TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

TCSS 462/562:
(SOFTWARE ENGINEERING,
FOR) CLOUD COMPUTING

Introduction

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

OBJECTIVES - 10/3

| = Dally Feedback Surveys |
= Questions from Course Introduction

= Demographics Survey
= AWS Cloud Credits Survey

= Tutorial O - Getting Started with AWS
= Tutorial 1 - Intro to Linux
= Cloud Computing - How did we get here? (10/4)

Chapter 4 Marinescu 2" edition:
Introduction to parallel and distributed systems

‘TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]

‘ (I School of Engineering and Technology, University of Washington - Tacoma

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Take After Each Class
= Extra Credit
for completing

* Upcoming Assignments

o

y 1 - Implicit va. Explicit Pacsllelism

5 Tl d ol

* Past Assigaments

|

4 TCS5 562 - Online Dalty Feedback Survey - 9/30

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023]

October3, 2023 School of Engineering and Technology, University of Washington - Tacoma

TCSS 562 - Online Daily Feedback Survey - 10/5

Startect Ot 7 at 1-13sm

Quiz Instructions

Question 1 05 pts

Ona scale of 1 to 10, please classify your perspective on material covered in today's
class:

1 2z 3 4 5 8 7 8 8 18
mestiy equu1 mastly
Question 2 a5 pis

Please rate the pace of today's class:

1 2 3 4 s 3 7 8 ® 10

P et might Past

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]

October 3, 2023 School of Engineering and Technology, University of Washington - Tacoma 154

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (58 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.79 ({ - previous 7.43 f2022)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.66 (Y - previous 5.83 £2022)

= Response rates:
= TCSS 462: 40/45 - 88.9%
= TCSS 562: 18/24 - 75.0%

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2023]

GRS School of Engineering and Technology, University of Washington -Tacoma

Slides by Wes J. Lloyd

FEEDBACK FROM 9/28

= | was not clear on whether the term project group needs
to consist of at most 4 people or exactly 4 people
= Ideally groups will be 4 people
= Even with 4 people per team there will still be 18 groups
(large number)
= Smaller groups (< 4 people) have fewer resources
= Larger groups may be more difficult to coordinate
= Are graduate students required to form groups of their

own, or can groups Include undergraduate and graduate
students

= Groups can consist of both undergrad and graduate students
= The grading criteria is the same
= The class presentation is separate from the term project

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2023]

‘ ) School of Engineering and Technology, University of Washington - Tacoma

L2.1



TCSS 462
TCSS 562

: Cloud Computing
: Software Engineering for Cloud Computing

School of Engineering and Technology, UW-Tacoma

FEEDBACK - 2

= I am conf how r 1AM r.

IAM users are users created inside a primary AWS account

The primary account holder manages security enabling IAM users
access to specific cloud services

= Fine grained security can be used where detailed permissions are
configured to allow just enough access when sharing an account
Typically you’ll create a ROOT account when opening up a new AWS
account with a create card

= |f you want to share access to your account with team members,
you could set up individual IAM users and enable cloud service
specific permissions

If you don’t have a credit card, the instructor can create an IAM
user to enable working on the assignments

= The ROOT account owner can view and manage activity of IAM users

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]

O School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 10/3

= Daily Feedback Surveys
|- Questions from Course Introduction |

= Demographics Survey
= AWS Cloud Credits Survey

= Tutorial O - Getting Started with AWS
= Tutorial 1 - Intro to Linux
= Cloud Computing - How did we get here?

Chapter 4 Marinescu 2" edition:
Introduction to parallel and distributed systems

TCS462/562:(Software Engineering for) Cloud Computing [Fall 2023]

October3, 2023 School of Engineering and Technology, University of Washington - Tacoma.

[Fall 2023]

TCSS562 - SOFTWARE ENGINEERING

FOR CLOUD COMPUTING

= Course webpage is embedded into Canvas

= In CANVAS to access links:
RIGHT-CLICK - Open in new window

= Daily Feedback Surveys online at:
http://faculty.washington.edu/wlloyd/courses/tcss562,

= Grading

= Schedule

= Assignments

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]

‘ (I School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 10/3

= Daily Feedback Surveys
= Questions from Course Introduction

|- Demographics Survey |
= AWS Cloud Credits Survey

= Tutorial O - Getting Started with AWS
= Tutorial 1 - Intro to Linux

= Cloud Computing - How did we get here?
Chapter 4 Marinescu 2" edition:
Introduction to parallel and distributed systems

‘ October3, 2023 TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2023] 10

School of Engineering and Technology, University of Washington - Tacoma

DEMOGRAPHICS SURVEY

= Please complete the ONLINE demographics survey:

We have received 54 of 69 responses so far.
We are waiting on 15 responses.

= https://forms.gle/QLiWGnHgbXDeNdYq7

= Linked from course webpage in Canvas:

= http://faculty.washington.edu/wlloyd/courses/tcss562/
announcements.html

September28, 2023 TCS462/562: (Software Engineering for) Cloud Computing [Fall 2023] i

School of Engineering and Technology, University of Washington - Tacoma

10

OBJECTIVES - 10/3

= Daily Feedback Surveys
= Questions from Course Introduction

= Demographics Survey
| = AWS Cloud Credits Survey |

= Tutorial O - Getting Started with AWS
= Tutorial 1 - Intro to Linux
= Cloud Computing - How did we get here?

