
TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L1.1

 Introduction

 Wes J. Lloyd

 School of Engineering and Technology

 University of Washington - Tacoma

TCSS 462/562:

(SOFTWARE ENGINEERING

FOR) CLOUD COMPUTING  Syllabus

 Course Introduction

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 0 - Getting Started with AWS

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here? (10/4)

Chapter 4 Marinescu 2 nd edition:

Introduction to parallel and distributed systems

September 30, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.2

OBJECTIVES – 9/30

 Course webpage is embedded into Canvas

▪ In CANVAS to access links:

RIGHT-CLICK – Open in new window

 Syllabus online at:

http://faculty.washington.edu/wlloyd/courses/tcss562/

 Grading

 Schedule

 Assignments

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.3

TCSS562 – SOFTWARE ENGINEERING

FOR CLOUD COMPUTING

 Syllabus

 Course Introduction

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 0 - Getting Started with AWS

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?

Chapter 4 Marinescu 2 nd edition:

Introduction to parallel and distributed systems

September 30, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.4

OBJECTIVES – 9/30

TCSS 462/562 – Fall 2025

 In-Person
UWT JOY 215
Live Streamed on Zoom

Class sessions are streamed LIVE
and recorded for 24/7 availability
▪Recordings deleted after ~120 days

18 class meetings
▪2 Holidays: No Class on Nov 11, Nov 27

This course will have 2 in-person
quizzes

This course can help with
preparation for TCSS 558 – Applied
Distributed Computing

TCSS 462/

TCSS 562

FALL 2025

L1.5

 Fall 2025 TCSS 462/562 :

▪ In-person meetings JOY 215

▪ Video live-stream of lectures + recordings by Zoom

▪ Options to complete and submit most assignments

remotely

 Please note: UWT does not provide professional video

production services. Provided recordings/live -streams are

provided with best-effort, but quality is not guaranteed.

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.6

DELIVERY FORMAT

1 2

3 4

5 6

http://faculty.washington.edu/wlloyd/courses/tcss562/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L1.2

 From the DVD/Book: “Where there’s a will there’s an A”

 Three simple things the instructor remembers for improving

grades in college classes:

1. Attend every class

2. Sit in the front row (or as close to the front as possible)

3. Read the book (or assigned reading) – all of it

 If not satisfied with recent grades, are you doing these things?

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.7

IMPROVING PERFORMANCE

IN COLLEGE CLASSES

 Attend in person as much as possible

▪ Details of assignments can be easily explained with
impromptu questions in-person which often do not occur
online (Zoom)

 Stay current

▪ Attend in-person or review lectures weekly

 Meet your project team members

▪Work out the best arrangements for the team (in-person,
remote, etc.)

▪ Expect some up-front in-person planning before remote
work

 Quizzes and class presentations – in person

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.8

462/562 RECOMMENDATIONS

 Recently - the job market has become increasingly competitive

 Many companies have returned to at/near 100% in -person

▪ Amazon – January 2025

▪ Starbucks Corporate Offices

▪ Commuter traffic has increased

 After an employee’s job market (2021 -23), we have now entered an
employers job market (2024-)

▪ AI is less the cause than the media says – it is mostly economics

 Thie is a good t ime to asses your dedicat ion and commitment to a
CS degree, and set GOALS..

 Many people are seeking to gain addit ional skil ls through graduate
study and other specializat ions (i .e . data science cer t ificates, etc.)
to dif ferent iate themselves in a competit ive job market

 The job market is not impossible, but it is good t ime to assess your
plans, set goals, and commit yourself to taking the best steps
possible to be successful to meet job market challenges

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.9

INDUSTRY CHALLENGES

 Are you a BS CSS / BA CSS Student?

