TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TCSS 462/562:
(SOFTWARE ENGINEERING,

OBJECTIVES - 9/30

FOR) CLOUD COMPUTING | = synabus |
= Course Introduction
Introduction = Demographics Survey

= AWS Cloud Credits Survey

= Tutorial O - Getting Started with AWS
Wes J. LIOyd = Tutorial 1 - Intro to Linux

SO O A LT el e = Cloud Computing - How did we get here? (10/4)

University of Washington - Tacoma Chapter 4 Marinescu 2"¢ edition:
Introduction to parallel and distributed systems

2025 TCs Engineering for) Cloud Computing [Fall 2025 2
@ 5 School of Engineering and Technology, University of Washington - Tacoma

TCSS562 - SOFTWARE ENGINEERING

FOR CLOUD COMPUTING OBJECTIVES - 9/30

= Course webpage is embedded into Canvas = Syllabus

= In CANVAS to access links: |- Course Introduction |
RIGHT-CLICK - Open in new window

= Demographics Survey

= Syllabus online at: = AWS Cloud Credits Survey
http://faculty.washington.edu/wlloyd/courses/tcss562

= Tutorial O - Getting Started with AWS
= Grading = Tutorial 1 - Intro to Linux
= Cloud Computing - How did we get here?

Chapter 4 Marinescu 2" edition:
Introduction to parallel and distributed systems

= Schedule

= Assignments

Engineering for) Cloud Computing [Fall 2025 L4

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025 s ‘ o 5 Tc:
b School of Engineering and Technology, University of Washington - Tacoma

‘ September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma

TCSS 462/562 - Fall 2025 Toss 462)
aln-Person Toss 862 DELIVERY FORMAT

UWTJOY 215
Live Streamed on Zoom

= Fall 2025 TCSS 462/562 :
= In-person meetings JOY 215

= Class sessions are streamed LIVE
and recorded for 24/7 availability
= Recordings deleted after ~120 days

= Video live-stream of lectures + recordings by Zoom
= Options to complete and submit most assignments

=18 class meetings remotely

=2 Holidays: No Class on Nov 11, Nov 27 . i .
= Please note: UWT does not provide professional video

production services. Provided recordings/live-streams are
provided with best-effort, but quality is not guaranteed.

®This course will have 2 in-person
quizzes

EThis course can help with

preparation for TCSS 558 - Applied
Distributed Computing

TC55462/562: (Software Engineering for) Cloud Computing [Fall 2025] s
School of Engineering and Technology, University of Washington - Tacoma

‘ September 30, 2025

Slides by Wes J. Lloyd L1.1

http://faculty.washington.edu/wlloyd/courses/tcss562/

TCSS 462:
TCSS 562:

Cloud Computing
Software Engineering for Cloud Computing

School of Engineering and Technology, UW-Tacoma

[Fall 2025]

IMPROVING PERFORMANCE

IN COLLEGE CLASSES

= From the DVD/Book: “Where there’s a will there’s an A”

= Three simple things the instructor remembers for improving
grades in college classes:
1. Attend every class
2. Sitin the front row (or as close to the front as possible)
3. Read the book (or assigned reading) - all of it

If not satisfied with recent grades, are you doing these things?

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

Septembacs0;2025 School of Engineering and Technology, University of Washington - Tacoma

462/562 RECOMMENDATIONS

= Attend in person as much as possible

= Details of assignments can be easily explained with
impromptu questions in-person which often do not occur
online (Zoom)

= Stay current
= Attend in-person or review lectures weekly
= Meet your project team members
= Work out the best arrangements for the team (in-person,
remote, etc.)

= Expect some up-front in-person planning before remote
work

= Quizzes and class presentations - in person

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025 s

SERtRmber30i2025 School of Engineering and Technology, University of Washington - Tacoma

INDUSTRY CHALLENGES

Recently - the job market has become increasingly competitive

Many companies have returned to at/near 100% in-person

= Amazon - January 2025

= Starbucks Corporate Offices

= Commuter traffic has increased

After an employee’s job market (2021-23), we have now entered an

employers job market (2024-)

= Al is less the cause than the media says - it is mostly economics

Thie is a good time to asses your dedication and commitment to a

CS degree, and set GOALS..

= Man le ar kin gain additional skills through graduate
study and other specializations (i.e. data science certificates, etc.)
to differentiate themselves in a competitive job market

= The job market is not impossible, but it is good time to assess your

plans, set goals, and commit yourself to taking the best steps

possible to be successful to meet job market challenges

TCS462/562: (Software Engineering for) Cloud Computing [Fall 2025

September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma

GRADUATE CREDIT OPPORTUNITY

= Are you a BS CSS / BA CSS Student?

= Consider taking TCSS 562 this quarter instead of TCSS 462

= BS students can take 1 x 500-level course as a senior at UWT
which can apply to both the BS and MS CSS degrees (double-dip)

= On the fence about grad school? Taking one course as an
undergrad reduces the total MS degree credits from:
= 40 to 35 (capstone or thesis option)
= 45 to 40 (coursework only option)

= Taking an MS CSS course while an undergrad saves money -
you pay the undergraduate tuition rate
= Savings*: $3,086 (resident), $1,857 (non-resident)
= * - For registration in 5-credits, full-time savings is similar

= From: https://grad.uw.edu/policies/1-1-graduate-degree-
requirements/

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025

September30, 2025 School of Engineering and Technology, University of Washington - Tacoma

110

10

REFERENCES

= [1] Cloud Computing: Concepts, Technology and Architecture®
= Thomas Erl, Prentice Hall 2013

= [2] Cloud Computing - Theory and Practice
= Dan Marinescu, Second Edition 2018*, Third Edition 2023

*
- available online via UW library

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025

September30,2025 | 0o of Engineering and Technology, Universty of Washington - Tacoma

un

REFERENCES - 2

= [3] Systems Performance: Enterprise and the Cloud *
= Brendan Gregg, First Edition 2013

= [4] AWS Administration - The Definitive Guide *
= Yohan Wadia, First Edition 2016

= Research papers Systerns
pap Performance [PV s

- The Definitive Guide

*
- available online via UW library

TC55462/562: (Software Engineering for) Cloud Computing [Fall 2025]

September30,2025 | ;o) of Engineering and Technology, University of Washington - Tacoma

11

Slides by Wes J. Lloyd

12

L1.2

https://grad.uw.edu/policies/1-1-graduate-degree-requirements/
https://grad.uw.edu/policies/1-1-graduate-degree-requirements/
https://grad.uw.edu/policies/1-1-graduate-degree-requirements/
https://grad.uw.edu/policies/1-1-graduate-degree-requirements/
https://grad.uw.edu/policies/1-1-graduate-degree-requirements/
https://grad.uw.edu/policies/1-1-graduate-degree-requirements/
https://grad.uw.edu/policies/1-1-graduate-degree-requirements/
https://grad.uw.edu/policies/1-1-graduate-degree-requirements/
https://grad.uw.edu/policies/1-1-graduate-degree-requirements/

TCSS 462: Cloud Computing [Fall 2025]

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TCS462/562 COURSE WORK

= Cloud Computing Tutorlals - 20%
= Project Status Reports / Activities - 5%

= ~ 2-4 total items (??)
= Variety of formats: in class, online, reading, activity

= Quizzes - 20%

= Open book, note, etc.

