
TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

Slides by Wes J. Lloyd L2.1

 Introduction

 Wes J. Lloyd

 School of Engineering and Technology

 University of Washington - Tacoma

TCSS 462/562:

(SOFTWARE ENGINEERING

FOR) CLOUD COMPUTING  Daily Feedback Surveys

 Questions from Course Introduction

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 0 - Getting Started with AWS

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here? (10/4)

Chapter 4 Marinescu 2nd edition:

Introduction to parallel and distributed systems

October 3, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.2

OBJECTIVES – 10/3

 Daily Feedback Quiz in Canvas – Take After Each Class

 Extra Credit

for completing

October 3, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.3

ONLINE DAILY FEEDBACK SURVEY

October 3, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma L5.4

 Please classify your perspective on material covered in today’s

class (58 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.79 ( - previous 7.43 f2022)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.66 ( - previous 5.83 f2022)

 Response rates:

 TCSS 462: 40/45 – 88.9%

 TCSS 562: 18/24 – 75.0%

October 3, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.5

MATERIAL / PACE

 I was not clear on whether the term project group needs
to consist of at most 4 people or exactly 4 people

▪ Ideally groups will be 4 people

▪ Even with 4 people per team there will still be 18 groups
(large number)

▪ Smaller groups (< 4 people) have fewer resources

▪ Larger groups may be more difficult to coordinate

 Are graduate students required to form groups of their
own, or can groups include undergraduate and graduate
students

▪ Groups can consist of both undergrad and graduate students

▪ The grading criteria is the same

▪ The class presentation is separate from the term project

October 3, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.6

FEEDBACK FROM 9/28

1 2

3 4

5 6

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

Slides by Wes J. Lloyd L2.2

 I am confused about how to c reate IAM user.

 IAM users are users created inside a primary AWS account

 The primary account holder manages security enabling IAM users

access to specific cloud services

 Fine grained security can be used where detailed permissions are

configured to allow just enough access when sharing an account

 Typically you’l l create a ROOT account when opening up a new AWS

account with a create card

 I f you want to share access to your account with team members,

you could set up individual IAM users and enable cloud service

specific permissions

 If you don’t have a credit card, the instructor can create an IAM

user to enable working on the assignments

▪ The ROOT account owner can view and manage activity of IAM users

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.7

FEEDBACK - 2

 Course webpage is embedded into Canvas

▪ In CANVAS to access links:

RIGHT-CLICK – Open in new window

 Daily Feedback Surveys online at:

http://faculty.washington.edu/wlloyd/courses/tcss562/

 Grading

 Schedule

 Assignments

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.8

TCSS562 – SOFTWARE ENGINEERING

FOR CLOUD COMPUTING

 Daily Feedback Surveys

 Questions from Course Introduction

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 0 - Getting Started with AWS

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?

Chapter 4 Marinescu 2nd edition:

Introduction to parallel and distributed systems

October 3, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.9

OBJECTIVES – 10/3

 Daily Feedback Surveys

 Questions from Course Introduction

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 0 - Getting Started with AWS

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?

Chapter 4 Marinescu 2nd edition:

Introduction to parallel and distributed systems

October 3, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.10

OBJECTIVES – 10/3

 Please complete the ONLINE demographics survey:

We have received 54 of 69 responses so far.
We are waiting on 15 responses.

 https://forms.gle/QLiWGnHqbXDeNdYq7

 Linked from course webpage in Canvas:

 http://faculty.washington.edu/wlloyd/courses/tcss562/
announcements.html

September 28, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L1.11

DEMOGRAPHICS SURVEY

 Daily Feedback Surveys

 Questions from Course Introduction

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 0 - Getting Started with AWS

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?

Chapter 4 Marinescu 2nd edition:

Introduction to parallel and distributed systems

October 3, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.12

OBJECTIVES – 10/3

7 8

9 10

11 12

http://faculty.washington.edu/wlloyd/courses/tcss562/
https://forms.gle/QLiWGnHqbXDeNdYq7
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

Slides by Wes J. Lloyd L2.3

 Please complete the AWS Cloud Credits survey:

Please only complete survey after setting up AWS account

or if requiring an IAM user (no-credit card option)

 https://forms.gle/G722gMn5wg9VRZXU6

 Linked from course webpage in Canvas:

 http://faculty.washington.edu/wlloyd/courses/tcss562/

announcements.html

September 28, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L1.13

AWS CLOUD CREDITS SURVEY

 Questions from Course Introduction

 Daily Feedback Surveys

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 0 - Getting Started with AWS

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?