 Consider taking TCSS 562 this quarter instead of TCSS 462

 BS students can take 1 x 500-level course as a senior at UWT
which can apply to both the BS and MS CSS degrees (do uble -dip)

 On the fence about grad school? Taking one course as an
undergrad reduces the total MS degree credits from:

▪ 40 to 35 (capstone or thesis option)

▪ 45 to 40 (coursework only option)

 Taking an MS CSS course while an undergrad saves money –
you pay the undergraduate tuition rate

▪ Savings*: $3,086 (resident), $1,857 (non-resident)

▪ * - For registration in 5-credits, full-time savings is similar

 From: https://grad.uw.edu/policies/1-1-graduate-degree-
requirements/

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.10

GRADUATE CREDIT OPPORTUNITY

 [1] Cloud Computing: Concepts, Technology and Architecture *

 Thomas Erl, Prentice Hall 2013

 [2] Cloud Computing - Theory and Practice

 Dan Marinescu, Second Edition 2018 *, Third Edition 2023

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.11

REFERENCES

* - available online via UW library

 [3] Systems Performance: Enterprise and the Cloud *

 Brendan Gregg, First Edition 2013

 [4] AWS Administration – The Definitive Guide *

 Yohan Wadia, First Edition 2016

 Research papers

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.12

REFERENCES - 2

* - available online via UW library

7 8

9 10

11 12

https://grad.uw.edu/policies/1-1-graduate-degree-requirements/
https://grad.uw.edu/policies/1-1-graduate-degree-requirements/
https://grad.uw.edu/policies/1-1-graduate-degree-requirements/
https://grad.uw.edu/policies/1-1-graduate-degree-requirements/
https://grad.uw.edu/policies/1-1-graduate-degree-requirements/
https://grad.uw.edu/policies/1-1-graduate-degree-requirements/
https://grad.uw.edu/policies/1-1-graduate-degree-requirements/
https://grad.uw.edu/policies/1-1-graduate-degree-requirements/
https://grad.uw.edu/policies/1-1-graduate-degree-requirements/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L1.3

 Cloud Computing Tutorials – 20%

 Project Status Reports / Activities – 5%

▪ ~ 2-4 total items (??)

▪ Variety of formats: in class, online, reading, activity

 Quizzes – 20%

▪ Open book, note, etc.

 Class Presentation (TCSS 562)
Class Presentation Summaries (TCSS 462/562) – 20%

 Term Project / Paper or Presentation – 35%

▪ Includes Project Proposal

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.13

TCS462/562 COURSE WORK

 Project description to be posted

 Teams of ~4, self formed, one project leader

 Project scope can vary based on team size and

background w/ instructor approval

 Proposal due: Thursday October 16, 11:59pm (tentative)

 Approach:

▪ Build a “cloud native” web services application

▪ Using serverless computing, containerization, or other

▪ App will consist of multiple services (FaaS functions)

▪ Objective is to compare alternate implementations / designs

▪ Performance (runtime)

▪ Cost ($)

▪ How does application design impact cost and performance?September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.14

TERM PROJECT

 GOAL: Compare alternate application implementations:

 THEME for Fall 2025: GENERATIVE AI FOR SERVERLESS
COMPUTING:

 LLMs can help generate code for serverless cloud applications

 Theme for Fall 2025: investigate how cloud performance and
cost of multiple versions of LLM generated code can vary
▪ (1) Alternate LLMs: code generated from alternate LLMs: e.g.

ChatGPT vs. Claude vs. Gemini, etc.

▪ (2) Alternate Programming Languages: use 1 LLM (ChatGPT) to
generate code in different languages to compare cloud performance

▪ (3) Alternate Prompts: write alternative versions of prompts asking
to generate the same code, compare outcomes

 GOAL: evaluate performance and cost to understand LLM,
programming language, and/or prompting trade -offs for AI
code generation for serverless cloud computing

 Challenge: ensure that LLMs produce functionally correct code
▪ >> it may be faster, but does it really work ???

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.15

TERM PROJECT - 2

 A & B Testing

▪ Compare performance of approaches: language A vs. B

▪ Use statistical methods to infer which performs better

▪ t-tests: student t-test, Welch's t-test (unequal sample sizes or
variances), Mann-Whitney U test (non-normal data)

▪ Specify and test specific performance goals

▪ Performance: runtime (ms), throughput (requests/sec),
network latency (ms), data throughput (MB/sec), others…

 Focus is on performance & cost

 Other quality aspects, we assume the cloud provides for
us: high availability, accessibility, resilience to failure,
usability

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.16

TERM PROJECT - 3

 Deliverables:

▪ TCSS 562: Project paper (4-6 pgs IEEE format, template

provided)

▪ TCSS 462: Comprehensive recorded video presentation

(12-15 minutes), project paper option

▪ GitHub (project source)

▪ How-To document describing how to test the system

(via GitHub markdown)

 Suggested application:

▪ Implement a multi-function data processing pipeline:

Extract-Transform-Load (ETL) data processing pipeline

combing AWS Lambda, S3, and Amazon Aurora DB

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.17

TERM PROJECT - 4

 Primary goal for the term project is to implement a cloud -

based application and investigate 1 or more design trade -offs

▪ Fall 2025 focus – LLM code generation performance comparison

 Teams evaluate the impact of dif ferent designs

(implementations) on performance and cost objectives and

report on the results

 Creative projects encouraged !

 Groups do not have to follow the Fall 2025 THEME

 Groups can propose and implement any project that analyzes

other design trade-offs (besides LLM code generation)

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.18

TERM PROJECT - 5

13 14

15 16

17 18

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L1.4

 What other design trade-offs can be compared?

 Compare alternative app designs using dif ferent cloud

services (e.g. databases), languages, platforms, etc.

 Examples – Compare dif ferent:

 Cloud storage services: Object/blob storage services

▪ Amazon S3, Google blobstore, Azure blobstore, vs. self-hosted

 C loud relational database services:

▪ Amazon Relational Database Service (RDS), Aurora, Self -Hosted DB

 Platform-as-a-Service (PaaS) alternatives for web app hosting:

▪ Amazon Elastic Beanstalk, Heroku, others

 Open source FaaS platforms

▪ Apache OpenWhisk, OpenFaaS, Fn, others…

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.19

COMPARING DIFFERENT

DESIGN TRADE-OFFS

 Serverless storage alternatives

▪ On AWS: Amazon EFS, S3, Containers, others

 Container platforms

▪ Amazon ECS/Fargate, AKS, Azure Kubernetes, Self -hosted
Kubernetes cluster on cloud VMs

 Contrasting queueing service alternatives

▪ Amazon SQS, Amazon MQ, Apache Kafka, RabbitMQ, 0mq,
others

 NoSQL database services

▪ DynamoDB, Google BigTable, MongoDB, Cassandra

 CPU architectures

▪ Intel (x86_64), AMD (x86_64), ARM (Graviton), MAC (M1)

 Service designs or compositions

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.20

COMPARING DIFFERENT

DESIGN TRADE-OFFS - 2

1. BUILD A MULTI-FUNCTION SERVERLESS APPLICATION

▪ Typically consisting of AWS Lambda Functions or Google Cloud

Functions, etc. (e.g. FaaS platform)

2. CONTRAST THE USE OF ALTERNATIVE LLM CODE OR DESIGNS

TO IMPLEMENT THE SAME APPLICATION MULTIPLE TIMES

3. CONDUCT A PERFORMANCE EVALUATION, REPORT FINDINGS

IN TERM PAPER (562) OR PRESENTATION (462)

(10-15-minutes recorded)

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.21

TERM PROJECT: BIG PICTURE

1. Application should involve multiple processing steps

2. Implementation does not have to be Function -as-a-Service

(FaaS)

3. Implementation leverages multiple cloud services

(e.g. databases, object stores, queues)

4. Projects will contrast alternate designs/code

5. Define your comparison metrics:

 Which designs offer the fastest performance (runtime)?

 Lowest cost ($)?

 Best maintainability?

Consider size: lines of code (LOC), smaller programs are

generally considered to be easier to maintain

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.22

TERM PROJECT - KEY REQUIREMENTS

 Alternative: Conduct a cloud-related research project on any

topic focused on specific research goals / questions

▪ Can help spur MS Capstone/Thesis or BS honors thesis projects

▪ Identify and investigate 1 – 2 research questions

▪ Implement a novel solution to an open problem

▪ Complete initial research towards publishing a conference or

workshop paper

▪ If you’re interested in this option, please talk with the

instructor

 Instructor will help guide projects throughout the quarter

 Explore our growing body of cloud research publications at:

http://faculty.washington.edu/wlloyd/research.html

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.23

TERM PROJECT: RESEARCH

 Project cloud infrastructure support:

 AWS Account – Paid Plan

▪ Create standard AWS account with UW email

▪ Credit card required

▪ Provides access to all AWS services

▪ Initial $100 free credit, second $100 free credit – 6 mo expiration

▪ Additional credits available from Instructor throughout Fall quarter

 AWS Account – Free Plan

▪ No Credit Card required

▪ Provides access to a subset of AWS services

▪ Initial $100 free credit, second $100 free credit – 6 mo expiration

▪ Only free tier services accessible after credits exhausted

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.24

PROJECT SUPPORT

19 20

21 22

23 24

http://faculty.washington.edu/wlloyd/research.html

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L1.5

 Other Support :

 Github S tudent Developer Pack:
▪ https://education.github.com/pack

▪ Formerly offered AWS credits, but Microsoft bought GitHub

▪ Includes up to $200 in Digital Ocean Credits

▪ Includes up to $100 in Microsoft Azure Credits

▪ Unlimited private git repositories

▪ Several other benefits

 Mi crosoft Azure for S tudents
▪ $100 free credit per account valid for 1 year – no credit card (?)

▪ https://azure.microsoft.com/en -us/free/students/

 Google C loud
▪ $300 free credit for 1 year

▪ https://cloud.google.com/free/

 Chameleon / C loudLab
▪ Bare metal NSF cloud - free

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.25

PROJECT SUPPORT - 2

 Projects can lead to papers or posters presented at
ACM/IEEE/USENIX conferences, workshops

▪ Networking and research opportunity

▪ … travel ???

▪ Conference participation (posters, papers)
helps differentiate your resume/CV from others

 Project can support preliminary work for:
UWT – BS honors, MS capstone/thesis projects

 Research projects provide valuable practicum experience
with cloud systems analysis, prototyping

 Publications are key for building your resume/CV,
Also very important for applying to PhD programs

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.26

TERM PROJECT

RESEARCH OPPORTUNITIES

 Project status report / term project check -ins

▪Written status report

▪ 1 or 2 reports during the quarter

▪ Part of: “Project Status Reports / Activities / Quizzes”

category

▪ 5% of grade

 Project meetings with instructor

▪ After class, office hours, by appointment

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.27

TCSS562 TERM PROJECT - 3

 TCSS 562 students will give a team presentation

teams of ~3

 Cloud Service Review Presentation

▪ PPT Slides, demonstration

▪ Present a cloud service not covered in class

▪ Present overview of features, performance, etc.

 Cloud Research Paper Review Presentation

▪ PPT slides, identify research contributions, strengths and

weaknesses of paper, possible areas for future work

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.28

TCSS 562: CLASS PRESENTATION

 ALL Students will submit reviews of class presentations using

rubric worksheet (~ 1-page)

 Students will review a minimum of one presentation for each

presentation day, for a minimum of 4 reviews

 In addition to the reviews, students will write two questions

about content in the presentation. These can be questions to

help clarify content from the presentation that was not clear,

or any related questions inspired by the presentation.

 To ensure intellectual depth of questions, questions should

not have yes-no answers.

 Peer reviews will be shared with presentation groups to

provide feedback but wi ll not factor into the grading of class

presentations

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.29

CLASS PRESENTATION PEER REVIEWS

 For TCSS 462 – the 4 required peer reviews will count

for the entire presentation score

 For TCSS 562 – the peer reviews will count as ~20%

of the presentation score

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.30

CLASS PRESENTATION PEER REVIEWS – 2

25 26

27 28

29 30

https://education.github.com/pack
https://education.github.com/pack
https://azure.microsoft.com/en-us/free/students/
https://azure.microsoft.com/en-us/free/students/
https://azure.microsoft.com/en-us/free/students/
https://azure.microsoft.com/en-us/free/students/
https://cloud.google.com/free/
https://cloud.google.com/free/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L1.6

 Online Daily Feedback Quiz in Canvas – Take After Each Class

 1-point
Ex tra Credit
for complet ing
online

 2-points
Extra Credit
for complet ing
in-person in class

 36 points
possible

 2.5% added to
final course
grade for
(36/36)

October 1, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L5.31

DAILY FEEDBACK SURVEY

October 1, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma L5.32

 Syllabus

 Course Introduction

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 0 - Getting Started with AWS

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?