Chapter 4 Marinescu 2" edition:
Introduction to parallel and distributed systems

‘ October3, 2023 TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2023] o

School of Engineering and Technology, University of Washington - Tacoma

11

Slides by Wes J. Lloyd

12

L2.2


http://faculty.washington.edu/wlloyd/courses/tcss562/
https://forms.gle/QLiWGnHqbXDeNdYq7
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

AWS CLOUD CREDITS SURVEY

= Please complete the AWS Cloud Credits survey:

Please only complete survey after setting up AWS account
or if requiring an 1AM user (no-credit card option)

= https://forms.gle/G722gMn5wg9VRZXU6

= Linked from course webpage in Canvas:

= http://faculty.washington.edu/wlloyd/courses/tcss562
announcements.html

TCS5462/562: (Software Engineering for) Cloud Computing [Fal 2023]
‘ S s School of Engineering and Technology, University of Washington - Tacoma s

OBJECTIVES - 10/3

= Questions from Course Introduction
= Daily Feedback Surveys

= Demographics Survey
= AWS Cloud Credits Survey

| = Tutorial 0 - Getting Started with AWS |
= Tutorial 1 - Intro to Linux

= Cloud Computing - How did we get here?
Chapter 4 Marinescu 2" edition:
Introduction to parallel and distributed systems

‘TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]
‘ (I School of Engineering and Technology, University of Washington - Tacoma 12

13

OBJECTIVES - 10/3

= Questions from Course Introduction
= Daily Feedback Surveys

= Demographics Survey
= AWS Cloud Credits Survey

= Tutorial O - Getting Started with AWS
|- Tutorial 1 - Intro to Linux |

= Cloud Computing - How did we get here?
Chapter 4 Marinescu 2" edition:
Introduction to parallel and distributed systems

TCS5462/562:(Software Engineering for) Cloud Computing [Fa 2023]
‘ October3, 2023 School of Engineering and Technology, University of Washington - Tacoma. 1215

14

OBJECTIVES - 10/3

= Daily Feedback Surveys
= Questions from Course Introduction

= Demographics Survey
= AWS Cloud Credits Survey

= Tutorial O - Getting Started with AWS
= Tutorial 1 - Intro to Linux

= Cloud Computing - How did we get here?
Chapter 4 Marlnescu 2"4 edltlon:
Introduction to parallel and distributed systems

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2023]
‘ October3, 2023 School of Engineering and Technology, University of Washington - Tacoma 1216

15

OBJECTIVES

= Cloud Computing: How did we get here?
= Parallel and distributed systems
(Marinescu Ch. 2 - 15t edition, Ch. 4 - 2" edition)
= Data, thread-level, task-level parallelism
= Parallel architectures

= SIMD architectures, vector processing, multimedia
extensions

= Graphics processing units

= Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems

= Modularity

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023]
‘ GRS School of Engineering and Technology, University of Washington - Tacoma 2

16

CLOUD COMPUTING:

HOW DID WE GET HERE?

= General interest in parallel computing
= Moore’s Law - # of transistors doubles every 18 months
= Post 2004: heat dissipation challenges:
can no longer easily increase cloud speed
= Overclocking to 7GHz takes -
more than just liquid nitrogen: g E
https://tinyurl.com/y93s2yz2
=Solutions:
=Vary CPU clock speed
= Add CPU cores

= Multl-core technology

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023]
‘ CEEESRETS School of Engineering and Technology, University of Washington - Tacoma 128

17

Slides by Wes J. Lloyd

18

L2.3


https://forms.gle/G722gMn5wg9VRZXU6
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
https://tinyurl.com/y93s2yz2

TCSS 462: Cloud Computing

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

Each Year We Get>< More Processors

vs Historically:
Boost single-stream
performance via more
complex chips.
Now:
Deliver more cores per
chip (+ GPU, NIC, SoC).

The free lunch is over
for today's sequential
apps and many
concurrent apps. We
need killer apps with

‘ October 3, 2023

TCS8462/562: (Software Engineering for) Cloud Computing [Fall 2023] 2

School of Engineering and Technology, University of Washington - Tacoma

[Fall 2023]

wn o am e om s am we we 1015 Of latent parallelism.

AMD’S 64-CORE 7NM CPUS

= Epyc Rome CPUs

= Announced August 2019

= EPYC 7H12 requires liquid cooling
AMD EPYC

Frequency (GHz)

EPYC TH12 641128 260 330 256 MB 280 W ?
EPYC 7742 641128 225 340 256 MEB 25W $6950
EPYC 7702 641128 200 335 256 MB 200W $6450
EPYC 7642 48/96 230 320 256 MB 225W $4775
EPYC 7552 48/96 220 330 192 MB 200W $4025
[ ownmn | g m oo

19

HOST SERVER VCPUS - AMAZON EC2
INFRASTRUCTURE-AS-A-SERVICE CLOUD

= Cloud server virtual CPUs/host
= Growth since 2006 - Amazon Compute Cloud (EC2)

= 1st generation Intel: m1 - 8 vCPUs / host (Aug 2006)
= 2nd geperation Intel: m2 - 16 vCPUs / host (Oct 2009)
= 3rd generation Intel: m3 - 32 vCPUs / host (Oct 2012)
= 4th generation Intel: m4 - 48 vCPUs / host (June 2015)

= 5th generation Intel: m5 - 96 vCPUs / host (Nov 2017)
= 6th generation Intel: m6i - 128 vCPUs / host (Aug 2021)
= 6t generation AMD: m6a - 192 vCPUs / host  (Nov 2021)

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023]
‘ October3, 2023 School of Engineering and Technology, University of Washington - Tacoma 22

20

HYPER THREADING

= Modern CPUs provide multiple instruction pipelines,
supporting multiple execution threads, usually 2
to feed instructions to a single CPU core...

