

 Key non-functional attributes

▪ Known as “ilities” in software engineering

 Availability – 24/7 access?

 Reliability - Fault tolerance 

 Accessibility – reachable?

 Usability – user friendly

 Understandability – can under

 Scalability – responds to variable demand

 Extensibility – can be easily modified, extended

 Maintainability – can be easily fixed

 Consistency – data is replicated correctly in timely manner
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DISTRIBUTED SYSTEMS - 2
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 Access transparency: local and remote objects accessed using 
identical operations

 Location transparency: objects accessed w/o knowledge of 
their location.

 Concurrency transparency: several processes run concurrently 
using shared objects w/o interference among them

 Replication transparency: multiple instances of objects are 
used to increase reliability
-  users are unaware if and how the system is replicated

 Failure transparency: concealment of faults

 Migration transparency: objects are moved w/o affecting 
operations performed on them

 Performance transparency: system can be reconfigured based 
on load and quality of service requirements

 Scaling transparency: system and applications can scale w/o 
change in system structure and w/o affecting applications

October 1, 2024
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.73

TRANSPARENCY PROPERTIES OF 

DISTRIBUTED SYSTEMS

Cloud Computing: How did we get here?

▪Parallel and distributed systems 

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

▪ Data, thread-level, task-level parallelism

▪ Parallel architectures

▪ SIMD architectures, vector processing, multimedia 

extensions

▪ Graphics processing units

▪ Speed-up, Amdahl's Law, Scaled Speedup

▪ Properties of distributed systems 

▪Modularity 
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 Soft modularity:  TRADITIONAL 

 Divide a program into modules (classes) that call each other 

and communicate with shared-memory

 A procedure calling convention is used (or method invocation)

 Enforced modularity:  CLOUD COMPUTING

 Program is divided into modules that communicate only 

through message passing 

 The ubiquitous client-server paradigm 

 Clients and servers are independent decoupled modules

 System is more robust if servers are stateless

 May be scaled and deployed separately

 May also FAIL separately!
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TYPES OF MODULARITY

 Multi-core CPU technology and hyper -threading

 What is a 

▪ Heterogeneous system?

▪ Homogeneous system?

▪ Autonomous or self-organizing system?

 Fine grained vs. coarse grained parallelism

 Parallel message passing code is easier to debug than 

shared memory (e.g. p-threads)

 Know your application’s max/avg Thread Level 

Parallelism (TLP)

 Data-level parallelism: Map-Reduce, (SIMD) Single 

Instruction Multiple Data, Vector processing & GPUs
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CLOUD COMPUTING – HOW DID WE GET HERE?

SUMMARY OF KEY POINTS
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 Bit- level parallelism

 Instruction-level parallelism (CPU pipelining)

 Flynn’s taxonomy :  computer system architecture classification

▪ SISD – Single Instruction, Single Data (modern core of a CPU) 

▪ SIMD – Single Instruction, Multiple Data (Data parallelism)

▪ MIMD – Multiple Instruction, Multiple Data

▪ MISD is RARE; application for fault tolerance…

 Arithmetic intensity : ratio of calculations vs memory RW

 Roofline model: 

Memory bottleneck with low arithmetic intensity

 GPUs: ideal for programs with high arithmetic intensity

▪ SIMD and Vector processing supported by many large registers 
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CLOUD COMPUTING – HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 2

 Speed-up (S)

S(N) = T(1) / T(N)

 Amdahl’s law:
S=1 / ((1-f) + f/N),s=latency, f=parallel fraction, N=speed -up

 α = percent of program that must be sequential

 Scaled speedup with N processes:
S(N)  = N – α( N-1)

 Moore’s Law

 Symmetric core, Asymmetric core, Dynamic core CPU

 Distributed Systems Non-function quality attributes 

 Distributed Systems – Types of Transparency

 Types of modularity - Soft, Enforced
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CLOUD COMPUTING – HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 3
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QUESTIONS
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