Chapter 4 Marinescu 2 nd edition:

Introduction to parallel and distributed systems

September 30, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.33

OBJECTIVES – 9/30

 Please complete the ONLINE demographics survey:

 https://forms.gle/QNUW2hUV7fR7BDmv7

 Linked from course webpage in Canvas:

 http://faculty.washington.edu/wlloyd/courses/tcss562/

announcements.html

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.34

DEMOGRAPHICS SURVEY

 Syllabus

 Course Introduction

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 0 - Getting Started with AWS

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?

Chapter 4 Marinescu 2 nd edition:

Introduction to parallel and distributed systems

September 30, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.35

OBJECTIVES – 9/30

 Please complete the AWS CLOUD CREDITS survey:

 https://forms.gle/Y4iWvBRFVLRPnPX37

 Linked from course webpage in Canvas:

 http://faculty.washington.edu/wlloyd/courses/tcss562/

announcements.html

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.36

AWS CLOUD CREDITS SURVEY

31 32

33 34

35 36

https://forms.gle/QNUW2hUV7fR7BDmv7
https://forms.gle/QNUW2hUV7fR7BDmv7
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
https://forms.gle/Y4iWvBRFVLRPnPX37
https://forms.gle/Y4iWvBRFVLRPnPX37
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L1.7

 Course Introduction

 Syllabus

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 0 - Getting Started with AWS

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?

Chapter 4 Marinescu 2 nd edition:

Introduction to parallel and distributed systems

September 30, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.37

OBJECTIVES – 9/30

 Course Introduction

 Syllabus

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 0 - Getting Started with AWS

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?

Chapter 4 Marinescu 2 nd edition:

Introduction to parallel and distributed systems

September 30, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.38

OBJECTIVES – 9/30

 Course Introduction

 Syllabus

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 0 - Getting Started with AWS

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?

Chapter 4 Marinescu 2 nd edition:

Introduction to parallel and distributed systems

September 30, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.39

OBJECTIVES – 9/30

Cloud Computing: How did we get here?

▪Parallel and distributed systems

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

▪ Data, thread-level, task-level parallelism

▪ Parallel architectures

▪ SIMD architectures, vector processing, multimedia

extensions

▪ Graphics processing units

▪ Speed-up, Amdahl's Law, Scaled Speedup

▪ Properties of distributed systems

▪Modularity

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.40

OBJECTIVES

 General interest in parallel computing

▪Moore’s Law - # of transistors doubles every 18 months

▪ Post 2004: heat dissipation challenges:

can no longer easily increase cloud speed

▪ Overclocking to 7GHz takes

more than just liquid nitrogen:

▪ https://tinyurl.com/y93s2yz2

Solutions:

▪ Vary CPU clock speed

▪ Add CPU cores

▪Multi-core technology

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.41

CLOUD COMPUTING:

HOW DID WE GET HERE?

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.42

37 38

39 40

41 42

https://tinyurl.com/y93s2yz2
https://tinyurl.com/y93s2yz2

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L1.8

 Modern CPUs provide multiple instruction pipelines,
supporting multiple execution threads, usually 2
to feed instructions to a single CPU core…

 Two hyper-threads
are not equivalent
to (2) CPU cores

 i7-4770 and i5-4670
same CPU, with and
without HTT

 Example: →
hyperthreads add
+32.9%

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.43

HYPER THREADING

 Epyc Rome CPUs

 Announced August 2019

 EPYC 7H12 requires liquid cooling

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.44

AMD’S 64-CORE <14NM CPUS

 Epyc Rome CPUs

 Announced August 2019

 EPYC 7H12 requires liquid cooling

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.45

AMD’S 64-CORE <14NM CPUS

AMD EPYC 9654/9654P/9684X/9R14 (AWS OEM):
• June 2023: 96 cores, 192 hyper-threads CPUs
• Mixes 4nm:APU (combines CPUs+GPU), 5nm:L3 cache

