TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TCSS 462/562:
(SOFTWARE ENGINEERING,
FOR) CLOUD COMPUTING

Introduction

Wes J. Lloyd

School of Engineering and Technology
University of Washington - Tacoma

OBJECTIVES - 9/30

= Syllabus

® Course Introduction

® Demographics Survey
= AWS Cloud Credits Survey

® Tutorial O - Getting Started with AWS
® Tutorial 1 - Intro to Linux

® Cloud Computing - How did we get here? (10/4)
Chapter 4 Marinescu 2" edition:
Introduction to parallel and distributed systems

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

Septembens0j202s School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

[Fall 2025]

L1.1

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TCSS562 - SOFTWARE ENGINEERING

FOR CLOUD COMPUTING

® Course webpage is embedded into Canvas

= In CANVAS to access links:
RIGHT-CLICK - Open in new window

= Syllabus online at:
http://faculty.washington.edu/wlloyd/courses/tcss562/

m Grading

®m Schedule

B Assignments

September 30, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 1.3 |

School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 9/30

= Syllabus
= Course Introduction

® Demographics Survey
= AWS Cloud Credits Survey

® Tutorial O - Getting Started with AWS
® Tutorial 1 - Intro to Linux

® Cloud Computing - How did we get here?
Chapter 4 Marinescu 2" edition:
Introduction to parallel and distributed systems

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] | 14 |

Septembens0j202s School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L1.2

http://faculty.washington.edu/wlloyd/courses/tcss562/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TCSS 462/562 - Fall 2025

TCSS 462/

TCSS 562
= [n-Person FALL 2025

UWT JOY 215
Live Streamed on Zoom

m Class sessions are streamed LIVE
and recorded for 24/7 availability

= Recordings deleted after ~120 days

=18 class meetings
=2 Holidays: No Class on Nov 11, Nov 27

®This course will have 2 in-person
quizzes

®This course can help with

preparation for TCSS 558 - Applied
Distributed Computing

DELIVERY FORMAT

® Fall 2025 TCSS 462/562 :
= |n-person meetings JOY 215
= Video live-stream of lectures + recordings by Zoom

= Options to complete and submit most assignments
remotely

= Please note: UWT does not provide professional video
production services. Provided recordings/live-streams are
provided with best-effort, but quality is not guaranteed.

September 30, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | e |

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

[Fall 2025]

L1.3

TCSS 462: Cloud Computing

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

IMPROVING PERFORMANCE

IN COLLEGE CLASSES

= From the DVD/Book: “Where there’s a will there’s an A”

= Three simple things the instructor remembers for improving
grades in college classes:

1. Attend every class

2. Sitin the front row (or as close to the front as possible)
3. Read the book (or assigned reading) - all of it

= |f not satisfied with recent grades, are you doing these things?

September 30, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma | w7 |

462/562 RECOMMENDATIONS

m Attend in person as much as possible

= Details of assignments can be easily explained with

impromptu questions in-person which often do not occur
online (Zoom)

= Stay current

= Attend in-person or review lectures weekly
= Meet your project team members

= Work out the best arrangements for the team (in-person,
remote, etc.)

= Expect some up-front in-person planning before remote
work

® Quizzes and class presentations - in person

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
| Septembens0j202s School of Engineering and Technology, University of Washington - Tacoma s

Slides by Wes J. Lloyd

[Fall 2025]

L1.4

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

INDUSTRY CHALLENGES

Recently - the job market has become increasingly competitive
Many companies have returned to at/near 100% in-person

= Amazon - January 2025

= Starbucks Corporate Offices

= Commuter traffic has increased

After an employee’s job market (2021-23), we have now entered an
employers job market (2024-)

= Al is less the cause than the media says - it is mostly economics

Thie is a good time to asses your dedication and commitment to a
CS degree, and set GOALS..

Many people are seeking to gain additional skills through graduate
study and other specializations (i.e. data science certificates, etc.)
to differentiate themselves in a competitive job market

The job market is not impossible, but it is good time to assess your
plans, set goals, and commit yourself to taking the best steps
possible to be successful to meet job market challenges

September 30, 2025

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] 19
School of Engineering and Technology, University of Washington - Tacoma }

GRADUATE CREDIT OPPORTUNITY

Are you a BS CSS / BA CSS Student?

Consider taking TCSS 562 this quarter instead of TCSS 462
BS students can take 1 x 500-level course as a senior at UWT
which can apply to both the BS and MS CSS degrees (double-dip)
On the fence about grad school? Taking one course as an
undergrad reduces the total MS degree credits from:

= 40 to 35 (capstone or thesis option)

= 45 to 40 (coursework only option)

Taking an MS CSS course while an undergrad saves money -
you pay the undergraduate tuition rate

= Savings*: $3,086 (resident), $1,857 (non-resident)

= * - For registration in 5-credits, full-time savings is similar

From: https://grad.uw.edu/policies/1-1-graduate-degree-
requirements/

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 1110 |

Septembens0j202s School of Engineering and Technology, University of Washington - Tacoma

10

Slides by Wes J. Lloyd

[Fall 2025]

L1.5

https://grad.uw.edu/policies/1-1-graduate-degree-requirements/
https://grad.uw.edu/policies/1-1-graduate-degree-requirements/
https://grad.uw.edu/policies/1-1-graduate-degree-requirements/
https://grad.uw.edu/policies/1-1-graduate-degree-requirements/
https://grad.uw.edu/policies/1-1-graduate-degree-requirements/
https://grad.uw.edu/policies/1-1-graduate-degree-requirements/
https://grad.uw.edu/policies/1-1-graduate-degree-requirements/
https://grad.uw.edu/policies/1-1-graduate-degree-requirements/
https://grad.uw.edu/policies/1-1-graduate-degree-requirements/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

REFERENCES

m [1] Cloud Computing: Concepts, Technology and Architecture
® Thomas Erl, Prentice Hall 2013

m [2] Cloud Computing - Theory and Practice
= Dan Marinescu, Second Edition 2018*, Third Edition 2023

DN

ND PRACTICE
M._A!RNESGJ

* =
- available online via UW library ™

September 30, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 11 |

School of Engineering and Technology, University of Washington - Tacoma

11

REFERENCES - 2

= [3] Systems Performance: Enterprise and the Cloud *
= Brendan Gregg, First Edition 2013

® [4] AWS Administration - The Definitive Guide *
® Yohan Wadia, First Edition 2016

Systems
Performance [rvnmmmae,

ENTERPRISE AN - The Definitive Guide

® Research papers

*
- available online via UW library

September 30, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 12 |

School of Engineering and Technology, University of Washington - Tacoma

12

Slides by Wes J. Lloyd

[Fall 2025]

L1.6

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TCS462/562 COURSE WORK

= Cloud Computing Tutorials - 20%

= Project Status Reports / Activities - 5%
= ~ 2-4 total items (??)
= Variety of formats: in class, online, reading, activity

® Quizzes - 20%

= Open book, note, etc.

= Class Presentation (TCSS 562)
Class Presentation Summaries (TCSS 462/562) - 20%

= Term Project / Paper or Presentation - 35%
= Includes Project Proposal

September 30, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 113 |

School of Engineering and Technology, University of Washington - Tacoma

13

TERM PROJECT

® Project description to be posted
= Teams of ~4, self formed, one project leader

® Project scope can vary based on team size and
background w/ instructor approval

® Proposal due: Thursday October 16, 11:59pm (tentative)

= Approach:
= Build a “cloud native” web services application
Using serverless computing, containerization, or other
App will consist of multiple services (FaaS functions)

Objective is to compare alternate implementations / designs
= Performance (runtime)
= Cost ($)

September 30, 2025

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] 114
School of Engineering and Technology, University of Washington - Tacoma .