= Class Presentatlon (TCSS 562)
Class Presentatlon Summarles (TCSS 462/562) - 20%

= Term Project / Paper or Presentation - 35%
= Includes Project Proposal

TCS8462/562: (Software Engineering for) Cloud Computing [Fall 2025 s
School of Engineering and Technology, University of Washington - Tacoma

‘ September30, 2025

TERM PROJECT

= Project description to be posted

= Teams of ~4, self formed, one project leader

= Project scope can vary based on team size and
background w/ instructor approval

= Proposal due: Thursday October 16, 11:59pm (tentative)

= Approach:
= Build a “cloud native” web services application
Using serverless computing, containerization, or other
App will consist of multiple services (FaaS functions)
Objective is to compare alternate implementations / designs
= Performance (runtime)
= Cost ($)

TC55462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ SERtRmber30i2025 School of Engineering and Technology, University of Washington - Tacoma s

13

14

TERM PROJECT - 2

= GOAL: Compare alternate application implementations:
= THEME for Fall 2025: GENERATIVE Al FOR SERVERLESS
COMPUTING:
= LLMs can help generate code for serverless cloud applications
= Theme for Fall 2025: investigate how cloud performance and
cost of multiple versions of LLM generated code can vary
= (1) Alternate LLMs: code generated from alternate LLMs: e.g.
ChatGPT vs. Claude vs. Gemini, etc.
= (2) Alternate Programming Languages: use 1 LLM (ChatGPT) to
generate code in different languages to compare cloud performance
= (3) Alternate Prompts: write alternative versions of prompts asking
to generate the same code, compare outcomes
= GOAL: evaluate performance and cost to understand LLM,
programming language, and/or prompting trade-offs for Al
code generation for serverless cloud computing
= Challenge: ensure that LLMs produce functionally correct code
= >> it may be faster, but does it really work 22?2

TCS5462/562: (Software Engineering for) Cloud Computing [Fal 2025]
‘ September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma s

TERM PROJECT - 3

= A & B Testing
= Compare performance of approaches: language A vs. B
= Use statistical methods to infer which performs better

t-tests: student t-test, Welch's t-test (unequal sample sizes or
variances), Mann-Whitney U test (non-normal data)

= Specify and test specific performance goals
= Performance: runtime (ms), throughput (requests/sec),
network latency (ms), data throughput (MB/sec), others...

= Focus is on performance & cost

= Other quality aspects, we assume the cloud provides for
us: high availability, accessibility, resilience to failure,
usability

TC55462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ September30, 2025 School of Engineering and Technology, University of Washington - Tacoma Ls

15

TERM PROJECT - 4

= Deliverables:

=TCSS 562: Project paper (4-6 pgs IEEE format, template
provided)

=TCSS 462: Comprehensive recorded video presentation
(12-15 minutes), project paper option

= GitHub (project source)

= How-To document describing how to test the system
(via GitHub markdown)

= Suggested application:

= Implement a multi-function data processing pipeline:
Extract-Transform-Load (ETL) data processing pipeline
combing AWS Lambda, S3, and Amazon Aurora DB

‘ September 30, 2025 TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025] wy

School of Engineering and Technology, University of Washington - Tacoma

17

Slides by Wes J. Lloyd

16
= Primary goal for the term project is to implement a cloud-
based application and investigate 1 or more design trade-offs
= Fall 2025 focus - LLM code generation performance comparison
= Teams evaluate the impact of different designs
(implementations) on performance and cost objectives and
report on the results
= Creative projects encouraged !
= Groups do not have to follow the Fall 2025 THEME
= Groups can propose and implement any project that analyzes
other design trade-offs (besides LLM code generation)
[somembersnams [155752 Stre e o) covs onpun ol
18

L1.3

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

COMPARING DIFFERENT COMPARING DIFFERENT
DESIGN TRADE-OFFS DESIGN TRADE-OFFS - 2
= What other deslgn trade-offs can be compared? = Serverless storage alternatives
= Compare alternative app designs using different cloud = On AWS: Amazon EFS, S3, Containers, others
services (e.g. databases), languages, platforms, etc. = Container platforms

= Amazon ECS/Fargate, AKS, Azure Kubernetes, Self-hosted
Kubernetes cluster on cloud VMs

= Contrasting queueing service alternatives

= Examples - Compare different:
= Cloud storage services: Object/blob storage services

= Amazon S3, Google blobstore, Azure blobstore, vs. self-hosted = Amazon SQS, Amazon MQ, Apache Kafka, RabbitMQ, Omq,

= Cloud relational database services: others
= Amazon Relational Database Service (RDS), Aurora, Self-Hosted DB = NoSQL database services

= Platform-as-a-Service (PaaS) alternatives for web app hosting: = DynamoDB, Google BigTable, MongoDB, Cassandra
= Amazon Elastic Beanstalk, Heroku, others = CPU architectures

= Open source Faa$ platforms = Intel (x86_64), AMD (x86_64), ARM (Graviton), MAC (M1)
= Apache OpenWhisk, OpenFaa$, Fn, others... = Service designs or compositions

\ September 30,2025 | L cmelog. Unversty o wasmnien-Tacoma s \ September 30,2025 | L0 ol Unverty f asnngion oo w0

19 20

TERM PROJECT: BIG PICTURE TERM PROJECT - KEY REQUIREMENTS
1. BUILD A MULTI-FUNCTION SERVERLESS APPLICATION 1. Application should involve multiple processing steps
= Typically consisting of AWS Lambda Functions or Google Cloud 2. Implementation does not have to be Function-as-a-Service
Functions, etc. (e.g. FaaS platform) (Faa$S)

3. Implementation leverages multiple cloud services
(e.g. databases, object stores, queues)

4. Projects will contrast alternate designs/code
5. Define your comparison metrics:

2. CONTRAST THE USE OF ALTERNATIVE LLM CODE OR DESIGNS
TO IMPLEMENT THE SAME APPLICATION MULTIPLE TIMES

3. CONDUCT A PERFORMANCE EVALUATION, REPORT FINDINGS

IN TERM PAPER (562) OR PRESENTATION (462) = Which designs offer the fastest performance (runtime)?
(10-15-minutes recorded) = Lowest cost ($)?

= Best maintainability?
Consider size: lines of code (LOC), smaller programs are
generally considered to be easier to maintain

TCS5462/562: (Software Engineering for) Cloud Computing [Fal 2025] TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma wa September30, 2025 School of Engineering and Technology, University of Washington - Tacoma uz

21 22

TERM PROJECT: RESEARCH PROJECT SUPPORT

. . . i
= Alternative: Conduct a cloud-related research project on any (PHEIEES Elen INTREHICITE ELppEE

topic focused on specific research goals / questions = AWS Account - Pald Plan

= Can help spur MS Capstone/Thesis or BS honors thesis projects = Create standard AWS account with UW email

= |dentify and investigate 1 - 2 research questions = Credit card required

= Implement a novel solution to an open problem = Provides access to all AWS services

= Complete initial research towards publishing a conference or = Initial $100 free credit, second $100 free credit - 6 mo expiration
workshop paper = Additional credits available from Instructor throughout Fall quarter

= If you're interested in this option, please talk with the = AWS Account - Free Plan
instructor

= No Credit Card required

= Provides access to a subset of AWS services

= Initial $100 free credit, second $100 free credit - 6 mo expiration
= Only free tier services accessible after credits exhausted

= [nstructor will help guide projects throughout the quarter
= Explore our growing body of cloud research publications at:
http://faculty.washington.edu/wlloyd/research.html