(8 CPU-chiplet), and 6nm:I/O dies, 2.25 to 3.7 burst
GHz, up to 400 watts

• $10,625 to $14,756
AMD EPYC 9754: 128 cores, 256 hyperthreads !
• 2.25 to 3.1 burst GHz, 360 watts

• $11,900
AMD EPYC 9005: 192 cores, 384 threads, 3nm (in dev)

AMD EPYC 9654/9654P/9684X/9R14 (AWS OEM):
• June 2023: 96 cores, 192 hyper-threads CPUs
• Mixes 4nm:APU (combines CPUs+GPU), 5nm:L3 cache

(8 CPU-chiplet), and 6nm:I/O dies, 2.25 to 3.7 burst
GHz, up to 400 watts

• $10,625 to $14,756
AMD EPYC 9754: 128 cores, 256 hyperthreads !
• 2.25 to 3.1 burst GHz, 360 watts

• $11,900
AMD EPYC 9005: 192 cores, 384 threads, 3nm (in dev)

 To make computing faster, we must go “parallel”

 Difficult to expose parallelism in scientific

applications

 Not every problem solution has a parallel algorithm

▪ Chicken and egg problem…

 Many commercial efforts promoting pure parallel

programming efforts have failed

 Enterprise computing world has been skeptical and

less involved in parallel programming

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.46

CLOUD COMPUTING:

HOW DID WE GET HERE? - 2

Cloud computing provides access to “infinite”

scalable compute infrastructure on demand

 Infrastructure availability is key to exploiting

parallelism

Cloud applications

▪Based on client-server paradigm

▪Thin clients leverage compute hosted on the cloud

▪Applications run many web service instances

▪Employ load balancing

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.47

CLOUD COMPUTING:

HOW DID WE GET HERE? - 3

Big Data requires massive amounts of compute

resources

MAP – REDUCE

▪Single instruction, multiple data (SIMD)

▪Exploit data level parallelism

Bioinformatics example

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.48

CLOUD COMPUTING:

HOW DID WE GET HERE? - 4

43 44

45 46

47 48

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L1.9

SMITH WATERMAN USE CASE

Applies dynamic programming to find best local

alignment of two protein sequences

▪ Embarrassingly parallel, each task can run in isolation

▪ Use case for GPU acceleration

AWS Lambda Serverless Computing Use Case:

Goal: Pair-wise comparison of all unique human

protein sequences (20,336)

▪ Python client as scheduler

▪ C Striped Smith-Waterman (SSW) execution engine

From: Zhao M, Lee WP, Garrison EP, Marth GT: SSW library: an SIMD Smith -

Waterman C/C++ library for use in genomic applications.

PLoS One 2013, 8:e82138

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.49

SMITH WATERMAN RUNTIME

 Laptop server and client (2 -core, 4-HT): 8.7 hours

 AWS Lambda FaaS, laptop as client: 2.2 minutes

▪ Partitions 20,336 sequences into 41 sets

▪ Execution cost: ~ 82¢ (~237x speed-up)

 AWS Lambda server, EC2 instance as client: 1.28
minutes

▪ Execution cost: ~ 87¢ (~408x speed-up)

 Hardware

▪ Laptop client: Intel i5-7200U 2.5 GHz :4 HT, 2 CPU

▪ Cloud client: EC2 Virtual Machine - m5.24xlarge: 96 vCPUs

▪ Cloud server: Lambda ~1000 Intel E5-2666v3 2.9GHz CPUs

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.50

Compute clouds are large-scale distributed

systems

▪Heterogeneous systems

▪Homogeneous systems

▪Autonomous

▪Self organizing

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.51

CLOUD COMPUTING:

HOW DID WE GET HERE? - 3

Cloud Computing: How did we get here?

▪Parallel and distributed systems

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

▪ Data, thread-level, task-level parallelism

▪ Parallel architectures

▪ SIMD architectures, vector processing, multimedia

extensions

▪ Graphics processing units

▪ Speed-up, Amdahl's Law, Scaled Speedup

▪ Properties of distributed systems

▪Modularity

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.52

OBJECTIVES

 Discovering parallelism and development of parallel

algorithms requires considerable effor t

 Example: numerical analysis problems, such as solving large

systems of linear equations or solving systems of Partial

Differential Equations (PDEs), require algorithms based on

domain decomposition methods.