= Two hyper-threads

are not equivalent 4770 with HTT Vs, 4670 without HTT - 25% improvement w/ HTT

to (2) CPU cores CPU Mark Relative to Top 10 Common CPUs
ter

AS of 7in of Fenruary 2014 - Higher results represent ‘ormance

= {7-4770 and i5-4760
same CPU, with and
without HTT

= Example: >
hyperthreads add
+32.9%

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023]
‘ October3, 2023 School of Engineering and Technology, University of Washington - Tacoma 1222

21

CLOUD COMPUTING:
HOW DID WE GET HERE? - 2

= To make computing faster, we must go “parallel”

= Difficult to expose parallelism in scientific
applications

= Not every problem solution has a parallel algorithm
= Chicken and egg problem...

= Many commercial efforts promoting pure parallel
programming efforts have failed

= Enterprise computing world has been skeptical and
less involved in parallel programming

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023]
‘ GRS School of Engineering and Technology, University of Washington - Tacoma 2

22

CLOUD COMPUTING:
HOW DID WE GET HERE? - 3

= Cloud computing provides access to “infinite”
scalable compute infrastructure on demand

= Infrastructure availability is key to exploiting
parallelism

= Cloud applications
=Based on cllent-server paradigm
=Thin clients leverage compute hosted on the cloud
=Applications run many web service instances
=Employ load balancing

School of Engineering and Technology, University of Washington - Tacoma

‘ October3, 2023 TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023] e

23

Slides by Wes J. Lloyd

24

L2.4



TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

CLOUD COMPUTING:

HOW DID WE GET HERE? - 4

= Blg Data requires massive amounts of compute
resources

= MAP - REDUCE
=Single instruction, multiple data (SIMD)
=Exploit data level parallelism

= Bioinformatics example

TC55462/562: (Software Engineering for) Cloud Computing [Fall 2023]
‘ O School of Engineering and Technology, University of Washington - Tacoma 122

SMITH WATERMAN USE CASE

= Applies dynamic programming to find best local
alignment of two protein sequences
= Embarrassingly parallel, each task can run in isolation
= Use case for GPU acceleration

= AWS Lambda Serverless Computing Use Case:

Goal: Pair-wise comparison of all unique human
protein sequences (20,336)

= Python client as scheduler

= C Striped Smith-Waterman (SSW) execution engine

From: Zhao M, Lee WP, Garrison EP, Marth GT: SSW library: an SIMD Smith-
Waterman C/C++ library for use in genomic applications.
PLoS One 2013, 8:e82138

TC55462/562: (Software Engineering for) Cloud Computing [Fall 2023]
‘ (I School of Engineering and Technology, University of Washington - Tacoma 122

25

26

SMITH WATERMAN RUNTIME

= | aptop server and client (2-core, 4-HT): 8.7 hours

= AWS Lambda FaaS, laptop as client: 2.2 minutes
= Partitions 20,336 sequences into 41 sets
= Execution cost: ~ 82¢ (~237x speed-up)

= AWS Lambda server, EC2 instance as client: 1.28
minutes
= Execution cost: ~ 87¢ (~408x speed-up)

= Hardware
= Laptop client: Intel i5-7200U 2.5 GHz :4 HT, 2 CPU
= Cloud client: EC2 Virtual Machine - m5.24xlarge: 96 vCPUs
= Cloud server: Lambda ~1000 Intel E5-2666v3 2.9GHz CPUs

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023]
‘ October3, 2023 School of Engineering and Technology, University of Washington - Tacoma 22

CLOUD COMPUTING:

HOW DID WE GET HERE? - 3

= Compute clouds are large-scale distributed
systems
=Heterogeneous systems
*Homogeneous systems
=Autonomous
=Self organizing

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023]
‘ October3, 2023 School of Engineering and Technology, University of Washington - Tacoma 1228

27
OBJECTIVES
= Cloud Computing: How did we get here?
= Parallel and distributed systems
(Marinescu Ch. 2 - 15t edition, Ch. 4 - 2" edition)
= Data, thread-level, task-level parallelism
= Parallel architectures
= SIMD architectures, vector processing, multimedia
extensions
= Graphics processing units
= Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems
= Modularity
[ ovobersams | Tostebaer ot s o coud oty )
29

Slides by Wes J. Lloyd

28

PARALLELISM

= Discovering parallelism and development of parallel
algorithms requires considerable effort

= Example: numerical analysis problems, such as solving large
systems of linear equations or solving systems of Partial
Differential Equations (PDEs), require algorithms based on
domain decomposition methods.

= How can problems be split into independent chunks?
= Fine-gralned parallelism

= Only small bits of code can run in parallel without coordination
= Communication is required to synchronize state across nodes
= Coarse-grained parallelism

= Large blocks of code can run without coordination

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023]
‘ CEEESRETS School of Engineering and Technology, University of Washington - Tacoma 10

30

L2.5



TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

PARALLELISM - 2

= Coordination of nodes
= Requires message passing or shared memory

= Debugging parallel message passing code is easier
than parallel shared memory code

= Message passing: all of the interactions are clear
= Coordination via specific programming API (MPI)

= Shared memory: interactions can be implicit - must
read the code!!