14

Slides by Wes J. Lloyd

[Fall 2025]

L1.7

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TERM PROJECT - 2

® GOAL: Compare alternate application implementations:

= THEME for Fall 2025: GENERATIVE Al FOR SERVERLESS
COMPUTING:

= | LMs can help generate code for serverless cloud applications

= Theme for Fall 2025: investigate how cloud performance and
cost of multiple versions of LLM generated code can vary

= (1) Alternate LLMs: code generated from alternate LLMs: e.g.
ChatGPT vs. Claude vs. Gemini, etc.

= (2) Alternate Programming Languages: use 1 LLM (ChatGPT) to
generate code in different languages to compare cloud performance

= (3) Alternate Prompts: write alternative versions of prompts asking
to generate the same code, compare outcomes

® GOAL: evaluate performance and cost to understand LLM,
programming language, and/or prompting trade-offs for Al
code generation for serverless cloud computing

= Challenge: ensure that LLMs produce functionally correct code
= >> jt may be faster, but does it really work ???

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma

| L1.15

15

TERM PROJECT - 3

= A & B Testing
= Compare performance of approaches: language A vs. B
= Use statistical methods to infer which performs better

t-tests: student t-test, Welch's t-test (unequal sample sizes or
variances), Mann-Whitney U test (non-normal data)

= Specify and test specific performance goals

= Performance: runtime (ms), throughput (requests/sec),
network latency (ms), data throughput (MB/sec), others...

® Focus is on performance & cost

® Other quality aspects, we assume the cloud provides for
us: high availability, accessibility, resilience to failure,
usability

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

Septembens0j202s School of Engineering and Technology, University of Washington - Tacoma

| L1.16

16

Slides by Wes J. Lloyd

[Fall 2025]

L1.8

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TERM PROJECT - 4

= Deliverables:
= TCSS 562: Project paper (4-6 pgs IEEE format, template
provided)
= TCSS 462: Comprehensive recorded video presentation
(12-15 minutes), project paper option
= GitHub (project source)

= How-To document describing how to test the system
(via GitHub markdown)

m Suggested application:

= Implement a multi-function data processing pipeline:
Extract-Transform-Load (ETL) data processing pipeline
combing AWS Lambda, S3, and Amazon Aurora DB

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

September 30, 2025 | 11.17 |

17

TERM PROJECT - 5

= Primary goal for the term project is to implement a cloud-
based application and investigate 1 or more design trade-offs
= Fall 2025 focus - LLM code generation performance comparison

= Teams evaluate the impact of different designs
(implementations) on performance and cost objectives and
report on the results

m Creative projects encouraged !
= Groups do not have to follow the Fall 2025 THEME

= Groups can propose and implement any project that analyzes
other design trade-offs (besides LLM code generation)

September 30, 2025

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] 118
School of Engineering and Technology, University of Washington - Tacoma .

18

Slides by Wes J. Lloyd L1.9

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

COMPARING DIFFERENT

DESIGN TRADE-OFFS

= What other design trade-offs can be compared?

= Compare alternative app designs using different cloud
services (e.g. databases), languages, platforms, etc.

= Examples - Compare different:
= Cloud storage services: Object/blob storage services
= Amazon S3, Google blobstore, Azure blobstore, vs. self-hosted

= Cloud relational database services:
= Amazon Relational Database Service (RDS), Aurora, Self-Hosted DB
= Platform-as-a-Service (PaaS) alternatives for web app hosting:
= Amazon Elastic Beanstalk, Heroku, others
® Open source FaaS platforms
= Apache OpenWhisk, OpenFaasS, Fn, others...

September 30, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 119 |

School of Engineering and Technology, University of Washington - Tacoma

19

COMPARING DIFFERENT

DESIGN TRADE-OFFS - 2

= Serverless storage alternatives
= On AWS: Amazon EFS, S3, Containers, others
= Container platforms

= Amazon ECS/Fargate, AKS, Azure Kubernetes, Self-hosted
Kubernetes cluster on cloud VMs

= Contrasting queueing service alternatives

= Amazon SQS, Amazon MQ, Apache Kafka, RabbitMQ, Omq,
others

= NoSQL database services

= DynamoDB, Google BigTable, MongoDB, Cassandra
= CPU architectures

= Intel (x86_64), AMD (x86_64), ARM (Graviton), MAC (M1)
m Service designs or compositions

September 30, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 1120 |

School of Engineering and Technology, University of Washington - Tacoma

20

Slides by Wes J. Lloyd L1.10

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TERM PROJECT: BIG PICTURE

1. BUILD A MULTI-FUNCTION SERVERLESS APPLICATION

= Typically consisting of AWS Lambda Functions or Google Cloud
Functions, etc. (e.g. FaaS platform)

2. CONTRAST THE USE OF ALTERNATIVE LLM CODE OR DESIGNS
TO IMPLEMENT THE SAME APPLICATION MULTIPLE TIMES

3. CONDUCT A PERFORMANCE EVALUATION, REPORT FINDINGS
IN TERM PAPER (562) OR PRESENTATION (462)
(10-15-minutes recorded)

September 30, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 121 |

School of Engineering and Technology, University of Washington - Tacoma

21

TERM PROJECT - KEY REQUIREMENTS

1. Application should involve multiple processing steps

2. Implementation does not have to be Function-as-a-Service
(Faa$S)

3. Implementation leverages multiple cloud services
(e.g. databases, object stores, queues)

4. Projects will contrast alternate designs/code

5. Define your comparison metrics:

= Which designs offer the fastest performance (runtime)?
= Lowest cost ($)?

= Best maintainability?
Consider size: lines of code (LOC), smaller programs are
generally considered to be easier to maintain

September 30, 2025

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] 1122
School of Engineering and Technology, University of Washington - Tacoma i

22

Slides by Wes J. Lloyd

[Fall 2025]

L1.11

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TERM PROJECT: RESEARCH

= Alternative: Conduct a cloud-related research project on any
topic focused on specific research goals / questions

= Can help spur MS Capstone/Thesis or BS honors thesis projects
= |[dentify and investigate 1 - 2 research questions
= Implement a novel solution to an open problem

= Complete initial research towards publishing a conference or
workshop paper

= |f you're interested in this option, please talk with the
instructor

= |nstructor will help guide projects throughout the quarter

= Explore our growing body of cloud research publications at:
http://faculty.washington.edu/wlloyd/research.html

September 30, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 1123 |

School of Engineering and Technology, University of Washington - Tacoma

23

PROJECT SUPPORT

= Project cloud infrastructure support:

= AWS Account - Paid Plan
= Create standard AWS account with UW email
= Credit card required
= Provides access to all AWS services
= |nitial $100 free credit, second $100 free credit - 6 mo expiration
= Additional credits available from Instructor throughout Fall quarter

= AWS Account - Free Plan
= No Credit Card required
= Provides access to a subset of AWS services
= |nitial $100 free credit, second $100 free credit - 6 mo expiration
= Only free tier services accessible after credits exhausted