Chapter 4 Marinescu 2nd edition:

Introduction to parallel and distributed systems

October 3, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.14

OBJECTIVES – 10/3

 Questions from Course Introduction

 Daily Feedback Surveys

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 0 - Getting Started with AWS

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?

Chapter 4 Marinescu 2nd edition:

Introduction to parallel and distributed systems

October 3, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.15

OBJECTIVES – 10/3

 Daily Feedback Surveys

 Questions from Course Introduction

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 0 - Getting Started with AWS

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?

Chapter 4 Marinescu 2 nd edition:

Introduction to parallel and distributed systems

October 3, 2023
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.16

OBJECTIVES – 10/3

Cloud Computing: How did we get here?

▪Parallel and distributed systems

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

▪ Data, thread-level, task-level parallelism

▪ Parallel architectures

▪ SIMD architectures, vector processing, multimedia

extensions

▪ Graphics processing units

▪ Speed-up, Amdahl's Law, Scaled Speedup

▪ Properties of distributed systems

▪Modularity

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.17

OBJECTIVES

 General interest in parallel computing

▪Moore’s Law - # of transistors doubles every 18 months

▪ Post 2004: heat dissipation challenges:

can no longer easily increase cloud speed

▪ Overclocking to 7GHz takes

more than just liquid nitrogen:

▪ https://tinyurl.com/y93s2yz2

Solutions:

▪ Vary CPU clock speed

▪ Add CPU cores

▪Multi-core technology

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.18

CLOUD COMPUTING:

HOW DID WE GET HERE?

13 14

15 16

17 18

https://forms.gle/G722gMn5wg9VRZXU6
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
https://tinyurl.com/y93s2yz2

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

Slides by Wes J. Lloyd L2.4

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.19

 Epyc Rome CPUs

 Announced August 2019

 EPYC 7H12 requires liquid cooling

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.20

AMD’S 64-CORE 7NM CPUS

 Cloud server vir tual CPUs/host

 Growth since 2006 - Amazon Compute Cloud (EC2)

 1st generation Intel: m1 – 8 vCPUs / host (Aug 2006)

 2nd generation Intel: m2 – 16 vCPUs / host (Oct 2009)

 3 rd generation Intel: m3 - 32 vCPUs / host (Oct 2012)

 4 th generation Intel: m4 – 48 vCPUs / host (June 2015)

 5 th generation Intel: m5 – 96 vCPUs / host (Nov 2017)

 6 th generation Intel: m6i – 128 vCPUs / host (Aug 2021)

 6 th generation AMD: m6a – 192 vCPUs / host (Nov 2021)

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.21

HOST SERVER VCPUS – AMAZON EC2

INFRASTRUCTURE-AS-A-SERVICE CLOUD

 Modern CPUs provide multiple instruction pipelines,
supporting multiple execution threads, usually 2
to feed instructions to a single CPU core…

 Two hyper-threads
are not equivalent
to (2) CPU cores

 i7-4770 and i5-4760
same CPU, with and
without HTT

 Example: →
hyperthreads add
+32.9%

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.22

HYPER THREADING

 To make computing faster, we must go “parallel”

 Difficult to expose parallelism in scientific

applications

 Not every problem solution has a parallel algorithm

▪ Chicken and egg problem…

 Many commercial efforts promoting pure parallel

programming efforts have failed

 Enterprise computing world has been skeptical and

less involved in parallel programming

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.23

CLOUD COMPUTING:

HOW DID WE GET HERE? - 2

Cloud computing provides access to “infinite”

scalable compute infrastructure on demand

 Infrastructure availability is key to exploiting

parallelism

Cloud applications

▪Based on client-server paradigm

▪Thin clients leverage compute hosted on the cloud

▪Applications run many web service instances

▪Employ load balancing

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.24

CLOUD COMPUTING:

HOW DID WE GET HERE? - 3

19 20

21 22

23 24

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

Slides by Wes J. Lloyd L2.5

Big Data requires massive amounts of compute

resources

MAP – REDUCE

▪Single instruction, multiple data (SIMD)