= Processing speed is orders of magnitude faster than
communication speed (CPU > memory bus speed)
= Avoiding coordination achieves the best speed-up

TCS8462/562: (Software Engineering for) Cloud Computing [Fall 2023] L
School of Engineering and Technology, University of Washington - Tacoma

‘ October 3, 2023

TYPES OF PARALLELISM

= Parallelism:

= Goal: Perform multiple operations at the same time
to achieve a speed-up

= Thread-level parallelism (TLP)
=Control flow architecture

= Data-level parallelism
=Data flow architecture

= Bit-level parallelism

= |nstruction-level parallelism (ILP)

TCS8462/562: (Software Engineering for) Cloud Computing [Fall 2023] a2

(I School of Engineering and Technology, University of Washington - Tacoma

31

32

THREAD LEVEL PARALLELISM (TLP)

= Number of threads an application runs at any one time
= Varies throughout program execution

= As a metric:

= Minlmum: 1 thread

= Can measure average, maximum (peak)

= QUESTION: What are the consequences of average (TLP)

for schedullng an application to run on a computer with a
fixed number of CPU cores and hyperthreads?

= Let’s say there are 4 cores, or 8 hyper-threads...
= Key to avoiding waste of computing resources
is knowing your application’s TLP...

TCS8462/562: (Software Engineering for) Cloud Computing [Fall 2023] -
School of Engineering and Technology, University of Washington - Tacoma

‘ October 3, 2023

TLP - PRIMES EXAMPLE

= Multi-threaded prime number generation
= Compute-bound workload

= Can use variable # of threads

= Generates n prime numbers

= Runtimes: 100,000 primes

= 1 thread: 59.15 s

= 2 threads: 30.957 s

= 4 threads: 15.539 s

= 8 threads: 12.112 s

= Observe TLP with top

time ./primes8 30000 >/dev/null

October3, 2023 TCS3462/562: (Software Engineering for) Cloud Computing [Fall 2023] \3e

School of Engineering and Technology, University of Washington - Tacoma

33

WE WILL RETURN AT

4:50PM

35

Slides by Wes J. Lloyd

34

CONTROL-FLOW ARCHITECTURE

= Typical architecture used today - w/ multiple threads

= By John von Neumann (1945)

= Also called the Von Neumann architecture

= Dominant computer system architecture

= Program counter (PC) determines
next instruction to load into
instruction register

= Program execution
is sequential

Central Processing Unit

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023] 236

) School of Engineering and Technology, University of Washington - Tacoma

36

L2.6



TCSS 462: Cloud Computing

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

DATA-LEVEL PARALLELISM

of the program on them with little or no
communication

= Problems are considered to be

embarrassingly parallel

= Also perfectly parallel or pleasingly parallel...

into a number of parallel tasks

= Partition data into big chunks, run separate copies

= Little or no effort needed to separate problem

= MapReduce programming model is an example

TCS8462/562: (Software Engineering for) Cloud Computing [Fall 2023]
School of Engineering and Technology, University of Washington - Tacoma

October 3, 2023

DATA FLOW ARCHITECTURE

= Alternate architecture used by network routers, digital
signal processors, special purpose systems

= Operations performed when input (data) becomes
available

= Envisioned to provide much higher parallelism

= Multiple problems has prevented wide-scale adoption
= Efficiently broadcasting data tokens in a massively
parallel system
= Efficiently dispatching instruction tokens in a massively
parallel system
= Building content addressable memory large enough to
hold all of the dependencies of a real program

TC55462/562: (Software Engineering for) Cloud Computing [Fall 2023]
(I School of Engineering and Technology, University of Washington - Tacoma 1238

37

38

DATA FLOW ARCHITECTURE - 2

= Architecture not as popular as control-flow

instruction scheduling since the 1990s

data dependency

execution window
Execution window size typically 32 to 200 instructions

Utility of data flow architectures has been

much less than envisloned

October 3, 2023

= Modern CPUs emulate data flow architecture for dynamic

= Out-of-order execution - reduces CPU idle time by not blocking
for instructions requiring data by defining execution windows
= Execution windows: identify instructions that can be run by

= Instructions are completed in data dependency order within

BIT-LEVEL PARALLELISM

= Computations on large words (e.g. 64-bit integer) are
performed as a single instruction

= Fewer instructions are required on 64-bit CPUs to process
larger operands (A+B) providing dramatic performance
improvements

= Processors have evolved: 4-bit, 8-bit, 16-bit, 32-bit, 64-bit
QUESTION: How many Instructlons are required to add two
64-bit numbers on a 16-bit CPU? (Intel 8088)

= 64-bit MAX int = 9,223,372,036,854,775,807 (signed)

= 16-bit MAX int = 32,767 (signed)

= Intel 8088 - limited to 16-bit registers

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]

‘ October3, 2023 School of Engineering and Technology, University of Washington - Tacoma

39

= CPU pipelining architectures enable ILP
= CPUs have multi-stage processing pipelines

can execute concurrently on different CPU circuitry

= |F - instruction fetch

= |D- instruction decode

= EX - instruction execution
= MEM - memory access

= WB - write back

INSTRUCTION-LEVEL PARALLELISM (ILP)

= Pipelining: split instructions into sequence of steps that

= Basic RISC CPU - Each instruction has 5 pipeline stages:

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023]

‘ GRS School of Engineering and Technology, University of Washington - Tacoma

41

Slides by Wes J. Lloyd

40

CPU PIPELINING

Clock Cycle

Waiting
Instructions

PIPELINE

Completed
Instructions

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023]
‘ CEEESRETS School of Engineering and Technology, University of Washington - Tacoma ‘e