September 30, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 122 |

School of Engineering and Technology, University of Washington - Tacoma

24

Slides by Wes J. Lloyd

[Fall 2025]

L1.12

http://faculty.washington.edu/wlloyd/research.html

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

PROJECT SUPPORT - 2

= Other Support :

= Github Student Developer Pack:
= https://education.github.com/pack
= Formerly offered AWS credits, but Microsoft bought GitHub
= Includes up to $200 in Digital Ocean Credits
= Includes up to $100 in Microsoft Azure Credits
= Unlimited private git repositories
= Several other benefits

= Microsoft Azure for Students
= $100 free credit per account valid for 1 year - no credit card (?)
= https://azure.microsoft.com/en-us/free/students

= Google Cloud
= $300 free credit for 1 year
= https://cloud.google.com/free

= Chameleon / CloudLab
= Bare metal NSF cloud - free

September 30, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 1125 |

School of Engineering and Technology, University of Washington - Tacoma

25

TERM PROJECT

RESEARCH OPPORTUNITIES

® Projects can lead to papers or posters presented at
ACM/IEEE/USENIX conferences, workshops
= Networking and research opportunity
... travel ???

= Conference participation (posters, papers)
helps differentiate your resume/CV from others

® Project can support preliminary work for:
UWT - BS honors, MS capstone/thesis projects

= Research projects provide valuable practicum experience
with cloud systems analysis, prototyping

® Publications are key for building your resume/CV,
Also very important for applying to PhD programs

September 30, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 1126 |

School of Engineering and Technology, University of Washington - Tacoma

26

Slides by Wes J. Lloyd L1.13

https://education.github.com/pack
https://education.github.com/pack
https://azure.microsoft.com/en-us/free/students/
https://azure.microsoft.com/en-us/free/students/
https://azure.microsoft.com/en-us/free/students/
https://azure.microsoft.com/en-us/free/students/
https://cloud.google.com/free/
https://cloud.google.com/free/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TCSS562 TERM PROJECT - 3

® Project status report / term project check-ins
= Written status report
=1 or 2 reports during the quarter

= Part of: “Project Status Reports / Activities / Quizzes”
category

= 5% of grade

® Project meetings with instructor
= After class, office hours, by appointment

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma e

September 30, 2025

27

TCSS 562: CLASS PRESENTATION

B TCSS 562 students will give a team presentation
teams of ~3

= Cloud Service Review Presentation
= PPT Slides, demonstration
= Present a cloud service not covered in class
= Present overview of features, performance, etc.

= Cloud Research Paper Review Presentation

= PPT slides, identify research contributions, strengths and
weaknesses of paper, possible areas for future work

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma t28

September 30, 2025

28

Slides by Wes J. Lloyd

[Fall 2025]

L1.14

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CLASS PRESENTATION PEER REVIEWS

m ALL Students will submit reviews of class presentations using
rubric worksheet (~ 1-page)

= Students will review a minimum of one presentation for each
presentation day, for a minimum of 4 reviews

= |n addition to the reviews, students will write two questions
about content in the presentation. These can be questions to
help clarify content from the presentation that was not clear,
or any related questions inspired by the presentation.

= To ensure intellectual depth of questions, questions should
not have yes-no answers.

= Peer reviews will be shared with presentation groups to
provide feedback but will not factor into the grading of class
presentations

September 30, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 1129 |

School of Engineering and Technology, University of Washington - Tacoma

29

CLASS PRESENTATION PEER REVIEWS - 2

® For TCSS 462 - the 4 required peer reviews will count
for the entire presentation score

® For TCSS 562 - the peer reviews will count as ~20%
of the presentation score

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 1130 |

EEPEHEE(EUR2025 School of Engineering and Technology, University of Washington - Tacoma

30

Slides by Wes J. Lloyd

[Fall 2025]

L1.15

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

® Online Daily Feedback Quiz in Canvas - Take After Each Class
= 1-point
Extra Credit Announcements
for com pleting Assignments fUpcomig=signments
online Discussions _ Class Activity 1 - Implicit vs. Explicit Parallelism
] 2-p° ints Zoom = Available until Oct 11 at 11:59pm | Due Oct 7 at 7:50pm | /10 pts
Extra credlt Grades Tutorial 1 - Linux
or compiletin Available until Oct 19 3t 11:59pm | Due Oct 15 at 11:59pm | -/20 pts
f pl t People)
in-person in class
. Pages
® 36 points)
. Files * Past Assignments
possible
Quizzes
m 2.5% added to % TCSS562 - Online Dally Feedback Survey - 10/5
f| na I course Collaborations - Available until Dec 18 at 11:59pm | Due Oct 6 at 8:5%9pm | -/1 pts
grade for UW Libraries TCSS 562 - Online Daily Feedback Survey - 9/30
(3 6/ 3 6) UW Resources - Available until Dec 18 at 11:59pm | Due Oct 4 at 8:59pm | -/1 pts
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
Octobergll2024 School of Engineering and Technology, University of Washington - Tacoma | 153t |

31
TCSS 562 - Online Daily Feedback Survey - 10/5
Started: Oct 7 at 1:13am
Quiz Instructions
[| Question1 0.5 pts
On a scale of 1 to 10, please classify your perspective on material covered in today’s
class:
1 2 3 4 5 6 7 8 9 10
Mostly Equal Mostly
Review To Me New and Review New to Me
[| Question 2 0.5 pts
Please rate the pace of today'’s class:
1 2 3 4 5 6 7 8 9 10
Slow Just Right Fast
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
Uctobenii2024 School of Engineering and Technology, University of Washington - Tacoma L5.32
32

Slides by Wes J. Lloyd L1.16

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 9/30

= Syllabus
® Course Introduction

= Demographics Survey
= AWS Cloud Credits Survey

® Tutorial O - Getting Started with AWS
® Tutorial 1 - Intro to Linux

® Cloud Computing - How did we get here?
Chapter 4 Marinescu 2"9 edition:
Introduction to parallel and distributed systems

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma

| L1.33

33

DEMOGRAPHICS SURVEY

= Please complete the ONLINE demographics survey:

= https://forms.gle/QNUW2hUV7fR7BDmv7

= Linked from course webpage in Canvas:

= http://faculty.washington.edu/wlloyd/courses/tcss562/
announcements.html

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

Septembens0j202s School of Engineering and Technology, University of Washington - Tacoma

| 11.34

34

Slides by Wes J. Lloyd L1.17

https://forms.gle/QNUW2hUV7fR7BDmv7
https://forms.gle/QNUW2hUV7fR7BDmv7
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 9/30

= Syllabus
® Course Introduction

® Demographics Survey
= AWS Cloud Credits Survey

® Tutorial O - Getting Started with AWS
® Tutorial 1 - Intro to Linux

® Cloud Computing - How did we get here?
Chapter 4 Marinescu 2"9 edition:
Introduction to parallel and distributed systems

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma

| L1.35

35

AWS CLOUD CREDITS SURVEY

= Please complete the AWS CLOUD CREDITS survey:

= https://forms.gle/Y4iWvBRFVLRPnPX37

= Linked from course webpage in Canvas:

= http://faculty.washington.edu/wlloyd/courses/tcss562/
announcements.html

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

Septembens0j202s School of Engineering and Technology, University of Washington - Tacoma

| L1.36

36

Slides by Wes J. Lloyd L1.18

https://forms.gle/Y4iWvBRFVLRPnPX37
https://forms.gle/Y4iWvBRFVLRPnPX37
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 9/30