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025] TC55462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ September30,2025 | 0o of Engineering and Technology, Universty of Washington - Tacoma s September30, 2025 | s ool of Engineering and Technology, Universty of Washington - Tacoma o

23 24

Slides by Wes J. Lloyd L1.4

http://faculty.washington.edu/wlloyd/research.html

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

PROJECT SUPPORT - 2

= Other Support :
® Glthub Student Developer Pack;

= https://education.github.com/pack

= Formerly offered AWS credits, but Microsoft bought GitHub
= Includes up to $200 in Digital Ocean Credits

= Includes up to $100 in Microsoft Azure Credits

= Unlimited private git repositories

= Several other benefits

= $100 free credit per account valid for 1 year - no credit card (?)
= https://azure.microsoft.com/en-us/free/students/
= Google Cloud
= $300 free credit for 1 year
= https://cloud.google.com/free/
= Chameleon / CloudLab
= Bare metal NSF cloud - free

TCS5462/562: (Software Engineering for) Cloud Computing [Fal 2025]
‘ Septembacs0;2025 School of Engineering and Technology, University of Washington - Tacoma 1

25

TCSS562 TERM PROJECT - 3

= Project status report / term project check-ins
= Written status report
=1 or 2 reports during the quarter

= Part of: “Project Status Reports / Activities / Quizzes”
category
= 5% of grade

= Project meetings with instructor
= After class, office hours, by appointment

TCS5462/562: (Software Engineering for) Cloud Computing [Fal 2025]
‘ September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma w2

27

CLASS PRESENTATION PEER REVIEWS

= ALL Students will submit reviews of class presentations using
rubric worksheet (~ 1-page)

= Students will review a minimum of one presentation for each
presentation day, for a minimum of 4 reviews

= |[n addition to the reviews, students will write two questions
about content in the presentation. These can be questions to
help clarify content from the presentation that was not clear,
or any related questions inspired by the presentation.

= To ensure intellectual depth of questions, questions should
not have yes-no answers.

= Peer reviews will be shared with presentation groups to
provide feedback but wlll not factor into the grading of class
presentations

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ September30,2025 | 0o of Engineering and Technology, Universty of Washington - Tacoma v

TERM PROJECT
RESEARCH OPPORTUNITIES

= Projects can lead to papers or posters presented at
ACM/IEEE/USENIX conferences, workshops
= Networking and research opportunity
... travel ???

= Conference participation (posters, papers)
helps differentiate your resume/CV from others

= Project can support preliminary work for:
UWT - BS honors, MS capstone/thesis projects

= Research projects provide valuable practicum experience
with cloud systems analysis, prototyping

= Publications are key for building your resume/CV,
Also very important for applying to PhD programs

TC55462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ SERtRmber30i2025 School of Engineering and Technology, University of Washington - Tacoma 1.2

26

TCSS 562: CLASS PRESENTATION

= TCSS 562 students will give a team presentation
teams of ~3

= Cloud Service Review Presentation
= PPT Slides, demonstration
= Present a cloud service not covered in class
= Present overview of features, performance, etc.

= Cloud Research Paper Review Presentation
= PPT slides, identify research contributions, strengths and
weaknesses of paper, possible areas for future work

TC55462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ September30, 2025 School of Engineering and Technology, University of Washington - Tacoma 1z

28

CLASS PRESENTATION PEER REVIEWS - 2

= For TCSS 462 - the 4 required peer reviews will count
for the entire presentation score

= For TCSS 562 - the peer reviews will count as ~20%
of the presentation score

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ September30,2025 | ;o) of Engineering and Technology, University of Washington - Tacoma 10

29

Slides by Wes J. Lloyd

30

L1.5

https://education.github.com/pack
https://education.github.com/pack
https://azure.microsoft.com/en-us/free/students/
https://azure.microsoft.com/en-us/free/students/
https://azure.microsoft.com/en-us/free/students/
https://azure.microsoft.com/en-us/free/students/
https://cloud.google.com/free/
https://cloud.google.com/free/

TCSS 462: Cloud Computing

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

DAILY FEEDBACK SURVEY

= 1-point

Extra Credit
for completing
Crlls e Class Activity 1 - Implicit vs. Explicit Parallelism
2-points Zoom pom— A . .
Extra Credit

for completing
in-person in class

* Upcoming Assignments.

Online Daily Feedback Quiz in Canvas - Take After Each Class

= 36 points
e e + Past Assigrments

= 2.5% added to o 2. Onlive Daly Fesdback Survy - 1075 |
final course - e
grade for s s TCSS 562 - Oniine Dol Feedock Survey - 3/30
(36/36) T e | Dun ;

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]

‘ October 202 School of Engineering and Technology, University of Washington - Tacoma

1531

31

OBJECTIVES - 9/30

= Syllabus
= Course Introduction

|- Demographics Survey |
= AWS Cloud Credits Survey

= Tutorial O - Getting Started with AWS
= Tutorial 1 - Intro to Linux
= Cloud Computing - How did we get here?

Chapter 4 Marinescu 2"? edition:
Introduction to parallel and distributed systems

TCs: Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma.

‘ P! , 2025

u3s

33

OBJECTIVES - 9/30

= Syllabus
= Course Introduction

= Demographics Survey
| = AWS Cloud Credits Survey |

= Tutorial O - Getting Started with AWS
= Tutorial 1 - Intro to Linux
= Cloud Computing - How did we get here?

Chapter 4 Marinescu 2"? edition:
Introduction to parallel and distributed systems

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025]

‘ September30,2025 | oo of Engineering and Technoloy, Universty of Washington - Tacoma

u3s

[Fall 2025]

TCSS 562 - Online Daily Feedback Survey - 10/5
tatect Oct 73t :133m

Quiz Instructions

Question 1 05pts

Ona scale of 1 to 10, please classify your perspective on material covered in today's
class:

1 2 a 4 s & 7 8 9 1
equu1 mostly
Question 2 osps

Please rate the pace of today's class:

1 2 3 4 s 3 7 8 ? 10

P et might Pt

TCS8462/562:(Software Engineering for) Cloud Computing [Fall 2024]

Cokeyiiztad School of Engineering and Technology, University of Washington - Tacoma o

32

DEMOGRAPHICS SURVEY

= Please complete the ONLINE demographics survey:

= h ://forms.gl NUW2hUV7fR7BDmv7

= Linked from course webpage in Canvas:

= http://faculty.washington.edu/wlloyd/courses/tcss562
announcements.html

TC55462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ September30, 2025 School of Engineering and Technology, University of Washington - Tacoma L

34

AWS CLOUD CREDITS SURVEY

= Please complete the AWS CLOUD CREDITS survey:

= h ://forms.gle/Y4IWvBRFVLRPnPX37

= Linked from course webpage in Canvas:

= http://faculty.washington.edu/wlloyd/courses/tcss562/
announcements.html

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ September30,2025 | ;o) of Engineering and Technology, University of Washington - Tacoma e

35

Slides by Wes J. Lloyd

36

L1.6

https://forms.gle/QNUW2hUV7fR7BDmv7
https://forms.gle/QNUW2hUV7fR7BDmv7
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
https://forms.gle/Y4iWvBRFVLRPnPX37
https://forms.gle/Y4iWvBRFVLRPnPX37
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing

School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 9/30

= Course Introduction
= Syllabus

= Demographics Survey
= AWS Cloud Credits Survey

| = Tutorial O - Getting Started with AWS|
= Tutorial 1 - Intro to Linux

= Cloud Computing - How did we get here?
Chapter 4 Marinescu 2" edition:
Introduction to parallel and distributed systems