42

L2.7



TCSS 462: Cloud Computing [Fall 2023]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

INSTRUCTION LEVEL PARALLELISM - 2 OBJECTIVES
= RISC CPU: = Cloud Computing: How did we get here?
= After 5 clock cycles, all 5 stages of an instruction are = Parallel and distributed systems
loaded (Marinescu Ch. 2 - 15t edition, Ch. 4 - 2" edition)

= Starting with 6t clock cycle, one full instruction
completes each cycle

= The CPU performs 5 tasks per clock cycle!
Fetch, decode, execute, memory read, memory write back |

= Data, thread-level, task-level parallelism
= Parallel architectures

=SIMD architectures, vector processing, multimedia
extensions

= Graphics processing units
. B . R ;

= Pentium 4 (CISC CPU) - processing pipeline w/ 35 stages! = Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems

= Modularity

TC55462/562: (Software Engineering for) Cloud Computing [Fall 2023] TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023]
‘ O School of Engineering and Technology, University of Washington - Tacoma 1243 (I School of Engineering and Technology, University of Washington - Tacoma 12ae

43 44

MICHAEL FLYNN’S COMPUTER FLYNN’S TAXONOMY

ARCHITECTURE TAXONOMY

= Michael Flynn's proposed taxonomy of computer = SISD (Single Instruction Single Data)
architectures based on concurrent instructions and Scalar architecture with one processor/core.
number of data streams (1966) = Individual cores of modern multicore processors are

= SISD (SIngle Instruction Single Data) R

= SIMD (Single Instruction, Multiple Data) = SIMD (Single Instruction, Multiple Data)

= MIMD (Multiple Instructions, Multiple Data) Supports vector processing

= When SIMD instructions are issued, operations on
individual vector components are carried out concurrently

= Two 64-element vectors can be added in parallel

= Vector processing instructions added to modern CPUs

= Example: Intel MMX (multimedia) instructions

= |ESS COMMON: MISD (Multiple Instructions, Single Data)

= Pipeline architectures: functional units perform different
operations on the same data

= For fault tolerance, may want to execute same instructions
redundantly to detect and mask errors - for task replication

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023] TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023]
‘ October3, 2023 School of Engineering and Technology, University of Washington - Tacoma 1245 October3, 2023 School of Engineering and Technology, University of Washington - Tacoma

45 46

(SIMD): VECTOR PROCESSING

ADVANTAGES FLYNN’'S TAXONOMY - 2

= Exploit data-parallelism: vector operations enable speedups = MIMD (Multiple Instructions, Multiple Data) - system with
several processors and/or cores that function asynchronously
and independently

= At any time, different processors/cores may execute different

= SIMD CPU extension (e.g. MMX) add support for vector instructions on different data
operations on traditional CPUs = Multi-core CPUs are MIMD

= Processors share memory via interconnection networks
= Hypercube, 2D torus, 3D torus, omega network, other topologies

= MIMD systems have different methods of sharing memory

= Provides higher potential speedup vs. MIMD architecture Uniform Memory Access (UMA)

Cache Only Memory Access (COMA)

Non-Uniform Memory Access (NUMA)

= Vectors architecture provide vector registers that can store
entire matrices into a CPU register

= Vector operations reduce total number of instructions for
large vector operations

= Developers can think sequentially; not worry about
parallelism

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023] TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023]
‘ GRS School of Engineering and Technology, University of Washington - Tacoma e CEEESRETS School of Engineering and Technology, University of Washington - Tacoma

47 48

Slides by Wes J. Lloyd L2.8



TCSS 462:
TCSS 562:

Cloud Computing
Software Engineering for Cloud Computing

School of Engineering and Technology, UW-Tacoma

ARITHMETIC INTENSITY

= Arlthmetic Intensity: Ratio of work (W) to - W

memory traffic r/w (Q) T Q
Example: # of floating-point ops per byte of data read
= Characterizes application scalability with SIMD support
= SIMD can perform many fast matrix operations in parallel

= High arlthmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

= Low arithmetic Intensity:
Programs with sparse matrix operations do not scale well
with problem size
(memory RW becomes bottleneck, not enough ops!)

October3, 2023 TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023) s

School of Engineering and Technology, University of Washington - Tacoma

[Fall 2023]

ROOFLINE MODEL

= When program reaches a given arithmetic intensity
performance of code running on CPU hits a “roof”
= CPU performance bottleneck changes from:
memory bandwidth (left) > floating point performance (right)
k performance.
exmpanee KEY tAKe-aways: )
— Whena program’s has low
Arithmetic Intensity, memory
bandwidth limits performance..

g2

Performance

With high Arithmetic intensity,
the system has peak parallel
performance...

- performance is limited by??