® Course Introduction
= Syllabus

® Demographics Survey
= AWS Cloud Credits Survey

= Tutorial O - Getting Started with AWS

® Tutorial 1 - Intro to Linux

® Cloud Computing - How did we get here?
Chapter 4 Marinescu 2"9 edition:
Introduction to parallel and distributed systems

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma

L1.37

37

OBJECTIVES - 9/30

® Course Introduction
= Syllabus

® Demographics Survey
= AWS Cloud Credits Survey

® Tutorial O - Getting Started with AWS

= Tutorial 1 - Intro to Linux

® Cloud Computing - How did we get here?
Chapter 4 Marinescu 2" edition:
Introduction to parallel and distributed systems

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

Septembens0j202s School of Engineering and Technology, University of Washington - Tacoma

11.38

38

Slides by Wes J. Lloyd

[Fall 2025]

L1.19

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 9/30

® Course Introduction
= Syllabus

® Demographics Survey
= AWS Cloud Credits Survey

® Tutorial O - Getting Started with AWS
® Tutorial 1 - Intro to Linux

= Cloud Computing - How did we get here?
Chapter 4 Marinescu 2" edition:
Introduction to parallel and distributed systems

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma

L1.39

39

OBJECTIVES

= Cloud Computing: How did we get here?
= Parallel and distributed systems
(Marinescu Ch. 2 - 15t edition, Ch. 4 - 2"? edition)
= Data, thread-level, task-level parallelism
= Parallel architectures

= SIMD architectures, vector processing, multimedia
extensions

= Graphics processing units

= Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems

= Modularity

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma t40

September 30, 2025

40

Slides by Wes J. Lloyd L1.20

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CLOUD COMPUTING:

HOW DID WE GET HERE?

® General interest in parallel computing
= Moore’s Law - # of transistors doubles every 18 months

= Post 2004: heat dissipation challenges:
can no longer easily increase cloud speed

= Overclocking to 7GHz takes e 1"
more than just liquid nitrogen: g ;

https://tinyurl.com/y93s2yz2
=Solutions: |
=Vary CPU clock speed
= Add CPU cores
= Multi-core technology

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma e

41

Each Year We Get><: More Processors

o s Historically:
o Dual-Core Itanium 2 - : W Boost SlngIE‘strEﬂm
Intel CPU Trends / performance via more
woma | AL W B ORI complex chips
'
10,000 "nw:
Deliver more cores per
- chip (+ GPU, NIC, SoC).
- The free lunch is over
. for today’s sequential
apps and many
S i AT seeesm - concurrent apps. We
awat — need killer apps with

o s e e ase s am mes ae 1OLS OF |atent parallelism.

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma a2

| September 30, 2025

42

Slides by Wes J. Lloyd

[Fall 2025]

L1.21

https://tinyurl.com/y93s2yz2
https://tinyurl.com/y93s2yz2

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

HYPER THREADING

® Modern CPUs provide multiple instruction pipelines,
supporting multiple execution threads, usually 2
to feed instructions to a single CPU core...

= Two hyper-threads

are not equivalent 4770 with HTT Vs. 4670 without HTT - 25% improvement w/ HTT

to (2) CPU cores CPU Mark Relative to Top 10 Common CPUs

As of Tth of February 2014 - Higher results represent better performance

= j7-4770 and i5-4670|

. Intel Core i7-4770 @ 2 40GHz 2,965
same CPU! with and Intel Core i7-3770K @ 2.50GH: (N - = 2
without HTT Intel Core i7 3770 @ 3.40GHz 419

AMD FX-8350 Eight-Core (Y (15 |
. Intel Core i7-3820 @ 2.60GH: (N - 11 &

" EXample. 9 Intel Core i7-2600K @ 3.40GHz (s 37
hyperthreads add Intel Core i7-2600 @ 3.40GH: (S - - 16
+32.9% AMD F3-8320 Eight-Core (I - 12 1

I Intel Core 54670 @ 2.40GH: (I 7 = 1 I

PassMark Software @ 2008-2014

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma

43

AMD’S 64-CORE <14NM CPUS

= Epyc Rome CPUs
= Announced August 2019
= EPYC 7H12 requires liquid cooling
AMD EPYC 7002 Processors (2P)

Cores Frequency (GHz)
Threads

_ Price
“
2.60 3.30 ?

EPYC 7H12 641128 256 MB 280 W

EPYC 7742 64128 2.25 3.40 256 MB 225W $6950
EPYC 7702 641128 2.00 3.35 256 MB 200 W $6450
EPYC 7642 48/ 96 2.30 3.20 256 MB 225W $4775
EPYC 7552 48196 220 3.30 192 MB 200 W $4025

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

Septembens0j202s School of Engineering and Technology, University of Washington - Tacoma

| L1.44 |

44

Slides by Wes J. Lloyd

[Fall 2025]

L1.22

TCSS 462: Cloud Com

puting

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

AMD’S 64-CORE <14NM CPUS

AMD EPYC 9654/9654P/9684X/9R14 (AWS OEM):
June 2023: 96 cores, 192 hyper-threads CPUs

Mixes 4nm:APU (combines crus+GPu), 5Nm:L3 cache

(8 CPU-chiplet), and 6nm:1/0 dies, 2.25 to 3.7 burst
GHz, up to 400 watts
$10,625 to $14,756
AMD EPYC 9754: 128 cores, 256 hyperthreads !
2.25 to 3.1 burst GHz, 360 watts
$11,900
AMD EPYC 9005: 192 cores, 384 threads, 3nm (in dev)

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma Las

| September 30, 2025

45

CLOUD COMPUTING:

HOW DID WE GET HERE? - 2

= To make computing faster, we must go “parallel”

m Difficult to expose parallelism in scientific
applications

= Not every problem solution has a parallel algorithm
= Chicken and egg problem...

= Many commercial efforts promoting pure parallel
programming efforts have failed

® Enterprise computing world has been skeptical and
less involved in parallel programming

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.46

September 30, 2025

46

Slides by Wes J. Lloyd

[Fall 2025]

L1.23

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CLOUD COMPUTING:

HOW DID WE GET HERE? - 3

= Cloud computing provides access to “infinite”
scalable compute infrastructure on demand

® Infrastructure availability is key to exploiting
parallelism

= Cloud applications
=Based on client-server paradigm
=*Thin clients leverage compute hosted on the cloud
= Applications run many web service instances

*Employ load balancing

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma a7

September 30, 2025

47

CLOUD COMPUTING:

HOW DID WE GET HERE? - 4

= Big Data requires massive amounts of compute
resources

= MAP - REDUCE
=Single instruction, multiple data (SIMD)
=Exploit data level parallelism

®m Bioinformatics example

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

September 30, 2025 L1.48

48

Slides by Wes J. Lloyd

[Fall 2025]

L1.24

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

SMITH WATERMAN USE CASE

= Applies dynamic programming to find best local
alignment of two protein sequences
= Embarrassingly parallel, each task can run in isolation
= Use case for GPU acceleration
= AWS Lambda Serverless Computing Use Case:
Goal: Pair-wise comparison of all unique human
protein sequences (20,336)
= Python client as scheduler
= C Striped Smith-Waterman (SSW) execution engine