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025]
‘ Septembacs0;2025 School of Engineering and Technology, University of Washington - Tacoma 137

OBJECTIVES - 9/30

= Course Introduction
= Syllabus

= Demographics Survey
= AWS Cloud Credits Survey

= Tutorial O - Getting Started with AWS
|- Tutorial 1 - Intro to Linuxl

= Cloud Computing - How did we get here?
Chapter 4 Marinescu 2" edition:
Introduction to parallel and distributed systems

— Tc Engineering for) Cloud Computing [Fall 2025) s
& b School of Engineering and Technology, University of Washington - Tacoma

37

38

OBJECTIVES - 9/30

= Course Introduction
= Syllabus

= Demographics Survey
= AWS Cloud Credits Survey

= Tutorial O - Getting Started with AWS
= Tutorial 1 - Intro to Linux

= Cloud Computing - How did we get here?
Chapter 4 Marlnescu 24 edltlon:
Introduction to parallel and distributed systems

P cs: Engineering for) Cloud Computing [Fall 2025 w3
P! " School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES

= Cloud Computing: How did we get here?

= Parallel and distributed systems
(Marinescu Ch. 2 - 15t edition, Ch. 4 - 2" edition)

= Data, thread-level, task-level parallelism

= Parallel architectures

=SIMD architectures, vector processing, multimedia
extensions

= Graphics processing units

= Speed-up, Amdahl's Law, Scaled Speedup

= Properties of distributed systems

= Modularity

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025

‘ September30, 2025 School of Engineering and Technology, University of Washington - Tacoma

39

CLOUD COMPUTING:

HOW DID WE GET HERE?

= General interest in parallel computing
= Moore’s Law - # of transistors doubles every 18 months

= Post 2004: heat dissipation challenges:
can no longer easily increase cloud speed

= Overclocking to 7GHz takes &
more than just liquid nitrogen: g
https://tinyurl.com/y93s2yz2
=Solutions:
=Vary CPU clock speed
= Add CPU cores

= Multl-core technology

TCS$462/562: (Software Engineering for]

) Cloud Computing [Fall 2025]
‘ September30,2025 | 0o of Engineering and Technology, Universty of Washington - Tacoma o

41

Slides by Wes J. Lloyd

40

Each Year We Get >><Cr More Processors

ore’s Historically:

Boost single-stream
performance via more
complex chips.

Now:

Deliver more cores per
chip (+ GPU, NIC, SoC).

The free lunch is over
for today’s sequential
apps and many
concurrent apps. We
need killer apps with
lots of latent parallelism.

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025] e

School of Engineering and Technology, University of Washington - Tacoma

1970 175 1860 IS6E 150 1ME 2000 105 2

‘ September 30, 2025

42

L1.7

https://tinyurl.com/y93s2yz2
https://tinyurl.com/y93s2yz2

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

HYPER THREADING

AMD’S 64-CORE <14NM CPUS

= Modern CPUs provide multiple instruction pipelines,
supporting multiple execution threads, usually 2
to feed instructions to a single CPU core...

= Epyc Rome CPUs

= Announced August 2019

= EPYC 7H12 requires liquid cooling

= Two hyper-threads AMD EPY 2
are not equivalent 4770 with HTT vs. 4670 without HTT - 25% improvement w/ HTT
to (2) CPU cores CPU Mark Relative to Top 10 Common CPUSs By

AS of 7in of February 2014 - Higher resuts represent Detter performance

= {7-4770 and i5-4670

same CPU, with and

" EPYC 7H12 841128 280 330 26ME 280W 2
without HTT
EPYC 7742 641128 225 340 56MB 225W 56950
= Example: > EPYC 7702 641128 200 338 256 B 200w $6450
hyperthreads add EPYC 7642 48/86 230 320 W6MB 225W 84775
+32.9%
EPYC 7552 48796 220 230 192MB 200W 54025
TCS5462/562: (Software Engineering for) Cloud Computing [Fal 2025] TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ Septembacs0;2025 School of Engineering and Technology, University of Washington - Tacoma s ‘ SERtRmber30i2025 School of Engineering and Technology, University of Washington - Tacoma L

CLOUD COMPUTING:

AMD’S 64-CORE <14NM CPUS HOW DID WE GET HERE? - 2

AMD EPYC 9654/9654P/9684X/9R14 (AWS OEM): = To make computing faster, we must go “parallel”
June 2023: 96 cores, 192 hyper-threads CPUs = Difficult to expose parallelism in scientific
Mixes 4nm:APU (combines cpus+apu), 5nm:L3 cache applications
(8 cPU-chiplet), and 6nm:l/0 dies, 2.25 to 3.7 burst = Not every problem solution has a parallel algorithm
GHz, up to 400 watts = Chicken and egg problem...
$10,625 to $14,756 . .
AMD EPYC 9754: 128 cores. 256 hyperthreads ! = Many commercial efforts promoting pure parallel
T yp . programming efforts have failed
2.25 to 3.1 burst GHz, 360 watts) B .
$11.900 = Enterprise computing world has been skeptical and

less involved in parallel programming
AMD EPYC 9005: 192 cores, 384 threads, 3nm (in dev)

‘ September 30, 2025

TCS8462/562: (Software Engineering for) Cloud Computing [Fall 2025 \as September30, 2025 TC55462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma b School of Engineering and Technology, University of Washington - Tacoma

45 46

CLOUD COMPUTING: CLOUD COMPUTING:
HOW DID WE GET HERE? - 3 HOW DID WE GET HERE? - 4
= Cloud computing provides access to “infinite” = Big Data requires massive amounts of compute
scalable compute infrastructure on demand resources
= Infrastructure availability is key to exploiting

= MAP - REDUCE
=Single instruction, multiple data (SIMD)
= Cloud applications =Exploit data level parallelism
=Based on cllent-server paradigm
=Thin clients leverage compute hosted on the cloud
=Applications run many web service instances
=Employ load balancing

parallelism

= Bioinformatics example

‘ September 30, 2025 TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025 war ‘ September30, 2025 TC55462/562: (Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma School of Engineering and Technology, University of Washington - Tacoma

47 48

Slides by Wes J. Lloyd L1.8

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

SMITH WATERMAN USE CASE

= Applies dynamic programming to find best local
alignment of two protein sequences
= Embarrassingly parallel, each task can run in isolation
= Use case for GPU acceleration

= AWS Lambda Serverless Computing Use Case:

Goal: Pair-wise comparison of all unique human
protein sequences (20,336)

= Python client as scheduler

= C Striped Smith-Waterman (SSW) execution engine

From: Zhao M, Lee WP, Garrison EP, Marth GT: SSW library: an SIMD Smith-
Waterman C/C++ library for use in genomic applications.
PLoS One 2013, 8:e82138

TCS5462/562: (Software Engineering for) Cloud Computing [Fal 2025]
‘ Septembacs0;2025 School of Engineering and Technology, University of Washington - Tacoma Las

SMITH WATERMAN RUNTIME

= | aptop server and client (2-core, 4-HT): 8.7 hours

= AWS Lambda FaaS, laptop as client: 2.2 minutes
= Partitions 20,336 sequences into 41 sets
= Execution cost: ~ 82¢ (~237x speed-up)

= AWS Lambda server, EC2 instance as client: 1.28
minutes
= Execution cost: ~ 87¢ (~408x speed-up)

= Hardware
= Laptop client: Intel i5-7200U 2.5 GHz :4 HT, 2 CPU
= Cloud client: EC2 Virtual Machine - m5.24xlarge: 96 vCPUs
= Cloud server: Lambda ~1000 Intel E5-2666v3 2.9GHz CPUs

TC55462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ SERtRmber30i2025 School of Engineering and Technology, University of Washington - Tacoma tso

49

CLOUD COMPUTING:

HOW DID WE GET HERE? - 3

= Compute clouds are large-scale distributed
systems

=Heterogeneous systems
*Homogeneous systems
= Autonomous

=Self organizing

TCS5462/562: (Software Engineering for) Cloud Computing [Fal 2025]
‘ September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma st

51

PARALLELISM

= Discovering parallelism and development of parallel
algorithms requires considerable effort

= Example: numerical analysis problems, such as solving large
systems of linear equations or solving systems of Partial
Differential Equations (PDEs), require algorithms based on
domain decomposition methods.