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023] \l‘

School of Engineering and Technology, University of Washington - Tacoma

Arithmetic intensity

‘ October 3, 2023

49

OBJECTIVES

= Cloud Computing: How did we get here?
= Parallel and distributed systems
(Marinescu Ch. 2 - 15t edition, Ch. 4 - 2" edition)
= Data, thread-level, task-level parallelism
= Parallel architectures

=SIMD architectures, vector processing, multimedia
extensions

= Graphics processing units |

= Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems
= Modularity

October3, 2023 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023] 251

School of Engineering and Technology, University of Washington - Tacoma

50

GRAPHICAL PROCESSING UNITS (GPUs)

= GPU provides multiple SIMD processors

= Typically 7 to 15 SIMD processors each

= 32,768 total registers, divided into 16 lanes
(2048 registers each)

= GPU programming model:
single instruction, multiple thread

= Programmed using CUDA- C like programming
language by NVIDIA for GPUs

= CUDA threads - single thread associated with each
data element (e.g. vector or matrix)

= Thousands of threads run concurrently
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023] 52

School of Engineering and Technology, University of Washington - Tacoma

‘ October 3, 2023

51

OBJECTIVES

= Cloud Computing: How did we get here?
= Parallel and distributed systems
(Marinescu Ch. 2 - 15t edition, Ch. 4 - 2" edition)
= Data, thread-level, task-level parallelism
= Parallel architectures

= SIMD architectures, vector processing, multimedia
extensions

= Graphics processing units

= Speed-up, Amdahl's Law, Scaled Speedup |

= Properties of distributed systems
= Modularity

October3, 2023 TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023] s

School of Engineering and Technology, University of Washington - Tacoma

52

PARALLEL COMPUTING

= Parallel hardware and software systems allow:

=Solve problems demanding resources not available on
single system.

= Reduce time required to obtain solution

=The speed-up (S) measures effectiveness of
parallelization:

S(N) =T(1) / T(N)

T(1) > execution time of total sequential computation
T(N) = execution time for performing N parallel
computations in parallel

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023] \2ss

School of Engineering and Technology, University of Washington - Tacoma

‘ October 3, 2023

53

Slides by Wes J. Lloyd

54

L2.9



TCSS 462: Cloud Computing [Fall 2023]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

SPEED-UP EXAMPLE AMDAHL'S LAW

= Consider embarrassingly parallel image processing = Amdahl’s law is used to estimate the speed-up of a job
= Eight images (multiple data) using parallel computing
= Apply image transformation (greyscale) in parallel

= 8-core CPU, 16 hyper threads 1. Divide job into two parts

2. Part A that will still be sequential

= Sequential processing: perform transformations one at a time 3. Part B that will be sped-up with parallel computing

using a single program thread

* 8 images, 3 seconds each: T(1) = 24 seconds = Portion of computation which cannot be parallelized will
= Parallel processing determine (i.e. limit) the overall speedup

= 8 images, 3 seconds each: T(N) = 3 seconds = Amdahl’s law assumes jobs are of a fixed size
= Speedup: S(N) = 24 / 3 = 8x speedup = Also, Amdahl’s assumes no overhead for distributing the
= Called “perfect scaling” work, and a perfectly even work distribution

= Must consider data transfer and computation setup time

TC55462/562: (Software Engineering for) Cloud Computing [Fall 2023] TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023]
‘ O School of Engineering and Technology, University of Washington - Tacoma 1255 (I School of Engineering and Technology, University of Washington - Tacoma 1256

55 56

AMDAHL'S LAW AMDAHL'S LAW EXAMPLE
Twa Indep endent parts A B
1 = Program with two independent parts:
S = Part A is 75% of the execution time o
(11— f] + ‘\L = Part B is 25% of the execution time Mike B Sctaser NN
: = Part B is made 5 times faster with .
parallel computing e 8 e

i . o Wiped
= S = theoretical speedup of the whole task = Estimate the percent improvement of task execution

= f= fraction of work that is parallel (ex. 25% or 0.25) = Original Part A is 3 seconds, Part B is 1 second

= N= proposed speed up of the parallel part (ex.5 times speedup)
= N=5 (speedup of part B)

=.25 (only 25% of the whole job (A+B) will be sped-up)
= S=1/ ((1-f) + f/S)

= % improvement

of task execution =100* (1-(1/9))
= S=1/((.75) + .25/5)
= Using Amdahl’s la hat is the maximum possible speed-up? "s=1.25
i W, W i Ximu i -up? X
= % improvement = 100 * (1 - 1/1.25) = 20%
TCSS462/562: (Softy Engir ing for) Cloud Cor tting [Fall 2023 TCSS462/562: (Softy Engir ing for) Cloud Cor iting [Fall 2023]
‘ CEEEE 2D e T o e A Ty 27 O e o e e W . o

GUSTAFSON'S LAW GUSTAFSON'S LAW
= Calculates the scaled speed-up using “N” processors = Calculates the scaled speed-up using “N” processors
S(N) =N+ (1-N)a S(N) =N+ (1-N)«

N: Number of processors N: Number of processors

o: fraction of program run time which can’t be parallelized a: fraction of program run time which can’t be parallelized
(e.g. must run sequentially) (e.g. must run sequentially)

= Can be used to estimate runtime of parallel portion of = Can be used to estimate runtime of parallel portion of
program program

=" Where a = o / (1 + 0)
= Where o= sequential time, © =parallel time
= OQur Amdahl’s example: o= 3s, © =1s, a =.75

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023] 259 ‘ L TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023] 50

‘ GRS School of Engineering and Technology, University of Washington - Tacoma School of Engineering and Technology, University of Washington - Tacoma

59 60

Slides by Wes J. Lloyd L2.10



TCSS 462: Cloud Computing [Fall 2023]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