▪Exploit data level parallelism

Bioinformatics example

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.25

CLOUD COMPUTING:

HOW DID WE GET HERE? - 4
SMITH WATERMAN USE CASE

Applies dynamic programming to find best local

alignment of two protein sequences

▪ Embarrassingly parallel, each task can run in isolation

▪ Use case for GPU acceleration

AWS Lambda Serverless Computing Use Case:

Goal: Pair-wise comparison of all unique human

protein sequences (20,336)

▪ Python client as scheduler

▪ C Striped Smith-Waterman (SSW) execution engine

From: Zhao M, Lee WP, Garrison EP, Marth GT: SSW library: an SIMD Smith -

Waterman C/C++ library for use in genomic applications.

PLoS One 2013, 8:e82138

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.26

SMITH WATERMAN RUNTIME

 Laptop server and client (2 -core, 4-HT): 8.7 hours

 AWS Lambda FaaS, laptop as client: 2.2 minutes

▪ Partitions 20,336 sequences into 41 sets

▪ Execution cost: ~ 82¢ (~237x speed-up)

 AWS Lambda server, EC2 instance as client: 1.28
minutes

▪ Execution cost: ~ 87¢ (~408x speed-up)

 Hardware

▪ Laptop client: Intel i5-7200U 2.5 GHz :4 HT, 2 CPU

▪ Cloud client: EC2 Virtual Machine - m5.24xlarge: 96 vCPUs

▪ Cloud server: Lambda ~1000 Intel E5-2666v3 2.9GHz CPUs

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.27

Compute clouds are large-scale distributed

systems

▪Heterogeneous systems

▪Homogeneous systems

▪Autonomous

▪Self organizing

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.28

CLOUD COMPUTING:

HOW DID WE GET HERE? - 3

Cloud Computing: How did we get here?

▪Parallel and distributed systems

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

▪ Data, thread-level, task-level parallelism

▪ Parallel architectures

▪ SIMD architectures, vector processing, multimedia

extensions

▪ Graphics processing units

▪ Speed-up, Amdahl's Law, Scaled Speedup

▪ Properties of distributed systems

▪Modularity

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.29

OBJECTIVES

 Discovering parallelism and development of parallel

algorithms requires considerable effor t

 Example: numerical analysis problems, such as solving large

systems of linear equations or solving systems of Partial

Dif ferential Equations (PDEs), require algorithms based on

domain decomposition methods.

 How can problems be split into independent chunks?

 Fine-grained parallelism

▪ Only small bits of code can run in parallel without coordination

▪ Communication is required to synchronize state across nodes

 Coarse-grained parallelism

▪ Large blocks of code can run without coordination

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.30

PARALLELISM

25 26

27 28

29 30

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

Slides by Wes J. Lloyd L2.6

 Coordination of nodes

 Requires message passing or shared memory

 Debugging parallel message passing code is easier
than parallel shared memory code

 Message passing : all of the interactions are clear

▪ Coordination via specific programming API (MPI)

 Shared memory : interactions can be implicit – must
read the code!!

 Processing speed is orders of magnitude faster than
communication speed (CPU > memory bus speed)

 Avoiding coordination achieves the best speed-up

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.31

PARALLELISM - 2

Parallelism:

▪Goal: Perform multiple operations at the same time
to achieve a speed-up

 Thread-level parallelism (TLP)

▪Control flow architecture

Data-level parallelism

▪Data flow architecture

Bit-level parallelism

 Instruction-level parallelism (ILP)

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.32

TYPES OF PARALLELISM

 Number of threads an application runs at any one time

 Varies throughout program execution

 As a metric:

 Minimum: 1 thread

 Can measure average, maximum (peak)

 QUESTION: What are the consequences of average (TLP)
for scheduling an application to run on a computer with a
f ixed number of CPU cores and hyperthreads?