= How can problems be split into independent chunks?
= FIlne-gralned parallelism

= Only small bits of code can run in parallel without coordination
= Communication is required to synchronize state across nodes

= Coarse-grained parallelism

= Large blocks of code can run without coordination

‘ September 30, 2025 TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025] s

School of Engineering and Technology, University of Washington - Tacoma

53

Slides by Wes J. Lloyd

50

OBJECTIVES

= Cloud Computing: How did we get here?

= Parallel and distributed systems
(Marinescu Ch. 2 - 15t edition, Ch. 4 - 2" edition)

= Data, thread-level, task-level parallelism

= Parallel architectures

=SIMD architectures, vector processing, multimedia
extensions

= Graphics processing units

= Speed-up, Amdahl's Law, Scaled Speedup

= Properties of distributed systems

= Modularity

TC55462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ September30, 2025 School of Engineering and Technology, University of Washington - Tacoma sz

52

PARALLELISM - 2

= Coordlnatlon of nodes

= Requires message passing or shared memory

= Debugging parallel message passing code is easier
than parallel shared memory code

= Message passing: all of the interactions are clear

= Coordination via specific programming API (MPI)

= Shared memory: interactions can be implicit - must
read the code!!

= Processing speed is orders of magnitude faster than
communication speed (CPU > memory bus speed)
= Avoiding coordination achieves the best speed-up

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ September30,2025 | ;o) of Engineering and Technology, University of Washington - Tacoma s

54

L1.9

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

TYPES OF PARALLELISM

= Parallelism:

= Goal: Perform multiple operations at the same time
to achieve a speed-up

=Thread-level parallelism (TLP)
=Control flow architecture

= Data-level parallelism
=Data flow architecture

= Bit-level parallelism

= |Instruction-level parallelism (ILP)

TCS5462/562: (Software Engineering for) Cloud Computing [Fal 2025]
‘ Septembacs0;2025 School of Engineering and Technology, University of Washington - Tacoma 1ss

THREAD LEVEL PARALLELISM (TLP)

= Number of threads an application runs at any one time
= Varies throughout program execution

= As a metric:

= Minlmum: 1 thread

= Can measure average, maximum (peak)

= QUESTION: What are the consequences of average (TLP)

for scheduling an application to run on a computer with a
fixed number of CPU cores and hyperthreads?

= Let’s say there are 4 cores, or 8 hyper-threads...
= Key to avoiding waste of computing resources
is knowing your application’s TLP...

TC55462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ SERtRmber30i2025 ‘ School of Engineering and Technology, University of Washington - Tacoma 156

55

CONTROL-FLOW ARCHITECTURE

= Typical architecture used today - w/ multiple threads

= By John von Neumann (1945)

= Also called the Von Neumann architecture

= Dominant computer system architecture

= Program counter (PC) determines
next instruction to load into
instruction register

= Program execution
is sequential

Central Processing Unit

AsithmetisiLogic Unit

Memory Unit

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 20251
‘ September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma Ls?

56

DATA-LEVEL PARALLELISM

= Partition data into big chunks, run separate copies
of the program on them with little or no
communication

=Problems are considered to be
embarrassingly parallel

= Also perfectly parallel or pleasingly parallel...

= Little or no effort needed to separate problem
into a number of parallel tasks

= MapReduce programming model is an example

TC55462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ September30, 2025 ‘ School of Engineering and Technology, University of Washington - Tacoma tss

57

DATA FLOW ARCHITECTURE

= Alternate architecture used by network routers, digital
signal processors, special purpose systems

= Operations performed when input (data) becomes
available

= Envisioned to provide much higher parallelism

= Multiple problems has prevented wide-scale adoption
= Efficiently broadcasting data tokens in a massively
parallel system
= Efficiently dispatching instruction tokens in a massively
parallel system
= Building content addressable memory large enough to
hold all of the dependencies of a real program

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ September30,2025 | 0o of Engineering and Technology, Universty of Washington - Tacoma 10

58

DATA FLOW ARCHITECTURE - 2

= Architecture not as popular as control-flow

= Modern CPUs emulate data flow architecture for dynamic
instruction scheduling since the 1990s

= Out-of-order execution - reduces CPU idle time by not blocking
for instructions requiring data by defining execution windows
= Execution windows: identify instructions that can be run by
data dependency
= Instructions are completed in data dependency order within
execution window
Execution window size typically 32 to 200 instructions

Utility of data flow architectures has been
much less than envisloned

TC55462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

‘ September 30, 2025

59

Slides by Wes J. Lloyd

60

L1.10

TCSS 462:
TCSS 562:

Cloud Computing
Software Engineering for Cloud Computing

School of Engineering and Technology, UW-Tacoma

[Fall 2025]

BIT-LEVEL PARALLELISM

= Computations on large words (e.g. 64-bit integer) are
performed as a single instruction

= Fewer instructions are required on 64-bit CPUs to process
larger operands (A+B) providing dramatic performance
improvements

= Processors have evolved: 4-bit, 8-bit, 16-bit, 32-bit, 64-bit

QUESTION: How many Instructions are required to add two

64-bit numbers on a 16-bit CPU? (Intel 8088)

= 64-bit MAX int = 9,223,372,036,854,775,807 (signed)

= 16-bit MAX int = 32,767 (signed)

= Intel 8088 - limited to 16-bit registers

TCS8462/562: (Software Engineering for) Cloud Computing [Fall 2025 uet

Septembacs0;2025 School of Engineering and Technology, University of Washington - Tacoma

INSTRUCTION-LEVEL PARALLELISM (ILP)

= CPU pipelining architectures enable ILP
= CPUs have multi-stage processing pipelines

= Pipelining: split instructions into sequence of steps that
can execute concurrently on different CPU circuitry

= Basic RISC CPU - Each instruction has 5 pipeline stages:
= |F - instruction fetch

= |D- instruction decode

= EX - instruction execution

= MEM - memory access

= WB - write back

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025] we

‘ SERtRmber30i2025 School of Engineering and Technology, University of Washington - Tacoma

61

62

CPU PIPELINING

Clock cyele

waiting
Instructions

e 1:Feteh

=ane 1 ereaute

PIPELINE

Sane 4w rlke-back

Complated
Instructions

September 30, 2025 TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025] e

School of Engineering and Technology, University of Washington - Tacoma

INSTRUCTION LEVEL PARALLELISM - 2

= RISC CPU:

= After 5 clock cycles, all 5 stages of an instruction are
loaded

= Starting with 6" clock cycle, one full instruction
completes each cycle

= The CPU performs 5 tasks per clock cycle!
Fetch, decode, execute, memory read, memory write back

= Pentium 4 (CISC CPU) - processing pipeline w/ 35 stages!