GUSTAFSON'S LAW STAFSON’S EXAMPLE
= Calculates the scaled speed-up using “N” processors = QUESTION:
What is the maximum theoretical speed-up on a 2-core CPU ?
S(N) =N+ (1-N)« S(N) =N+ (1-N)« ’ !
N: Number of processors N=2, a=.75
o: fraction of program run time which can’t be parallelized S(N) _=92 +(1-2).75
(e.g. must run sequentially) S(N) =7
= Example: = What is the maximum theoretical speed-up on a 16-core CPU?
Consider a program that is embarrassingly parallel, S(N) =N+ (1-N)«
but 75% cannot be parallelized. a=.75 N=16, a=.75
QUESTION: If deploying the job on a 2-core CPU, what S(N) =16 + (1 - 16) .75
scaled speedup Is possible assumling the use of two S(N) =12
processes that run in parallel?
[ ouobersas |Gz St o Gt ot 2 [ omnam | e e s o aons as
61 62
TAFSON’S EXAMPLE MOORE’S LAW
= QUESTION: = Transistors on a chip doubles approximately every 1.5 years
What is the maximum theoretical speed-up on a 2-core CPU ? » CPUs now have billions of transistors
S(N) =N+ (1-N)«a . e
N=2 o= Power dissipation issues at faster clock rates leads to heat

removal challenges
= Transition from: increasing clock rates - to adding CPU cores

S(N) = For 2 CPUs, speed up is 1.25x

= Symmetric core processor -multi-core CPU, all cores have the

For 16 CPUs, speed up is 4.75x
o arspeeuup Y & CPU? same computational resources and speed

" What is t a o o aLOTCU
S(N) =N+ (1-N)«a = Asymmetric core processor - on a multi-core CPU, some cores
N=16, a=.75 have more resources and speed
S(N) =16 + (1 -16) .75 = Dynamlic core processor - processing resources and speed can
S(N) =2 be dynamically configured among cores

= Observation: asymmetric processors offer a higher speedup
TCSS462/562: (Softy Engir ing for) Cloud Cor ing [Fall 2023] TCSS462/562: (Softy Engir ing for) Cloud Cor ing [Fall 2023]
‘ CEEEE 2D Sehoa) of Engivecing ova echmlogy; Univarty of Wathingon - aeoma e ‘ O S T AT TN IS O U e o A e e o

63 64

OBJECTIVES DISTRIBUTED SYSTEMS
= Cloud Computing: How did we get here? = Collection of autonomous computers, connected through a
«p llel and distributed " network with distribution software called “middleware” that
ara_ G/el 24 uste sys B - L enables coordination of activities and sharing of resources
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2"? edition) I
= Data, thread-level, task-level parallelism = Users perceive system as a single, integrated computing
= Parallel architectures facility.
= SIMD architectures, vector processing, multimedia = Compute nodes are autonomous
extensions = Scheduling, resource management, and security implemented

by every node
= Multiple points of control and failure
I = Nodes may not be accessible at all times
= System can be scaled by adding additional nodes

= Graphics processing units
= Speed-up, Amdahl's Law, Scaled Speedup
| = Properties of distributed systems

= Modularit — "
Y = Availability at low levels of HW/software/network reliability
TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023] TCS$462/562: (Software Engineering for) Cloud Computing [Fall 2023]
‘ CaEIRPETD School of Engineering and Technology, University of Washington - Tacoma ue ‘ CEEELETD School of Engineering and Technology, University of Washington - Tacoma 160

Slides by Wes J. Lloyd L2.11



TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2023]

DISTRIBUTED SYSTEMS - 2

= Key non-functional attributes
= Known as “ilities” in software engineering

= Availability - 24/7 access?

= Reliability - Fault tolerance

= Accessibility - reachable?

= Usability - user friendly

= Understandability - can under

= Scalability - responds to variable demand

= Extensibility - can be easily modified, extended

= Maintainability - can be easily fixed

= Consistency - data is replicated correctly in timely manner

TRANSPARENCY PROPERTIES OF
DISTRIBUTED SYSTEMS

= Access transparency: local and remote objects accessed using
identical operations

= Location transparency: objects accessed w/o knowledge of
their location.

= Concurrency transparency: several processes run concurrently

using shared objects w/o interference among them

Replication transparency: multiple instances of objects are

used to increase reliability

- users are unaware if and how the system is replicated

Failure transparency: concealment of faults

= Migration transparency: objects are moved w/o affecting
operations performed on them

= Performance transparency: system can be reconfigured based
on load and quality of service requirements

= Scallng transparency: system and applications can scale w/o
change in system structure and w/o affecting applications

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023]

‘ (I School of Engineering and Technology, University of Washington - Tacoma

[ ovobersums Tt ot s o coud e ol | oo ]
67
OBJECTIVES
= Cloud Computing: How did we get here?
= Parallel and distributed systems
(Marinescu Ch. 2 - 15t edition, Ch. 4 - 2" edition)
= Data, thread-level, task-level parallelism
= Parallel architectures
=SIMD architectures, vector processing, multimedia
extensions
= Graphics processing units
= Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems
| =Modularity |

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023]
‘ October3, 2023 School of Engineering and Technology, University of Washington - Tacoma 1269

68

TYPES OF MODULARITY

= Soft modularity: TRADITIONAL

Divide a program into modules (classes) that call each other
and communicate with shared-memory

= A procedure calling convention is used (or method invocation)

= Enforced modularity: CLOUD COMPUTING

= Program is divided into modules that communicate only
through message passing

= The ubiquitous client-server paradigm

= Clients and servers are independent decoupled modules

= System is more robust if servers are stateless

= May be scaled and deployed separately

= May also FAIL separately!

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023]
‘ October3, 2023 School of Engineering and Technology, University of Washington - Tacoma 27

69

70

CLOUD COMPUTING - HOW DID WE GET HERE?

SUMMARY OF KEY POINTS

= Multi-core CPU technology and hyper-threading

= What is a
= Heterogeneous system?
= Homogeneous system?
= Autonomous or self-organizing system?