 How can problems be split into independent chunks?

 Fine-grained parallelism

▪ Only small bits of code can run in parallel without coordination

▪ Communication is required to synchronize state across nodes

 Coarse-grained parallelism

▪ Large blocks of code can run without coordination

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.53

PARALLELISM

 Coordination of nodes

 Requires message passing or shared memory

 Debugging parallel message passing code is easier
than parallel shared memory code

 Message passing : all of the interactions are clear

▪ Coordination via specific programming API (MPI)

 Shared memory : interactions can be implicit – must
read the code!!

 Processing speed is orders of magnitude faster than
communication speed (CPU > memory bus speed)

 Avoiding coordination achieves the best speed-up

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.54

PARALLELISM - 2

49 50

51 52

53 54

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L1.10

Parallelism:

▪Goal: Perform multiple operations at the same time
to achieve a speed-up

 Thread-level parallelism (TLP)

▪Control flow architecture

Data-level parallelism

▪Data flow architecture

Bit-level parallelism

 Instruction-level parallelism (ILP)

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.55

TYPES OF PARALLELISM

 Number of threads an application runs at any one time

 Varies throughout program execution

 As a metric:

 Minimum: 1 thread

 Can measure average, maximum (peak)

 QUESTION: What are the consequences of average (TLP)
for scheduling an application to run on a computer with a
f ixed number of CPU cores and hyperthreads?

 Let’s say there are 4 cores, or 8 hyper -threads…

Key to avoiding waste of computing resources
is knowing your application’s TLP…

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.56

THREAD LEVEL PARALLELISM (TLP)

 Typical architecture used today – w/ multiple threads

 By John von Neumann (1945)

 Also called the Von Neumann architecture

 Dominant computer system architecture

 Program counter (PC) determines

next instruction to load into

instruction register

 Program execution

is sequential

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.57

CONTROL-FLOW ARCHITECTURE

Partition data into big chunks, run separate copies
of the program on them with little or no
communication

Problems are considered to be
embarrassingly parallel

Also perfectly parallel or pleasingly parallel…

 Little or no effort needed to separate problem
into a number of parallel tasks

MapReduce programming model is an example

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.58

DATA-LEVEL PARALLELISM

 Alternate architecture used by network routers, digital
signal processors, special purpose systems

 Operations performed when input (data) becomes
available

 Envisioned to provide much higher parallelism

 Multiple problems has prevented wide-scale adoption

▪ Efficiently broadcasting data tokens in a massively
parallel system

▪ Efficiently dispatching instruction tokens in a massively
parallel system

▪ Building content addressable memory large enough to
hold all of the dependencies of a real program

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.59

DATA FLOW ARCHITECTURE

 Architecture not as popular as control -f low

 Modern CPUs emulate data flow architecture for dynamic

instruction scheduling since the 1990s

▪ Out-of-order execution – reduces CPU idle time by not blocking

for instructions requiring data by defining execution windows

▪ Execution windows: identify instructions that can be run by

data dependency

▪ Instructions are completed in data dependency order within

execution window

▪ Execution window size typically 32 to 200 instructions

Utility of data f low architectures has been

much less than envisioned

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.60

DATA FLOW ARCHITECTURE - 2

55 56

57 58

59 60

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L1.11

 Computations on large words (e.g. 64 -bit integer) are

performed as a single instruction

 Fewer instructions are required on 64 -bit CPUs to process

larger operands (A+B) providing dramatic performance

improvements

 Processors have evolved: 4 -bit, 8-bit, 16-bit, 32-bit, 64-bit

QUESTION: How many instructions are required to add two

64-bit numbers on a 16-bit CPU? (Intel 8088)

 64-bit MAX int = 9,223,372,036,854,775,807 (signed)

 16-bit MAX int = 32,767 (signed)

 Intel 8088 – limited to 16-bit registers

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.61

BIT-LEVEL PARALLELISM

 CPU pipelining architectures enable ILP

 CPUs have multi -stage processing pipelines

 Pipelining: split instructions into sequence of steps that

can execute concurrently on different CPU circuitry

 Basic RISC CPU - Each instruction has 5 pipeline stages:

 IF – instruction fetch

 ID- instruction decode

 EX – instruction execution

 MEM – memory access

 WB – write back

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.62

INSTRUCTION-LEVEL PARALLELISM (ILP)

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.63

CPU PIPELINING

 RISC CPU:

 After 5 clock cycles, all 5 stages of an instruction are

loaded

 Starting with 6 th clock cycle, one full instruction

completes each cycle

 The CPU performs 5 tasks per clock cycle!