From: Zhao M, Lee WP, Garrison EP, Marth GT: SSW library: an SIMD Smith-
Waterman C/C++ library for use in genomic applications.
PLoS One 2013, 8:e82138

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma

L1.49

49

SMITH WATERMAN RUNTIME

® Laptop server and client (2-core, 4-HT): 8.7 hours

® AWS Lambda FaaS, laptop as client: 2.2 minutes
= Partitions 20,336 sequences into 41 sets
= Execution cost: ~ 82¢ (~237x speed-up)

= AWS Lambda server, EC2 instance as client: 1.28
minutes
= Execution cost: ~ 87¢ (~408x speed-up)

= Hardware
= Laptop client: Intel i5-7200U 2.5 GHz :4 HT, 2 CPU
= Cloud client: EC2 Virtual Machine - m5.24xlarge: 96 vCPUs
= Cloud server: Lambda ~1000 Intel E5-2666v3 2.9GHz CPUs

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

Septembens0j202s School of Engineering and Technology, University of Washington - Tacoma H30

50

Slides by Wes J. Lloyd L1.25

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CLOUD COMPUTING:

HOW DID WE GET HERE? - 3

= Compute clouds are large-scale distributed
systems

=Heterogeneous systems
*Homogeneous systems
= Autonomous

=Self organizing

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma

L1.51

51

OBJECTIVES

= Cloud Computing: How did we get here?

= Parallel and distributed systems
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2"? edition)

= Data, thread-level, task-level parallelism
= Parallel architectures

= SIMD architectures, vector processing, multimedia
extensions

= Graphics processing units

= Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems

= Modularity

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

Septembens0j202s School of Engineering and Technology, University of Washington - Tacoma

11.52

52

Slides by Wes J. Lloyd

[Fall 2025]

L1.26

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

PARALLELISM

= Discovering parallelism and development of parallel
algorithms requires considerable effort

= Example: nhumerical analysis problems, such as solving large
systems of linear equations or solving systems of Partial
Differential Equations (PDEs), require algorithms based on
domain decomposition methods.

= How can problems be split into independent chunks?

= Fine-grained parallelism
= Only small bits of code can run in parallel without coordination
= Communication is required to synchronize state across nodes

= Coarse-grained parallelism

= Large blocks of code can run without coordination

September 30, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 11.53 |

School of Engineering and Technology, University of Washington - Tacoma

53

PARALLELISM - 2

® Coordination of nodes

= Requires message passing or shared memory

m Debugging parallel message passing code is easier
than parallel shared memory code

= Message passing: all of the interactions are clear
= Coordination via specific programming APl (MPI)

= Shared memotry: interactions can be implicit - must
read the code!!

® Processing speed is orders of magnitude faster than
communication speed (CPU > memory bus speed)
® Avoiding coordination achieves the best speed-up

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] Lisa
School of Engineering and Technology, University of Washington - Tacoma i

September 30, 2025

54

Slides by Wes J. Lloyd L1.27

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TYPES OF PARALLELISM

® Parallelism:

= Goal: Perform multiple operations at the same time
to achieve a speed-up

= Thread-level parallelism (TLP)
=Control flow architecture

®m Data-level parallelism
=Data flow architecture

= Bit-level parallelism

® |nstruction-level parallelism (ILP)

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma

L1.55

55

THREAD LEVEL PARALLELISM (TLP)

® Number of threads an application runs at any one time
= Varies throughout program execution

= As a metric:

® Minimum: 1 thread

= Can measure average, maximum (peak)

= QUESTION: What are the consequences of average (TLP)

for scheduling an application to run on a computer with a
fixed number of CPU cores and hyperthreads?

E Let’s say there are 4 cores, or 8 hyper-threads...

= Key to avoiding waste of computing resources
is knowing your application’s TLP...

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

| September 30, 2025 L1.56

56

Slides by Wes J. Lloyd

[Fall 2025]

L1.28

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTROL-FLOW ARCHITECTURE

® Typical architecture used today - w/ multiple threads
= By John von Neumann (1945)

® Also called the Von Neumann architecture

® Dominant computer system architecture

® Program counter (PC) determines
next instruction to load into
instruction register

Central Processing Unit

= Program execution Input
. . Device
is sequential

Arithmetic/Logic Unit Output

Device

Memory Unit

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma

L1.57

57

DATA-LEVEL PARALLELISM

= Partition data into big chunks, run separate copies
of the program on them with little or no
communication

® Problems are considered to be
embarrassingly parallel

m Also perfectly parallel or pleasingly parallel...

m Little or no effort needed to separate problem
into a number of parallel tasks

= MapReduce programming model is an example

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma t8

September 30, 2025

58

Slides by Wes J. Lloyd

[Fall 2025]

L1.29

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

DATA FLOW ARCHITECTURE

= Alternate architecture used by network routers, digital
signal processors, special purpose systems

® Operations performed when input (data) becomes
available

® Envisioned to provide much higher parallelism

® Multiple problems has prevented wide-scale adoption

= Efficiently broadcasting data tokens in a massively
parallel system

= Efficiently dispatching instruction tokens in a massively
parallel system

= Building content addressable memory large enough to

hold all of the dependencies of a real program

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] L1159
School of Engineering and Technology, University of Washington - Tacoma :

September 30, 2025

59

DATA FLOW ARCHITECTURE - 2

® Architecture not as popular as control-flow

= Modern CPUs emulate data flow architecture for dynamic
instruction scheduling since the 1990s

= Qut-of-order execution - reduces CPU idle time by not blocking
for instructions requiring data by defining execution windows
= Execution windows: identify instructions that can be run by
data dependency
= |[nstructions are completed in data dependency order within
execution window
Execution window size typically 32 to 200 instructions

Utility of data flow architectures has been
much less than envisioned

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 160 |

Septembens0j202s School of Engineering and Technology, University of Washington - Tacoma

60

Slides by Wes J. Lloyd L1.30

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

BIT-LEVEL PARALLELISM

= Computations on large words (e.g. 64-bit integer) are
performed as a single instruction

® Fewer instructions are required on 64-bit CPUs to process
larger operands (A+B) providing dramatic performance
improvements

® Processors have evolved: 4-bit, 8-bit, 16-bit, 32-bit, 64-bit

QUESTION: How many instructions are required to add two
64-bit numbers on a 16-bit CPU? (Intel 8088)

® 64-bit MAX int = 9,223,372,036,854,775,807 (signed)
® 16-bit MAX int = 32,767 (signed)
® Intel 8088 - limited to 16-bit registers

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma

L1.61

61

INSTRUCTION-LEVEL PARALLELISM (ILP)

® CPU pipelining architectures enable ILP
® CPUs have multi-stage processing pipelines

® Pipelining: split instructions into sequence of steps that
can execute concurrently on different CPU circuitry

® Basic RISC CPU - Each instruction has 5 pipeline stages:
u |[F - instruction fetch

= ID- instruction decode

m EX - instruction execution

= MEM - memory access

= WB - write back

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

September 30, 2025 L1.62

62

Slides by Wes J. Lloyd

[Fall 2025]

L1.31

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CPU PIPELINING

Clock Cycle
|
Wai_ting . .
Instructions
CONEER
MEEEEIE] | 1 1 PP
2 Jrwree |51 @ I DX X X
] <o (515400 1 @ I 8 M 54 X
i NN KD HEEX|
LI
Complatad D . .
Instructions D .
L]

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma

L1.63

63

INSTRUCTION LEVEL PARALLELISM - 2

= RISC CPU:

= After 5 clock cycles, all 5 stages of an instruction are
loaded

m Starting with 6" clock cycle, one full instruction
completes each cycle

= The CPU performs 5 tasks per clock cycle!
Fetch, decode, execute, memory read, memory write back

® Pentium 4 (CISC CPU) - processing pipeline w/ 35 stages!