 Let’s say there are 4 cores, or 8 hyper -threads…

Key to avoiding waste of computing resources
is knowing your application’s TLP…

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.33

THREAD LEVEL PARALLELISM (TLP)

 Multi-threaded prime number generation

 Compute-bound workload

 Can use variable # of threads

 Generates n prime numbers

 Runtimes: 100,000 primes

 1 thread: 59.15 s

 2 threads: 30.957 s

 4 threads: 15.539 s

 8 threads: 12.112 s

 Observe TLP with top

time ./primes8 30000 >/dev/null

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.34

TLP – PRIMES EXAMPLE

WE WILL RETURN AT

4:50PM

 Typical architecture used today – w/ multiple threads

 By John von Neumann (1945)

 Also called the Von Neumann architecture

 Dominant computer system architecture

 Program counter (PC) determines

next instruction to load into

instruction register

 Program execution

is sequential

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.36

CONTROL-FLOW ARCHITECTURE

31 32

33 34

35 36

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

Slides by Wes J. Lloyd L2.7

Partition data into big chunks, run separate copies
of the program on them with little or no
communication

Problems are considered to be
embarrassingly parallel

Also perfectly parallel or pleasingly parallel…

 Little or no effort needed to separate problem
into a number of parallel tasks

MapReduce programming model is an example

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.37

DATA-LEVEL PARALLELISM

 Alternate architecture used by network routers, digital
signal processors, special purpose systems

 Operations performed when input (data) becomes
available

 Envisioned to provide much higher parallelism

 Multiple problems has prevented wide-scale adoption

▪ Efficiently broadcasting data tokens in a massively
parallel system

▪ Efficiently dispatching instruction tokens in a massively
parallel system

▪ Building content addressable memory large enough to
hold all of the dependencies of a real program

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.38

DATA FLOW ARCHITECTURE

 Architecture not as popular as control -f low

 Modern CPUs emulate data flow architecture for dynamic

instruction scheduling since the 1990s

▪ Out-of-order execution – reduces CPU idle time by not blocking

for instructions requiring data by defining execution windows

▪ Execution windows: identify instructions that can be run by

data dependency

▪ Instructions are completed in data dependency order within

execution window

▪ Execution window size typically 32 to 200 instructions

Utility of data f low architectures has been

much less than envisioned

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.39

DATA FLOW ARCHITECTURE - 2

 Computations on large words (e.g. 64-bit integer) are

performed as a single instruction

 Fewer instructions are required on 64 -bit CPUs to process

larger operands (A+B) providing dramatic performance

improvements

 Processors have evolved: 4 -bit, 8-bit, 16-bit, 32-bit, 64-bit

QUESTION: How many instructions are required to add two

64-bit numbers on a 16-bit CPU? (Intel 8088)

 64-bit MAX int = 9,223,372,036,854,775,807 (signed)

 16-bit MAX int = 32,767 (signed)

 Intel 8088 – limited to 16-bit registers

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.40

BIT-LEVEL PARALLELISM

 CPU pipelining architectures enable ILP

 CPUs have multi -stage processing pipelines

 Pipelining: split instructions into sequence of steps that

can execute concurrently on different CPU circuitry

 Basic RISC CPU - Each instruction has 5 pipeline stages:

 IF – instruction fetch

 ID- instruction decode

 EX – instruction execution

 MEM – memory access

 WB – write back

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.41

INSTRUCTION-LEVEL PARALLELISM (ILP)

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.42

CPU PIPELINING

37 38

39 40

41 42

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

Slides by Wes J. Lloyd L2.8

 RISC CPU:

 After 5 clock cycles, all 5 stages of an instruction are

loaded

 Starting with 6 th clock cycle, one full instruction

completes each cycle

 The CPU performs 5 tasks per clock cycle!

Fetch, decode, execute, memory read, memory write back

 Pentium 4 (CISC CPU) – processing pipeline w/ 35 stages!

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.43

INSTRUCTION LEVEL PARALLELISM - 2

Cloud Computing: How did we get here?

▪Parallel and distributed systems

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

▪ Data, thread-level, task-level parallelism

▪ Parallel architectures

▪ SIMD architectures, vector processing, multimedia

extensions

▪ Graphics processing units

▪ Speed-up, Amdahl's Law, Scaled Speedup

▪ Properties of distributed systems

▪Modularity

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.44

OBJECTIVES

Michael Flynn’s proposed taxonomy of computer

architectures based on concurrent instructions and

number of data streams (1966)

 SISD (Single Instruction Single Data)

 SIMD (Single Instruction, Multiple Data)

 MIMD (Multiple Instructions, Multiple Data)

 LESS COMMON : MISD (Multiple Instructions, Single Data)

 Pipeline architectures: functional units perform different

operations on the same data

 For fault tolerance, may want to execute same instructions

redundantly to detect and mask errors – for task replication

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.45

MICHAEL FLYNN’S COMPUTER

ARCHITECTURE TAXONOMY

 SISD (Single Instruction Single Data)

Scalar architecture with one processor/core.