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025

‘ September30, 2025 School of Engineering and Technology, University of Washington - Tacoma

63

OBJECTIVES

= Cloud Computing: How did we get here?
= Parallel and distributed systems
(Marinescu Ch. 2 - 15t edition, Ch. 4 - 2" edition)
= Data, thread-level, task-level parallelism
= Parallel architectures

= SIMD architectures, vector processing, multimedia
extensions

= Graphics processing units

= Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems

= Modularity

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025 \6s

September30,2025 | 0o of Engineering and Technology, Universty of Washington - Tacoma

65

Slides by Wes J. Lloyd

64

MICHAEL FLYNN'S COMPUTER

ARCHITECTURE TAXONOMY

= Michael Flynn’s proposed taxonomy of computer
architectures based on concurrent instructions and
number of data streams (1966)

= SISD (Single Instruction Single Data)
= SIMD (Single Instruction, Multiple Data)
= MIMD (Multiple Instructions, Multiple Data)

= LESS COMMON: MISD (Multiple Instructions, Single Data)

= Pipeline architectures: functional units perform different
operations on the same data

= For fault tolerance, may want to execute same instructions
redundantly to detect and mask errors - for task replication

TC55462/562: (Software Engineering for) Cloud Computing [Fall 2025]

L6
School of Engineering and Technology, University of Washington - Tacoma

‘ September 30, 2025

66

L1.11

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

FLYNN’'S TAXONOMY

= SISD (SiIngle Instructlon Single Data)

Scalar architecture with one processor/core.

= Individual cores of modern multicore processors are
“SISD”

= S|MD (SIngle Instructlon, Multiple Data)
Supports vector processing

= When SIMD instructions are issued, operations on
individual vector components are carried out concurrently

= Two 64-element vectors can be added in parallel

= Vector processing instructions added to modern CPUs

= Example: Intel MMX (multimedia) instructions

‘ September30, 2025 | 1C55462/562: (Software Enginering for) Cloud Computin [Fal 2025] o

School of Engineering and Technology, University of Washington - Tacoma

67

FLYNN’S TAXONOMY - 2

= MIMD (Multiple Instructlons, Multiple Data) - system with
several processors and/or cores that function asynchronously
and independently
= At any time, different processors/cores may execute different
instructions on different data
Multi-core CPUs are MIMD
Processors share memory via interconnection networks
= Hypercube, 2D torus, 3D torus, omega network, other topologies
MIMD systems have different methods of sharing memory
Uniform Memory Access (UMA)
Cache Only Memory Access (COMA)
Non-Uniform Memory Access (NUMA)

‘ September30, 2025 | TCS5462/562: (Software Engineering for) Cloud Compuing [Fal 20251 169

School of Engineering and Technology, University of Washington - Tacoma

69

ROOFLINE MODEL

= When program reaches a given arithmetic intensity
performance of code running on CPU hits a “roof”

= CPU performance bottleneck changes from:
memory bandwidth (left) > floating point performance (right)

4t imbalance Key take-aways:
T Whenaprogram’s has low
Arithmetic Intensity, memory

ot bandwidth limits performance..

Performance

With high Arithmetic intensity,
the system has peak parallel
performance...

- performance is limited by??

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025 wn

School of Engineering and Technology, University of Washington - Tacoma

Arithmetic intensity

‘ September 30, 2025

(SIMD): VECTOR PROCESSING

ADVANTAGES

= Exploit data-parallelism: vector operations enable speedups

= Vectors architecture provide vector registers that can store
entire matrices into a CPU register

= SIMD CPU extension (e.g. MMX) add support for vector
operations on traditional CPUs

= Vector operations reduce total number of instructions for
large vector operations

= Provides higher potential speedup vs. MIMD architecture

= Developers can think sequentially; not worry about
parallelism

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025

‘ SERtRmber30i2025 School of Engineering and Technology, University of Washington - Tacoma

68

ARITHMETIC INTENSITY

= Arlthmetic Intenslity: Ratio of work (W) to I— w

memory traffic r/w (Q) Q
Example: # of floating-point ops per byte of data read

= Characterizes application scalability with SIMD support

= SIMD can perform many fast matrix operations in parallel

= High arithmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

= Low arithmetic intensity:
Programs with sparse matrix operations do not scale well
with problem size
(memory RW becomes bottleneck, not enough ops!)

‘ September30, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025 7

School of Engineering and Technology, University of Washington - Tacoma

70

OBJECTIVES

= Cloud Computing: How did we get here?
= Parallel and distributed systems
(Marinescu Ch. 2 - 15t edition, Ch. 4 - 2" edition)
= Data, thread-level, task-level parallelism
= Parallel architectures

= SIMD architectures, vector processing, multimedia
extensions

| = Graphics processing units |
= Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems
= Modularity

‘ September30,2025 | ;o) of Engineering and Technology, University of Washington - Tacoma

71

Slides by Wes J. Lloyd

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025] wn

72

L1.12

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

GRAPHICAL PROCESSING UNITS (GPUs) OBJECTIVES
= GPU provides multiple SIMD processors = Cloud Computing: How did we get here?
= Typically 7 to 15 SIMD processors each = Parallel and distributed systems
= 32,768 total registers, divided into 16 lanes (Marinescu Ch. 2 - 1% edition, Ch. 4 - 2"? edition)
(2048 registers each) = Data, thread-level, task-level parallelism
= GPU programming model: = Parallel architectures
single instruction, multiple thread =SIMD architectures, vector processing, multimedia
= Programmed using CUDA- C like programming extensions
language by NVIDIA for GPUs = Graphics processing units
= CUDA threads - single thread associated with each |_*Speed-up, Amdahl's Law, Scaled Speedup]

data element (e.g. vector or matrix) = Properties of distributed systems

= Thousands of threads run concurrently * Modularity

TCS$462/562: (Software Engineering for) Cloud Computing [Fall 2025] uzn September30, 2025 TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025] 7
School of Engineering and Technology, University of Washington - Tacoma 5 School of Engineering and Technology, University of Washington - Tacoma

‘ September30, 2025

73 74

PARALLEL COMPUTING SPEED-UP EXAMPLE
= Parallel hardware and software systems allow: = Consider embarrassingly parallel image processing
= Solve problems demanding resources not available on = Eight images (multiple data)

single system. = Apply image transformation (greyscale) in parallel

= Reduce time required to obtain solution = 8-core CPU, 16 hyper threads

= Sequential processing: perform transformations one at a time
using a single program thread

= The speed-up (S) measures effectiveness of - B (TEEED, B Comenth Codis W) = 24 cemadh

parallelization:

Parallel processing
S(N) = T(j_) / T(N) = 8 images, 3 seconds each: T(N) = 3 seconds
= Speedup: S(N) = 24 / 3 = 8x speedup

T(1) > execution time of total sequential computation O Galllad] e R TP
perfect scallng

T(N) = execution time for performing N parallel

computations in parallel = Must consider data transfer and computation setup time
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
‘ September 30, 2025 School of Engineering and Technology, University of Washington - Tacoma s ‘ September30, 2025 School of Engineering and Technology, University of Washington - Tacoma e

75 76

AMDAHL'S LAW AMDAHL'S LAW

= Amdahl’s law is used to estimate the speed-up of a job 1
using parallel computing S =
1-N+4£

1. Divide job into two parts

2. Part A that will still be sequential

A n . =S =th tical d f th hole task
3. Part B that will be sped-up with parallel computing eoreticalispecdup o € whole tas

= f= fraction of work that is parallel (ex. 25% or 0.25)
= Portion of computation which cannot be parallelized will = N= proposed speed up of the parallel part (ex.5 times speedup)
determine (i.e. limit) the overall speedup
= Amdahl’s law assumes jobs are of a fixed size = % improvement
= Also, Amdahl’s assumes no overhead for distributing the of task execution =100*(1-(1/9))

work, and a perfectly even work distribution
= Using Amdahl’s law, what is the maximum possible speed-up?