= Fine grained vs. coarse grained parallelism

= Parallel message passing code is easier to debug than
shared memory (e.g. p-threads)

= Know your application’s max/avg Thread Level
Parallellsm (TLP)

= Data-level parallelism: Map-Reduce, (SIMD) Single
Instruction Multiple Data, Vector processing & GPUs

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023]
‘ GRS School of Engineering and Technology, University of Washington - Tacoma 27

CLOUD COMPUTING - HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 2

= Blt-level parallelism
= Instructlon-level parallellsm (CPU pipelining)
= Flynn’s taxonomy: computer system architecture classification
= SISD - Single Instruction, Single Data (modern core of a CPU)
= SIMD - Single Instruction, Multiple Data (Data parallelism)
= MIMD - Multiple Instruction, Multiple Data
= MISD is RARE; application for fault tolerance...
= Arithmetic intensity: ratio of calculations vs memory RW
= Roofline model:
Memory bottleneck with low arithmetic intensity
= GPUs: ideal for programs with high arithmetic intensity
= SIMD and Vector processing supported by many large registers

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023]
‘ CEEESRETS School of Engineering and Technology, University of Washington - Tacoma 1

71

Slides by Wes J. Lloyd

72

L2.12



TCSS 462: Cloud Computing [Fall 2023]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CLOUD COMPUTING - HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 3

QUESTIONS

= Speed-up (S)

S(N) =T(1) / T(N)
= Amdahl’s law:

S=1/ ((1-f) + f/N),s=latency, f=parallel fraction, N=speed-up
= x = percent of program that must be sequential

= Scaled speedup with N processes:
S(N) =N - a( N-1)

= Moore’s Law

= Symmetric core, Asymmetric core, Dynamic core CPU
= Distributed Systems Non-function quality attributes
= Distributed Systems - Types of Transparency

= Types of modularity- Soft, Enforced

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2023] TCSS462/562: (Software Engineering for) Cloud Computing [Fall 20l
l (R ) I School of Engineering and Technology, University of Washington - Tacoma 273 cbeiSianzs School of Engineering and Technology, University of Washington - Tilor

73 74

Slides by Wes J. Lloyd L2.13



	Slide 1:  TCSS 462/562:  (Software Engineering  for) Cloud Computing
	Slide 2: OBJECTIVES – 10/3
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 9/28
	Slide 7: Feedback - 2
	Slide 8: TCSS562 – software engineering for cloud computing
	Slide 9: OBJECTIVES – 10/3
	Slide 10: OBJECTIVES – 10/3
	Slide 11: Demographics survey
	Slide 12: OBJECTIVES – 10/3
	Slide 13: AWS Cloud Credits survey
	Slide 14: OBJECTIVES – 10/3
	Slide 15: OBJECTIVES – 10/3
	Slide 16: OBJECTIVES – 10/3
	Slide 17: objectives
	Slide 18: Cloud computing:  How did we get here?
	Slide 19
	Slide 20: AMD’s 64-core 7nm CPUs
	Slide 21: Host server vcpus – amazon ec2 infrastructure-as-a-service cloud
	Slide 22: Hyper threading
	Slide 23: Cloud computing: How did we get here? - 2
	Slide 24: cloud computing: How did we get here? - 3
	Slide 25: Cloud computing: how did we get here? - 4
	Slide 26: Smith Waterman Use Case
	Slide 27: Smith waterman runtime
	Slide 28: cloud computing: How did we get here? - 3
	Slide 29: objectives
	Slide 30: parallelism
	Slide 31: Parallelism - 2
	Slide 32: Types of parallelism
	Slide 33: Thread level parallelism (TLP)
	Slide 34: Tlp – primes example
	Slide 35: We will return at 4:50pm
	Slide 36: Control-Flow architecture
	Slide 37: Data-level Parallelism
	Slide 38: Data flow architecture
	Slide 39: Data flow architecture - 2
	Slide 40: Bit-level parallelism
	Slide 41: Instruction-level parallelism (ILP)
	Slide 42: Cpu pipelining
	Slide 43: Instruction level parallelism - 2
	Slide 44: objectives
	Slide 45: Michael Flynn’s computer architecture taxonomy
	Slide 46: Flynn’s taxonomy
	Slide 47: (Simd): VECtOR PROCESSING advantages
	Slide 48: Flynn’s taxonomy - 2
	Slide 49: Arithmetic intensity
	Slide 50: Roofline model
	Slide 51: objectives
	Slide 52: Graphical processing units (gpus)
	Slide 53: objectives
	Slide 54: Parallel computing
	Slide 55: Speed-up example
	Slide 56: Amdahl’s law
	Slide 57: Amdahl’s law
	Slide 58: Amdahl’s law example
	Slide 59: Gustafson's Law
	Slide 60: Gustafson's Law
	Slide 61: Gustafson's Law
	Slide 62: Gustafson’s example
	Slide 63: Gustafson’s example
	Slide 64: Moore’s law
	Slide 65: objectives
	Slide 66: Distributed systems
	Slide 67: Distributed systems - 2
	Slide 68: Transparency properties of distributed systems
	Slide 69: objectives
	Slide 70: Types of modularity
	Slide 71: Cloud computing – how did we get here? Summary of key points
	Slide 72: Cloud computing – how did we get here? Summary of key points - 2
	Slide 73: Cloud computing – how did we get here? Summary of key points - 3
	Slide 74: Questions