▪ Individual cores of modern multicore processors are

“SISD”

 SIMD (Single Instruction, Multiple Data)

Supports vector processing

▪When SIMD instructions are issued, operations on

individual vector components are carried out concurrently

▪ Two 64-element vectors can be added in parallel

▪ Vector processing instructions added to modern CPUs

▪ Example: Intel MMX (multimedia) instructions

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.46

FLYNN’S TAXONOMY

 Exploit data-parallelism: vector operations enable speedups

 Vectors architecture provide vector registers that can store

entire matrices into a CPU register

 SIMD CPU extension (e.g. MMX) add support for vector

operations on traditional CPUs

 Vector operations reduce total number of instructions for

large vector operations

 Provides higher potential speedup vs. MIMD architecture

 Developers can think sequentially; not worry about

parallelism

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.47

(SIMD): VECTOR PROCESSING

ADVANTAGES

 MIMD (Multiple Instructions, Multiple Data) - system with

several processors and/or cores that function asynchronously

and independently

 At any time, dif ferent processors/cores may execute dif ferent

instructions on dif ferent data

 Multi-core CPUs are MIMD

 Processors share memory via interconnection networks

▪ Hypercube, 2D torus, 3D torus, omega network, other topologies

 MIMD systems have dif ferent methods of sharing memory

▪ Uniform Memory Access (UMA)

▪ Cache Only Memory Access (COMA)

▪ Non-Uniform Memory Access (NUMA)

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.48

FLYNN’S TAXONOMY - 2

43 44

45 46

47 48

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

Slides by Wes J. Lloyd L2.9

 Arithmetic intensity: Ratio of work (W) to
 memory traffic r/w (Q)
Example: # of floating-point ops per byte of data read

 Characterizes application scalability with SIMD support

▪ SIMD can perform many fast matrix operations in parallel

 High arithmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

 Low arithmetic intensity:
Programs with sparse matrix operations do not scale well
with problem size
(memory RW becomes bottleneck, not enough ops!)

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.49

ARITHMETIC INTENSITY

 When program reaches a given arithmetic intensity

performance of code running on CPU hits a “roof”

 CPU performance bottleneck changes from:

memory bandwidth (lef t) → f loating point performance (right)

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.50

ROOFLINE MODEL

Key take-aways:
When a program’s has low
Arithmetic Intensity, memory
bandwidth limits performance..

With high Arithmetic intensity,
the system has peak parallel
performance…
→ performance is limited by??

Cloud Computing: How did we get here?

▪Parallel and distributed systems

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

▪ Data, thread-level, task-level parallelism

▪ Parallel architectures

▪ SIMD architectures, vector processing, multimedia

extensions

▪ Graphics processing units

▪ Speed-up, Amdahl's Law, Scaled Speedup

▪ Properties of distributed systems

▪Modularity

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.51

OBJECTIVES

 GPU provides multiple SIMD processors

 Typically 7 to 15 SIMD processors each

 32,768 total registers, divided into 16 lanes

(2048 registers each)

 GPU programming model:

single instruction, multiple thread

 Programmed using CUDA- C like programming

language by NVIDIA for GPUs

 CUDA threads – single thread associated with each

data element (e.g. vector or matrix)

 Thousands of threads run concurrently

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.52

GRAPHICAL PROCESSING UNITS (GPUS)

Cloud Computing: How did we get here?

▪Parallel and distributed systems

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

▪ Data, thread-level, task-level parallelism

▪ Parallel architectures

▪ SIMD architectures, vector processing, multimedia

extensions

▪ Graphics processing units

▪ Speed-up, Amdahl's Law, Scaled Speedup

▪ Properties of distributed systems

▪Modularity

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.53

OBJECTIVES

Parallel hardware and software systems allow:

▪ Solve problems demanding resources not available on
single system.