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

Septembens0j202s School of Engineering and Technology, University of Washington - Tacoma

L1.64

64

Slides by Wes J. Lloyd

[Fall 2025]

L1.32

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES

= Cloud Computing: How did we get here?

= Parallel and distributed systems

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2"? edition)
= Data, thread-level, task-level parallelism
= Parallel architectures

= SIMD architectures, vector processing, multimedia
extensions

= Graphics processing units

= Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems

= Modularity

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma

L1.65

65

MICHAEL FLYNN'S COMPUTER

ARCHITECTURE TAXONOMY

® Michael Flynn’s proposed taxonomy of computer
architectures based on concurrent instructions and
number of data streams (1966)

= SISD (Single Instruction Single Data)

= SIMD (Single Instruction, Multiple Data)

= MIMD (Multiple Instructions, Multiple Data)

®m [ESS COMMON: MISD (Multiple Instructions, Single Data)

® Pipeline architectures: functional units perform different
operations on the same data

® For fault tolerance, may want to execute same instructions
redundantly to detect and mask errors - for task replication

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma L8

September 30, 2025

66

Slides by Wes J. Lloyd

[Fall 2025]

L1.33

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

FLYNN'S TAXONOMY

= SISD (Single Instruction Single Data)
Scalar architecture with one processor/core.

= Individual cores of modern multicore processors are
“SISD”

= SIMD (Single Instruction, Multiple Data)
Supports vector processing

= When SIMD instructions are issued, operations on
individual vector components are carried out concurrently

= Two 64-element vectors can be added in parallel
= Vector processing instructions added to modern CPUs
= Example: Intel MMX (multimedia) instructions

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma

| L1.67

67

(SIMD): VECTOR PROCESSING

ADVANTAGES

= Exploit data-parallelism: vector operations enable speedups

® Vectors architecture provide vector registers that can store
entire matrices into a CPU register

= SIMD CPU extension (e.g. MMX) add support for vector
operations on traditional CPUs

® Vector operations reduce total number of instructions for
large vector operations

® Provides higher potential speedup vs. MIMD architecture

® Developers can think sequentially; not worry about
parallelism

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

Septembens0j202s School of Engineering and Technology, University of Washington - Tacoma

| L1.68

68

Slides by Wes J. Lloyd

[Fall 2025]

L1.34

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

FLYNN'S TAXONOMY - 2

= MIMD (Multiple Instructions, Multiple Data) - system with
several processors and/or cores that function asynchronously
and independently

= At any time, different processors/cores may execute different
instructions on different data
® Multi-core CPUs are MIMD
= Processors share memory via interconnection networks
= Hypercube, 2D torus, 3D torus, omega network, other topologies
= MIMD systems have different methods of sharing memory
Uniform Memory Access (UMA)
Cache Only Memory Access (COMA)
Non-Uniform Memory Access (NUMA)

September 30, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 11.69 |

School of Engineering and Technology, University of Washington - Tacoma

69

ARITHMETIC INTENSITY

= Arithmetic intensity: Ratio of work (W) to I w

memory traffic r/w (Q) Q
Example: # of floating-point ops per byte of data read

® Characterizes application scalability with SIMD support

= SIMD can perform many fast matrix operations in parallel

® High arithmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

= | ow arithmetic intensity:
Programs with sparse matrix operations do not scale well
with problem size
(memory RW becomes bottleneck, not enough ops!)

September 30, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 1170 |

School of Engineering and Technology, University of Washington - Tacoma

70

Slides by Wes J. Lloyd L1.35

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

ROOFLINE MODEL

= When program reaches a given arithmetic intensity
performance of code running on CPU hits a “roof”

= CPU performance bottleneck changes from:
memory bandwidth (left) > floating point performance (right)

w. performance
S e K€Y take-aways:
69'5@ When a program’s has low
E & - Arithmetic Intensity, memory
; Q@‘“ ’ bandwidth limits performance..
%“b
Aot With high Arithmetic intensity,
the system has peak parallel
performance...
Arithmetic intensity - performance is limited by??
September 30, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 71 |

School of Engineering and Technology, University of Washington - Tacoma

71

OBJECTIVES

= Cloud Computing: How did we get here?
= Parallel and distributed systems
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2"? edition)
= Data, thread-level, task-level parallelism
= Parallel architectures

= SIMD architectures, vector processing, multimedia
extensions

| =Graphics processing units |
= Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems
= Modularity

September 30, 2025

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] 172
School of Engineering and Technology, University of Washington - Tacoma .

72

Slides by Wes J. Lloyd

[Fall 2025]

L1.36

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

GRAPHICAL PROCESSING UNITS (GPUs)

® GPU provides multiple SIMD processors
m Typically 7 to 15 SIMD processors each

m 32,768 total registers, divided into 16 lanes
(2048 registers each)

B GPU programming model:
single instruction, multiple thread

® Programmed using CUDA- C like programming
language by NVIDIA for GPUs

® CUDA threads - single thread associated with each
data element (e.g. vector or matrix)

® Thousands of threads run concurrently

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma

L1.73

73

OBJECTIVES

= Cloud Computing: How did we get here?
= Parallel and distributed systems
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2"? edition)
= Data, thread-level, task-level parallelism
= Parallel architectures

= SIMD architectures, vector processing, multimedia
extensions

= Graphics processing units

| =Speed-up, Amdahl's Law, Scaled Speedup |
= Properties of distributed systems
= Modularity

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

| September 30, 2025 L1.74

74

Slides by Wes J. Lloyd

[Fall 2025]

L1.37

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

PARALLEL COMPUTING

= Parallel hardware and software systems allow:

= Solve problems demanding resources not available on
single system.

= Reduce time required to obtain solution

®The speed-up (S) measures effectiveness of
parallelization:

S(N) = T(1) / T(N)

T(1) = execution time of total sequential computation

T(N) > execution time for performing N parallel
computations in parallel

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 175 |

September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma

75

SPEED-UP EXAMPLE

= Consider embarrassingly parallel image processing
= Eight images (multiple data)
= Apply image transformation (greyscale) in parallel
m 8-core CPU, 16 hyper threads

m Sequential processing: perform transformations one at a time

using a single program thread
= 8 images, 3 seconds each: T (1) = 24 seconds

= Parallel processing

= 8 images, 3 seconds each: T (N) = 3 seconds
= Speedup: S(N) = 24 / 3 = 8x speedup
= Called “perfect scaling”

= Must consider data transfer and computation setup time

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 1176 |

Septembens0j202s School of Engineering and Technology, University of Washington - Tacoma

76

Slides by Wes J. Lloyd

[Fall 2025]

L1.38

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

AMDAHL'S LAW

= Amdahl’s law is used to estimate the speed-up of a job
using parallel computing

1. Divide job into two parts
2. Part A that will still be sequential
3. Part B that will be sped-up with parallel computing

® Portion of computation which cannot be parallelized will
determine (i.e. limit) the overall speedup

= Amdahl’s law assumes jobs are of a fixed size

= Also, Amdahl’s assumes no overhead for distributing the
work, and a perfectly even work distribution

October 14, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020] | 1577 |

School of Engineering and Technology, University of Washington - Tacoma

77

AMDAHL'S LAW

1
e - F - . n _L
(1-f)+%
m S = theoretical speedup of the whole task
® f= fraction of work that is parallel (ex. 25% or 0.25)
® N= proposed speed up of the parallel part (ex. 5 times speedup)

= % improvement
of task execution =100*(1-(12/9))

= Using Amdahl’s law, what is the maximum possible speed-up?