‘ October 14, 2020 TCS$562: Software Engineering for Cloud Computing [Fall 2020] 577 ‘ October 14, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020] 1578

School of Engineering and Technology, University of Washington - Tacoma School of Engineering and Technology, University of Washington - Tacoma

77 78

Slides by Wes J. Lloyd L1.13

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

AMDAHL'S LAW EXAMPLE GUSTAFSON'S LAW

Two Indepengentparta A B
= Program with two independent parts: = Calculates the scaled speed-up using “N” processors
= Part A is 75% of the execution time S(N) =N+ (1-N) «
= Part B is 25% of the execution time Mike B Sctaser NN
= Part B is made 5 times faster with ke & i N: Number of processors
parallel computing

from Wikipedia a: fraction of program run time which can’t be parallelized

= Estimate the percent improvement of task execution (e.g. must run sequentially)

= Original Part A is 3 seconds, Part B is 1 second

= N=5 (speedup of part B) = Can be used to estimate runtime of parallel portion of

u £=.25 (only 25% of the whole job (A+B) will be sped-up) DICEZSTY

uS=1/ (1) + £/5)

= S=1/ ((.75) + .25/5)

= 5=1.25

= % improvement = 100 * (1 - 1/1.25) = 20%

[| ey amt oo - [e [

79 80

GUSTAFSON'S LAW GUSTAFSON'S LAW
= Calculates the scaled speed-up using “N” processors = Calculates the scaled speed-up using “N” processors
S(N) =N+ (1-N)« S(N) =N+ (1-N)«
N: Number of processors N: Number of processors
o: fraction of program run time which can’t be parallelized o: fraction of program run time which can’t be parallelized
(e.g. must run sequentially) (e.g. must run sequentially)
= Can be used to estimate runtime of parallel portion of = Example:
program Consider a program that is embarrassingly parallel,
= Where a =c / (1 + o) but 75% cannot be parallelized. a=.75

QUESTION: If deploying the job on a 2-core CPU, what
scaled speedup Is possible assuming the use of two
processes that run In parallel?

TCSS562: Software Engineering for Cloud Computing [Fall 2020] TC55462/562: (Software Engineering for) Cloud Computing [Fall 2025]
October14, 2020 School of Engineering and Technology, University of Washington - Tacoma e September30, 2025 School of Engineering and Technology, University of Washington - Tacoma s

= Where o= sequential time, ©= =parallel time
= Our Amdahl’s example: 6= 3s, © =1s, a =.75

81 82

GUSTAFSON’S EXAMPLE GUSTAFSON’S EXAMPLE

QUESTION: QUESTION:
What is the maximum theoretical speed-up on a 2-core CPU ? What is the maximum theoretical speed-up on a 2-core CPU ?

S(N) =N+(1-N)«x S(N) =N+ (1-N)«
N=2, a=.75 N=2, a
S(N) =2+ (1-2).75 S(N) =3 For 2 CPUs, speed up is 1.25x
S(N) =2 S(N) = 2
For 16 CPUs, speed up is 4.75x
= What is the maximum theoretical speed-up on a 16-core CPU? = What is tifeTid u core d ged-up o d 1o CPU?

S(N) =N+(1-N)a S(N) =N+ (1-N)«
N=16, a=.75 N=16, a=.75
S(N) =16 + (1-16) .75 S(N) =16 + (1 - 16) .75
S(N)=? S(N) =2

[sememberso,aozs [T5isiea ot) cot computt P20 [somembersnams [155752 Stre e o) covs onpun ol o

83 84

Slides by Wes J. Lloyd L1.14

TCSS 462: Cloud Computing

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

MOORE’S LAW

= Transistors on a chip doubles approximately every 1.5 years
® CPUs now have billions of transistors

= Power dissipation issues at faster clock rates leads to heat
removal challenges
= Transition from: increasing clock rates - to adding CPU cores

Symmetric core processor -multi-core CPU, all cores have the

same computational resources and speed

= Asymmetric core processor - on a multi-core CPU, some cores
have more resources and speed

= Dynamic core processor - processing resources and speed can

be dynamically configured among cores

Observatlon: asymmetric processors offer a higher dup
TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025] s

School of Engineering and Technology, University of Washington - Tacoma

‘ September30, 2025

[Fall 2025]

OBJECTIVES

= Cloud Computing: How did we get here?
= Parallel and distributed systems
(Marinescu Ch. 2 - 1t edition, Ch. 4 - 2" edition)
= Data, thread-level, task-level parallelism
= Parallel architectures

=SIMD architectures, vector processing, multimedia
extensions

= Graphics processing units
= Speed-up, Amdahl's Law, Scaled Speedup

= Properties of distributed systems |

= Modularity

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025

SERtRmber30i2025 School of Engineering and Technology, University of Washington - Tacoma

85

DISTRIBUTED SYSTEMS

Collection of autonomous computers, connected through a

network with distribution software called “middleware” that

enables coordination of activities and sharing of resources

Key characteristics:

= Users perceive system as a single, integrated computing
facility.

= Compute nodes are autonomous

Scheduling, resource management, and security implemented

by every node

Multiple points of control and failure

= Nodes may not be accessible at all times

= System can be scaled by adding additional nodes

Availability at low levels of HW/software/network reliability

TCS8462/562: (Software Engineering for) Cloud Computing [Fall 2025
School of Engineering and Technology, University of Washington - Tacoma

‘ September 30, 2025 us

86

DISTRIBUTED SYSTEMS - 2

Key non-functional attributes
= Known as “ilities” in software engineering

Availability - 24/7 access?

Reliability - Fault tolerance

= Accessibility - reachable?

Usability - user friendly

Understandability - can under

Scalability - responds to variable demand
Extensibility - can be easily modified, extended

= Maintainability - can be easily fixed
= Consistency - data is replicated correctly in timely manner

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025

September30, 2025 School of Engineering and Technology, University of Washington - Tacoma

87

TRANSPARENCY PROPERTIES OF

DISTRIBUTED SYSTEMS

= Access transparency: local and remote objects accessed using
identical operations

= Locatlon transparency: objects accessed w/o knowledge of
their location.