▪ Reduce time required to obtain solution

 The speed-up (S) measures effectiveness of
parallelization:

 S(N) = T(1) / T(N)

T(1) → execution time of total sequential computation

T(N) → execution time for performing N parallel
computations in parallel

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.54

PARALLEL COMPUTING

49 50

51 52

53 54

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

Slides by Wes J. Lloyd L2.10

 Consider embarrassingly parallel image processing

 Eight images (multiple data)

 Apply image transformation (greyscale) in parallel

 8-core CPU, 16 hyper threads

 Sequential processing: perform transformations one at a time
using a single program thread

▪ 8 images, 3 seconds each: T(1) = 24 seconds

 Parallel processing

▪ 8 images, 3 seconds each: T(N) = 3 seconds

 Speedup: S(N) = 24 / 3 = 8x speedup

 Called “perfect scaling”

 Must consider data transfer and computation setup time

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.55

SPEED-UP EXAMPLE

 Amdahl’s law is used to estimate the speed -up of a job
using parallel computing

1. Divide job into two parts

2. Part A that will still be sequential

3. Part B that will be sped-up with parallel computing

 Portion of computation which cannot be parallelized will
determine (i.e. limit) the overall speedup

 Amdahl’s law assumes jobs are of a fixed size

 Also, Amdahl’s assumes no overhead for distributing the
work, and a perfectly even work distribution

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.56

AMDAHL’S LAW

 S = theoretical speedup of the whole task

 f= fraction of work that is parallel (ex. 25% or 0.25)

 N= proposed speed up of the parallel part (ex. 5 t imes speedup)

 % improvement

of task execution = 100 * (1 – (1 / S))

 Using Amdahl’s law, what is the maximum possible speed -up?

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.57

AMDAHL’S LAW

 Program with two independent parts:

▪ Part A is 75% of the execution time

▪ Part B is 25% of the execution time

 Part B is made 5 times faster with
parallel computing

 Estimate the percent improvement of task execution

 Original Part A is 3 seconds, Part B is 1 second

 N=5 (speedup of part B)

 f=.25 (only 25% of the whole job (A+B) will be sped -up)

 S=1 / ((1-f) + f/S)

 S=1 / ((.75) + .25/5)

 S=1.25

 % improvement = 100 * (1 – 1/1.25) = 20%

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.58

AMDAHL’S LAW EXAMPLE

from Wikipedia

 Calculates the scaled speed-up using “N” processors

 S(N) = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized

(e.g. must run sequentially)

 Can be used to estimate runtime of parallel portion of

program

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.59

GUSTAFSON'S LAW

 Calculates the scaled speed-up using “N” processors

 S(N) = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized

(e.g. must run sequentially)

 Can be used to estimate runtime of parallel portion of

program

 Where α =  / ( + )

 Where = sequential time,  =parallel time

 Our Amdahl’s example: = 3s,  =1s, α =.75

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.60

GUSTAFSON'S LAW

55 56

57 58

59 60

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

Slides by Wes J. Lloyd L2.11

 Calculates the scaled speed-up using “N” processors

 S(N) = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized

(e.g. must run sequentially)

 Example:

Consider a program that is embarrassingly parallel,

but 75% cannot be parallelized. α=.75

QUESTION: I f deploying the job on a 2 -core CPU, what

scaled speedup is possible assuming the use of two

processes that run in parallel?

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.61

GUSTAFSON'S LAW

 QUESTION:

What is the maximum theoret ical speed -up on a 2-core CPU ?

S(N) = N + (1 - N) α

N=2, α=.75

S(N) = 2 + (1 - 2) .75

S(N) = ?

 What is the maximum theoret ical speed -up on a 16-core CPU?

S(N) = N + (1 - N) α

N=16, α=.75

S(N) = 16 + (1 - 16) .75

S(N) = ?

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.62

GUSTAFSON’S EXAMPLE

 QUESTION:

What is the maximum theoret ical speed -up on a 2-core CPU ?

S(N) = N + (1 - N) α

N=2, α=.75

S(N) = 2 + (1 - 2) .75

S(N) = ?

 What is the maximum theoret ical speed -up on a 16-core CPU?

S(N) = N + (1 - N) α

N=16, α=.75

S(N) = 16 + (1 - 16) .75

S(N) = ?