October 14, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] 1578
School of Engineering and Technology, University of Washington - Tacoma .

78

Slides by Wes J. Lloyd

[Fall 2025]

L1.39

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

AMDAHL'S LAW EXAMPLE

Two independentparts A B

= Program with two independent parts:
= Part A is 75% of the execution time Original process =
= Part B is 25% of the execution time Make B 5xfaster [

Part B is made 5 times faster with
parallel computing

Estimate the percent improvement of task execution
Original Part A is 3 seconds, Part B is 1 second

Make A 2xfaster I
from Wikipedia

® N=5 (speedup of part B)

= f=.25 (only 25% of the whole job (A+B) will be sped-up)
= S=1/ ((1-f) + f/S)

= S=1/ ((.75) + .25/5)

= S=1.25

= % improvement = 100 * (1 - 1/1.25) = 20%

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma e

79

GUSTAFSON'S LAW

® Calculates the scaled speed-up using “N” processors
S(N) =N+ (1-N)«

N: Number of processors
o: fraction of program run time which can’t be parallelized
(e.g. must run sequentially)

® Can be used to estimate runtime of parallel portion of
program

TCSS562: Software Engineering for Cloud Computing [Fall 2020] | 15.80 |

Octoberiaa020 School of Engineering and Technology, University of Washington - Tacoma

80

Slides by Wes J. Lloyd L1.40

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

GUSTAFSON'S LAW

® Calculates the scaled speed-up using “N” processors
S(N) =N+ (1-N)«

N: Number of processors

o: fraction of program run time which can’t be parallelized
(e.g. must run sequentially)

® Can be used to estimate runtime of parallel portion of
program

® Where « = o / (m + o)
® Where o= sequential time, © =parallel time
® Qur Amdahl’s example: o= 3s, 1 =1s, a« =.75

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

October 14, 2020 15.81

81

GUSTAFSON'S LAW

® Calculates the scaled speed-up using “N” processors
S(N) =N+ (1-N)«

N: Number of processors

o: fraction of program run time which can’t be parallelized
(e.g. must run sequentially)

= Example:
Consider a program that is embarrassingly parallel,

but 75% cannot be parallelized. «=.75

QUESTION: If deploying the job on a 2-core CPU, what
scaled speedup is possible assuming the use of two
processes that run in parallel?

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma L8

September 30, 2025

82

Slides by Wes J. Lloyd

[Fall 2025]

L1.41

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

GUSTAFSON’S EXAMPLE

= QUESTION:

What is the maximum theoretical speed-up on a 2-core CPU ?

S(N) =N+ (1-N) «

N=2, a=.75
S(N) =2+ (1-2).75
S(N) =?

What is the maximum theoretical speed-up on a 16-core CPU?

S(N) =N+ (1-N) «

N=16, a=.75

S(N) =16 + (1 - 16) .75

S(N) =?

September 30, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] 1183

School of Engineering and Technology, University of Washington - Tacoma

83

GUSTAFSON’S EXAMPLE

QUESTION:

What is the maximum theoretical speed-up on a 2-core CPU ?

S(N) =N+ (1-N) «

N=2, a=
S(N) =3 For 2 CPUs, speed up is 1.25x
S(N) =
For 16 CPUs, speed up is 4.75x
= What is tH€ d U cuUlC cl ccu-up U cl O e CPU?
S(N) =N+ (1-N)«
N=16, a=.75
S(N) =16 + (1 -16) .75
S(N) =?
September 30, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] 182

School of Engineering and Technology, University of Washington - Tacoma

84

Slides by Wes J. Lloyd

[Fall 2025]

L1.42

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

MOORE’S LAW

= Transistors on a chip doubles approximately every 1.5 years
= CPUs now have billions of transistors

= Power dissipation issues at faster clock rates leads to heat
removal challenges
= Transition from: increasing clock rates = to adding CPU cores

= Symmetric core processor -multi-core CPU, all cores have the
same computational resources and speed

= Asymmetric core processor - on a multi-core CPU, some cores
have more resources and speed

= Dynamic core processor - processing resources and speed can
be dynamically configured among cores

® Observation: asymmetric processors offer a higher speedup

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] L1185
School of Engineering and Technology, University of Washington - Tacoma :

September 30, 2025

85

OBJECTIVES

= Cloud Computing: How did we get here?
= Parallel and distributed systems
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2"? edition)
= Data, thread-level, task-level parallelism
= Parallel architectures

= SIMD architectures, vector processing, multimedia
extensions

= Graphics processing units
= Speed-up, Amdahl's Law, Scaled Speedup

| = Properties of distributed systems |
= Modularity

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 186 |

| Septembens0j202s School of Engineering and Technology, University of Washington - Tacoma

86

Slides by Wes J. Lloyd

[Fall 2025]

L1.43

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

DISTRIBUTED SYSTEMS

® Collection of autonomous computers, connected through a
network with distribution software called “middleware” that
enables coordination of activities and sharing of resources

= Key characteristics:

m Users perceive system as a single, integrated computing
facility.

= Compute nodes are autonomous

®m Scheduling, resource management, and security implemented
by every node

® Multiple points of control and failure

= Nodes may not be accessible at all times

= System can be scaled by adding additional nodes

= Availability at low levels of HW/software/network reliability

September 30, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 1187 |

School of Engineering and Technology, University of Washington - Tacoma

87

DISTRIBUTED SYSTEMS - 2

= Key non-functional attributes
= Known as “ilities” in software engineering

= Availability - 24/7 access?

= Reliability - Fault tolerance

m Accessibility - reachable?

® Usability - user friendly

= Understandability - can under

m Scalability - responds to variable demand

m Extensibility - can be easily modified, extended

= Maintainability - can be easily fixed

= Consistency - data is replicated correctly in timely manner

September 30, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 188 |

School of Engineering and Technology, University of Washington - Tacoma

88

Slides by Wes J. Lloyd

[Fall 2025]

L1.44

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TRANSPARENCY PROPERTIES OF

DISTRIBUTED SYSTEMS

= Access transparency: local and remote objects accessed using
identical operations

= Location transparency: objects accessed w/o knowledge of
their location.