= Concurrency transparency: several processes run concurrently

using shared objects w/o interference among them

Replicatlon transparency: multiple instances of objects are

used to increase reliability

- users are unaware if and how the system is replicated

Fallure transparency: concealment of faults

Migratlon transparency: objects are moved w/o affecting

operations performed on them

= Performance transparency: system can be reconfigured based

on load and quality of service requirements

Scallng transparency: system and applications can scale w/o

change in system structure and w/o affecting applications

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025] \iss

School of Engineering and Technology, University of Washington - Tacoma

‘ September 30, 2025

88

OBJECTIVES

= Cloud Computing: How did we get here?
= Parallel and distributed systems
(Marinescu Ch. 2 - 15t edition, Ch. 4 - 2" edition)
= Data, thread-level, task-level parallelism
= Parallel architectures

= SIMD architectures, vector processing, multimedia
extensions

= Graphics processing units
= Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems

= Modularity |

September30, 2025 TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025] 50

School of Engineering and Technology, University of Washington - Tacoma

89

Slides by Wes J. Lloyd

90

L1.15

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing

School of

Engineering and Technology, UW-Tacoma

TYPES OF MODULARITY

= Soft modularlty: TRADITIONAL

= Divide a program into modules (classes) that call each other
and communicate with shared-memory

= A procedure calling convention is used (or method invocation)

= Enforced modularity: CLOUD COMPUTING

= Program is divided into modules that communicate only
through message passing

= The ubiquitous client-server paradigm

= Clients and servers are independent decoupled modules
= System is more robust if servers are stateless

= May be scaled and deployed separately

= May also FAIL separately!

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

‘ Septembacs0;2025 School of Engineering and Technology, University of Washington - Tacoma

us

91

CLOUD COMPUTING - HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 2

= Blt-level parallellsm
= Instruction-level parallelism (CPU pipelining)
= Flynn’s taxonomy: computer system architecture classification
= SISD - Single Instruction, Single Data (modern core of a CPU)
= SIMD - Single Instruction, Multiple Data (Data parallelism)
= MIMD - Multiple Instruction, Multiple Data
= MISD is RARE; application for fault tolerance...
= Arithmetic intensity: ratio of calculations vs memory RW
= Roofline model:
Memory bottleneck with low arithmetic intensity
= GPUs: ideal for programs with high arithmetic intensity
= SIMD and Vector processing supported by many large registers

TCS462/562: (Software Engineering for) Cloud Computing [Fall 2025

September30,2025 School of Engineering and Technology, University of Washington - Tacoma

uss

[Fall 2025]

CLOUD COMPUTING - HOW DID WE GET HERE?
SUMMARY OF KEY POINTS

= Multi-core CPU technology and hyper-threading

= What is a
= Heterogeneous system?
= Homogeneous system?
= Autonomous or self-organizing system?

= FIne gralned vs. coarse gralned parallellsm

= Parallel message passing code is easier to debug than
shared memory (e.g. p-threads)

= Know your application’s max/avg Thread Level
Parallelism (TLP)

= Data-level parallelism: Map-Reduce, (SIMD) Single
Instruction Multiple Data, Vector processing & GPUs

‘ September30, 2025

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

us

92

CLOUD COMPUTING - HOW DID WE GET HERE?
SUMMARY OF KEY POINTS - 3

= Speed-up (S)

S(N) = T(1) / T(N)
= Amdahl’s law:

S=1/ ((1-f) + f/N),s=latency, f=parallel fraction, N=speed-up
= o = percent of program that must be sequential

= Scaled speedup with N processes:
S(N) =N - a(N-1)

= Moore’s Law

= Symmetric core, Asymmetric core, Dynamic core CPU
= Distributed Systems Non-function quality attributes
= Distributed Systems - Types of Transparency

= Types of modularity- Soft, Enforced

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025

September30, 2025 School of Engineering and Technology, University of Washington - Tacoma

93

QUESTIONS

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2
School of Engineering and Technology, University of Washington -

September30, 2025

95

Slides by Wes J. Lloyd

94

L1.16

	Slide 1: TCSS 462/562: (Software Engineering for) Cloud Computing
	Slide 2: OBJECTIVES – 9/30
	Slide 3: TCSS562 – software engineering for cloud computing
	Slide 4: OBJECTIVES – 9/30
	Slide 5: TCSS 462/ TCSS 562 Fall 2025
	Slide 6: Delivery format
	Slide 7: Improving performance in college classes
	Slide 8: 462/562 recommendations
	Slide 9: Industry challenges
	Slide 10: Graduate credit opportunity
	Slide 11: references
	Slide 12: References - 2
	Slide 13: Tcs462/562 course work
	Slide 14: term project
	Slide 15: Term project - 2
	Slide 16: Term project - 3
	Slide 17: term project - 4
	Slide 18: Term project - 5
	Slide 19: Comparing DIFFERENT design trade-offs
	Slide 20: Comparing DIFFERENT design trade-offs - 2
	Slide 21: TERM PROJECT: big picture
	Slide 22: Term project - Key requirements
	Slide 23: Term project: research
	Slide 24: Project support
	Slide 25: Project support - 2
	Slide 26: term project RESEARCH opportunities
	Slide 27: Tcss562 term project - 3
	Slide 28: TCSS 562: Class presentation
	Slide 29: Class presentation peer reviews
	Slide 30: Class presentation peer reviews – 2
	Slide 31: daily feedback survey
	Slide 32
	Slide 33: OBJECTIVES – 9/30
	Slide 34: Demographics survey
	Slide 35: OBJECTIVES – 9/30
	Slide 36: AWS Cloud Credits survey
	Slide 37: OBJECTIVES – 9/30
	Slide 38: OBJECTIVES – 9/30
	Slide 39: OBJECTIVES – 9/30
	Slide 40: objectives
	Slide 41: Cloud computing: How did we get here?
	Slide 42
	Slide 43: Hyper threading
	Slide 44: AMD’s 64-core <14nm CPUs
	Slide 45: AMD’s 64-core <14nm CPUs
	Slide 46: Cloud computing: How did we get here? - 2
	Slide 47: cloud computing: How did we get here? - 3
	Slide 48: Cloud computing: how did we get here? - 4
	Slide 49: Smith Waterman Use Case
	Slide 50: Smith waterman runtime
	Slide 51: cloud computing: How did we get here? - 3
	Slide 52: objectives
	Slide 53: parallelism
	Slide 54: Parallelism - 2
	Slide 55: Types of parallelism
	Slide 56: Thread level parallelism (TLP)
	Slide 57: Control-Flow architecture
	Slide 58: Data-level Parallelism
	Slide 59: Data flow architecture
	Slide 60: Data flow architecture - 2
	Slide 61: Bit-level parallelism
	Slide 62: Instruction-level parallelism (ILP)
	Slide 63: Cpu pipelining
	Slide 64: Instruction level parallelism - 2
	Slide 65: objectives
	Slide 66: Michael Flynn’s computer architecture taxonomy
	Slide 67: Flynn’s taxonomy
	Slide 68: (Simd): VECtOR PROCESSING advantages
	Slide 69: Flynn’s taxonomy - 2
	Slide 70: Arithmetic intensity
	Slide 71: Roofline model
	Slide 72: objectives
	Slide 73: Graphical processing units (gpus)
	Slide 74: objectives
	Slide 75: Parallel computing
	Slide 76: Speed-up example
	Slide 77: Amdahl’s law
	Slide 78: Amdahl’s law
	Slide 79: Amdahl’s law example
	Slide 80: Gustafson's Law
	Slide 81: Gustafson's Law
	Slide 82: Gustafson's Law
	Slide 83: Gustafson’s example
	Slide 84: Gustafson’s example
	Slide 85: Moore’s law
	Slide 86: objectives
	Slide 87: Distributed systems
	Slide 88: Distributed systems - 2
	Slide 89: Transparency properties of distributed systems
	Slide 90: objectives
	Slide 91: Types of modularity
	Slide 92: Cloud computing – how did we get here? Summary of key points
	Slide 93: Cloud computing – how did we get here? Summary of key points - 2
	Slide 94: Cloud computing – how did we get here? Summary of key points - 3
	Slide 95: Questions