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.63

GUSTAFSON’S EXAMPLE

For 2 CPUs, speed up is 1.25x

For 16 CPUs, speed up is 4.75x

For 2 CPUs, speed up is 1.25x

For 16 CPUs, speed up is 4.75x

 Transistors on a chip doubles approximately every 1.5 years

 CPUs now have billions of transistors

 Power dissipation issues at faster clock rates leads to heat

removal challenges

▪ Transition from: increasing clock rates → to adding CPU cores

 Symmetric core processor –multi-core CPU, all cores have the

same computational resources and speed

 Asymmetric core processor – on a multi -core CPU, some cores

have more resources and speed

 Dynamic core processor – processing resources and speed can

be dynamically configured among cores

 Observation: asymmetric processors of fer a higher speedup

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.64

MOORE’S LAW

Cloud Computing: How did we get here?

▪Parallel and distributed systems

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

▪ Data, thread-level, task-level parallelism

▪ Parallel architectures

▪ SIMD architectures, vector processing, multimedia

extensions

▪ Graphics processing units

▪ Speed-up, Amdahl's Law, Scaled Speedup

▪ Properties of distributed systems

▪Modularity

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.65

OBJECTIVES

 Collection of autonomous computers, connected through a

network with distribution software called “middleware” that

enables coordination of activities and sharing of resources

 Key characteristics:

 Users perceive system as a single, integrated computing

facility.

 Compute nodes are autonomous

 Scheduling, resource management, and security implemented

by every node

 Multiple points of control and failure

 Nodes may not be accessible at all times

 System can be scaled by adding additional nodes

 Availability at low levels of HW/software/network reliability

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.66

DISTRIBUTED SYSTEMS

61 62

63 64

65 66

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

Slides by Wes J. Lloyd L2.12

 Key non-functional attributes

▪ Known as “ilities” in software engineering

 Availability – 24/7 access?

 Reliability - Fault tolerance

 Accessibility – reachable?

 Usability – user fr iendly

 Understandability – can under

 Scalability – responds to variable demand

 Extensibility – can be easily modified, extended

 Maintainability – can be easily fixed

 Consistency – data is replicated correctly in timely manner

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.67

DISTRIBUTED SYSTEMS - 2

 Access transparency: local and remote objects accessed using
identical operations

 Location transparency: objects accessed w/o knowledge of
their location.

 Concurrency transparency: several processes run concurrently
using shared objects w/o inter ference among them

 Replication transparency: multiple instances of objects are
used to increase reliability
- users are unaware if and how the system is replicated

 Failure transparency: concealment of faults

 Migration transparency: objects are moved w/o affecting
operations performed on them

 Performance transparency: system can be reconfigured based
on load and quality of service requirements

 Scaling transparency: system and applications can scale w/o
change in system structure and w/o affecting applications

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.68

TRANSPARENCY PROPERTIES OF

DISTRIBUTED SYSTEMS

Cloud Computing: How did we get here?

▪Parallel and distributed systems

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

▪ Data, thread-level, task-level parallelism

▪ Parallel architectures

▪ SIMD architectures, vector processing, multimedia

extensions

▪ Graphics processing units

▪ Speed-up, Amdahl's Law, Scaled Speedup

▪ Properties of distributed systems

▪Modularity

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.69

OBJECTIVES

 Soft modularity: TRADITIONAL

 Divide a program into modules (classes) that call each other

and communicate with shared-memory

 A procedure calling convention is used (or method invocation)

 Enforced modularity: CLOUD COMPUTING

 Program is divided into modules that communicate only

through message passing

 The ubiquitous client -server paradigm

 Clients and servers are independent decoupled modules

 System is more robust if servers are stateless

 May be scaled and deployed separately

 May also FAIL separately!

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.70

TYPES OF MODULARITY

 Multi-core CPU technology and hyper -threading

 What is a

▪ Heterogeneous system?

▪ Homogeneous system?

▪ Autonomous or self-organizing system?

 Fine grained vs. coarse grained parallelism

 Parallel message passing code is easier to debug than

shared memory (e.g. p-threads)

 Know your application’s max/avg Thread Level

Parallelism (TLP)

 Data-level parallelism: Map-Reduce, (SIMD) Single

Instruction Multiple Data, Vector processing & GPUs

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.71

CLOUD COMPUTING – HOW DID WE GET HERE?