= Concurrency transparency: several processes run concurrently
using shared objects w/o interference among them

= Replication transparency: multiple instances of objects are
used to increase reliability
- users are unaware if and how the system is replicated

= Failure transparency: concealment of faults

= Migration transparency: objects are moved w/o affecting
operations performed on them

= Performance transparency: system can be reconfigured based
on load and quality of service requirements

= Scaling transparency: system and applications can scale w/o
change in system structure and w/o affecting applications

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | L1.89 |

September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma

89

OBJECTIVES

= Cloud Computing: How did we get here?
= Parallel and distributed systems
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2"? edition)
= Data, thread-level, task-level parallelism
= Parallel architectures

= SIMD architectures, vector processing, multimedia
extensions

= Graphics processing units
= Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems
| =Modularity |

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 190 |

| Septembens0j202s School of Engineering and Technology, University of Washington - Tacoma

90

Slides by Wes J. Lloyd

[Fall 2025]

L1.45

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TYPES OF MODULARITY

= Soft modularity: TRADITIONAL

= Divide a program into modules (classes) that call each other
and communicate with shared-memory

= A procedure calling convention is used (or method invocation)

= Enforced modularity: CLOUD COMPUTING

= Program is divided into modules that communicate only
through message passing

® The ubiquitous client-server paradigm

m Clients and servers are independent decoupled modules
= System is more robust if servers are stateless

= May be scaled and deployed separately

= May also FAIL separately!

September 30, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] | 101 |

School of Engineering and Technology, University of Washington - Tacoma

91

CLOUD COMPUTING - HOW DID WE GET HERE?

SUMMARY OF KEY POINTS

® Multi-core CPU technology and hyper-threading

® What is a
= Heterogeneous system?
= Homogeneous system?
= Autonomous or self-organizing system?

= Fine grained vs. coarse grained parallelism

= Parallel message passing code is easier to debug than
shared memory (e.g. p-threads)

= Knhow your application’s max/avg Thread Level
Parallelism (TLP)

= Data-level parallelism: Map-Reduce, (SIMD) Single
Instruction Multiple Data, Vector processing & GPUs

September 30, 2025

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] 1192
School of Engineering and Technology, University of Washington - Tacoma .

92

Slides by Wes J. Lloyd

[Fall 2025]

L1.46

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CLOUD COMPUTING - HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 2

= Bit-level parallelism
= |nstruction-level parallelism (CPU pipelining)
= Flynn’s taxonomy: computer system architecture classification
= SISD - Single Instruction, Single Data (modern core of a CPU)
= SIMD - Single Instruction, Multiple Data (Data parallelism)
= MIMD - Multiple Instruction, Multiple Data
= MISD is RARE; application for fault tolerance...
= Arithmetic intensity: ratio of calculations vs memory RW

= Roofline model:
Memory bottleneck with low arithmetic intensity

= GPUs: ideal for programs with high arithmetic intensity
= SIMD and Vector processing supported by many large registers

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma

| L1.93

93

CLOUD COMPUTING - HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 3

= Speed-up (S)
S(N) = T(1) / T(N)

= Amdahl’s law:
S=1 / ((1-f) + f/N),s=latency, f=parallel fraction, N=speed-up

B = percent of program that must be sequential
m Scaled speedup with N processes:
S(N) =N - a(N-1)
® Moore’s Law
= Symmetric core, Asymmetric core, Dynamic core CPU
® Distributed Systems Non-function quality attributes
® Distributed Systems - Types of Transparency
= Types of modularity- Soft, Enforced

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

Septembens0j202s School of Engineering and Technology, University of Washington - Tacoma

| L1.94

94

Slides by Wes J. Lloyd

[Fall 2025]

L1.47

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

QUESTIONS

SSELLSg (2025 School of Engineering and Technology, University of Washington -

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 208]

joma

95

Slides by Wes J. Lloyd

[Fall 2025]

L1.48

	Slide 1: TCSS 462/562: (Software Engineering for) Cloud Computing
	Slide 2: OBJECTIVES – 9/30
	Slide 3: TCSS562 – software engineering for cloud computing
	Slide 4: OBJECTIVES – 9/30
	Slide 5: TCSS 462/ TCSS 562 Fall 2025
	Slide 6: Delivery format
	Slide 7: Improving performance in college classes
	Slide 8: 462/562 recommendations
	Slide 9: Industry challenges
	Slide 10: Graduate credit opportunity
	Slide 11: references
	Slide 12: References - 2
	Slide 13: Tcs462/562 course work
	Slide 14: term project
	Slide 15: Term project - 2
	Slide 16: Term project - 3
	Slide 17: term project - 4
	Slide 18: Term project - 5
	Slide 19: Comparing DIFFERENT design trade-offs
	Slide 20: Comparing DIFFERENT design trade-offs - 2
	Slide 21: TERM PROJECT: big picture
	Slide 22: Term project - Key requirements
	Slide 23: Term project: research
	Slide 24: Project support
	Slide 25: Project support - 2
	Slide 26: term project RESEARCH opportunities
	Slide 27: Tcss562 term project - 3
	Slide 28: TCSS 562: Class presentation
	Slide 29: Class presentation peer reviews
	Slide 30: Class presentation peer reviews – 2
	Slide 31: daily feedback survey
	Slide 32
	Slide 33: OBJECTIVES – 9/30
	Slide 34: Demographics survey
	Slide 35: OBJECTIVES – 9/30
	Slide 36: AWS Cloud Credits survey
	Slide 37: OBJECTIVES – 9/30
	Slide 38: OBJECTIVES – 9/30
	Slide 39: OBJECTIVES – 9/30
	Slide 40: objectives
	Slide 41: Cloud computing: How did we get here?
	Slide 42
	Slide 43: Hyper threading
	Slide 44: AMD’s 64-core <14nm CPUs
	Slide 45: AMD’s 64-core <14nm CPUs
	Slide 46: Cloud computing: How did we get here? - 2
	Slide 47: cloud computing: How did we get here? - 3
	Slide 48: Cloud computing: how did we get here? - 4
	Slide 49: Smith Waterman Use Case
	Slide 50: Smith waterman runtime
	Slide 51: cloud computing: How did we get here? - 3
	Slide 52: objectives
	Slide 53: parallelism
	Slide 54: Parallelism - 2
	Slide 55: Types of parallelism
	Slide 56: Thread level parallelism (TLP)
	Slide 57: Control-Flow architecture
	Slide 58: Data-level Parallelism
	Slide 59: Data flow architecture
	Slide 60: Data flow architecture - 2
	Slide 61: Bit-level parallelism
	Slide 62: Instruction-level parallelism (ILP)
	Slide 63: Cpu pipelining
	Slide 64: Instruction level parallelism - 2
	Slide 65: objectives
	Slide 66: Michael Flynn’s computer architecture taxonomy
	Slide 67: Flynn’s taxonomy
	Slide 68: (Simd): VECtOR PROCESSING advantages
	Slide 69: Flynn’s taxonomy - 2
	Slide 70: Arithmetic intensity
	Slide 71: Roofline model
	Slide 72: objectives
	Slide 73: Graphical processing units (gpus)
	Slide 74: objectives
	Slide 75: Parallel computing
	Slide 76: Speed-up example
	Slide 77: Amdahl’s law
	Slide 78: Amdahl’s law
	Slide 79: Amdahl’s law example
	Slide 80: Gustafson's Law
	Slide 81: Gustafson's Law
	Slide 82: Gustafson's Law
	Slide 83: Gustafson’s example
	Slide 84: Gustafson’s example
	Slide 85: Moore’s law
	Slide 86: objectives
	Slide 87: Distributed systems
	Slide 88: Distributed systems - 2
	Slide 89: Transparency properties of distributed systems
	Slide 90: objectives
	Slide 91: Types of modularity
	Slide 92: Cloud computing – how did we get here? Summary of key points
	Slide 93: Cloud computing – how did we get here? Summary of key points - 2
	Slide 94: Cloud computing – how did we get here? Summary of key points - 3
	Slide 95: Questions