SUMMARY OF KEY POINTS

 Bit-level parallelism

 Instruction-level parallelism (CPU pipelining)

 Flynn’s taxonomy : computer system architecture classification

▪ SISD – Single Instruction, Single Data (modern core of a CPU)

▪ SIMD – Single Instruction, Multiple Data (Data parallelism)

▪ MIMD – Multiple Instruction, Multiple Data

▪ MISD is RARE; application for fault tolerance…

 Arithmetic intensity : ratio of calculations vs memory RW

 Roofline model:

Memory bottleneck with low arithmetic intensity

 GPUs: ideal for programs with high arithmetic intensity

▪ SIMD and Vector processing supported by many large registers

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.72

CLOUD COMPUTING – HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 2

67 68

69 70

71 72

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

Slides by Wes J. Lloyd L2.13

 Speed-up (S)

S(N) = T(1) / T(N)

 Amdahl’s law:
S=1 / ((1-f) + f/N),s=latency, f=parallel fraction, N=speed -up

 α = percent of program that must be sequential

 Scaled speedup with N processes:
S(N) = N – α(N-1)

 Moore’s Law

 Symmetric core, Asymmetric core, Dynamic core CPU

 Distributed Systems Non-function quality attributes

 Distributed Systems – Types of Transparency

 Types of modularity - Soft, Enforced

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.73

CLOUD COMPUTING – HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 3 QUESTIONS

October 3, 2023
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma L2.74

73 74

	Slide 1: TCSS 462/562: (Software Engineering for) Cloud Computing
	Slide 2: OBJECTIVES – 10/3
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 9/28
	Slide 7: Feedback - 2
	Slide 8: TCSS562 – software engineering for cloud computing
	Slide 9: OBJECTIVES – 10/3
	Slide 10: OBJECTIVES – 10/3
	Slide 11: Demographics survey
	Slide 12: OBJECTIVES – 10/3
	Slide 13: AWS Cloud Credits survey
	Slide 14: OBJECTIVES – 10/3
	Slide 15: OBJECTIVES – 10/3
	Slide 16: OBJECTIVES – 10/3
	Slide 17: objectives
	Slide 18: Cloud computing: How did we get here?
	Slide 19
	Slide 20: AMD’s 64-core 7nm CPUs
	Slide 21: Host server vcpus – amazon ec2 infrastructure-as-a-service cloud
	Slide 22: Hyper threading
	Slide 23: Cloud computing: How did we get here? - 2
	Slide 24: cloud computing: How did we get here? - 3
	Slide 25: Cloud computing: how did we get here? - 4
	Slide 26: Smith Waterman Use Case
	Slide 27: Smith waterman runtime
	Slide 28: cloud computing: How did we get here? - 3
	Slide 29: objectives
	Slide 30: parallelism
	Slide 31: Parallelism - 2
	Slide 32: Types of parallelism
	Slide 33: Thread level parallelism (TLP)
	Slide 34: Tlp – primes example
	Slide 35: We will return at 4:50pm
	Slide 36: Control-Flow architecture
	Slide 37: Data-level Parallelism
	Slide 38: Data flow architecture
	Slide 39: Data flow architecture - 2
	Slide 40: Bit-level parallelism
	Slide 41: Instruction-level parallelism (ILP)
	Slide 42: Cpu pipelining
	Slide 43: Instruction level parallelism - 2
	Slide 44: objectives
	Slide 45: Michael Flynn’s computer architecture taxonomy
	Slide 46: Flynn’s taxonomy
	Slide 47: (Simd): VECtOR PROCESSING advantages
	Slide 48: Flynn’s taxonomy - 2
	Slide 49: Arithmetic intensity
	Slide 50: Roofline model
	Slide 51: objectives
	Slide 52: Graphical processing units (gpus)
	Slide 53: objectives
	Slide 54: Parallel computing
	Slide 55: Speed-up example
	Slide 56: Amdahl’s law
	Slide 57: Amdahl’s law
	Slide 58: Amdahl’s law example
	Slide 59: Gustafson's Law
	Slide 60: Gustafson's Law
	Slide 61: Gustafson's Law
	Slide 62: Gustafson’s example
	Slide 63: Gustafson’s example
	Slide 64: Moore’s law
	Slide 65: objectives
	Slide 66: Distributed systems
	Slide 67: Distributed systems - 2
	Slide 68: Transparency properties of distributed systems
	Slide 69: objectives
	Slide 70: Types of modularity
	Slide 71: Cloud computing – how did we get here? Summary of key points
	Slide 72: Cloud computing – how did we get here? Summary of key points - 2
	Slide 73: Cloud computing – how did we get here? Summary of key points - 3
	Slide 74: Questions