Fetch, decode, execute, memory read, memory write back

 Pentium 4 (CISC CPU) – processing pipeline w/ 35 stages!

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.64

INSTRUCTION LEVEL PARALLELISM - 2

Cloud Computing: How did we get here?

▪Parallel and distributed systems

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

▪ Data, thread-level, task-level parallelism

▪ Parallel architectures

▪ SIMD architectures, vector processing, multimedia

extensions

▪ Graphics processing units

▪ Speed-up, Amdahl's Law, Scaled Speedup

▪ Properties of distributed systems

▪Modularity

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.65

OBJECTIVES

Michael Flynn’s proposed taxonomy of computer

architectures based on concurrent instructions and

number of data streams (1966)

 SISD (Single Instruction Single Data)

 SIMD (Single Instruction, Multiple Data)

 MIMD (Multiple Instructions, Multiple Data)

 LESS COMMON : MISD (Multiple Instructions, Single Data)

 Pipeline architectures: functional units perform different

operations on the same data

 For fault tolerance, may want to execute same instructions

redundantly to detect and mask errors – for task replication

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.66

MICHAEL FLYNN’S COMPUTER

ARCHITECTURE TAXONOMY

61 62

63 64

65 66

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L1.12

 SISD (Single Instruction Single Data)

Scalar architecture with one processor/core.

▪ Individual cores of modern multicore processors are

“SISD”

 SIMD (Single Instruction, Multiple Data)

Supports vector processing

▪When SIMD instructions are issued, operations on

individual vector components are carried out concurrently

▪ Two 64-element vectors can be added in parallel

▪ Vector processing instructions added to modern CPUs

▪ Example: Intel MMX (multimedia) instructions

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.67

FLYNN’S TAXONOMY

 Exploit data-parallelism: vector operations enable speedups

 Vectors architecture provide vector registers that can store

entire matrices into a CPU register

 SIMD CPU extension (e.g. MMX) add support for vector

operations on traditional CPUs

 Vector operations reduce total number of instructions for

large vector operations

 Provides higher potential speedup vs. MIMD architecture

 Developers can think sequentially; not worry about

parallelism

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.68

(SIMD): VECTOR PROCESSING

ADVANTAGES

 MIMD (Multiple Instructions, Multiple Data) - system with

several processors and/or cores that function asynchronously

and independently

 At any time, dif ferent processors/cores may execute dif ferent

instructions on dif ferent data

 Multi-core CPUs are MIMD

 Processors share memory via interconnection networks

▪ Hypercube, 2D torus, 3D torus, omega network, other topologies

 MIMD systems have dif ferent methods of sharing memory

▪ Uniform Memory Access (UMA)

▪ Cache Only Memory Access (COMA)

▪ Non-Uniform Memory Access (NUMA)

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.69

FLYNN’S TAXONOMY - 2

 Arithmetic intensity : Ratio of work (W) to
 memory traffic r/w (Q)
Example: # of floating-point ops per byte of data read

 Characterizes application scalability with SIMD support

▪ SIMD can perform many fast matrix operations in parallel

 High arithmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

 Low arithmetic intensity:
Programs with sparse matrix operations do not scale well
with problem size
(memory RW becomes bottleneck, not enough ops!)

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.70

ARITHMETIC INTENSITY

 When program reaches a given arithmetic intensity

performance of code running on CPU hits a “roof”

 CPU performance bottleneck changes from:

memory bandwidth (lef t) → f loating point performance (right)

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.71

ROOFLINE MODEL

Key take-aways:
When a program’s has low
Arithmetic Intensity, memory
bandwidth limits performance..

With high Arithmetic intensity,
the system has peak parallel
performance…
→ performance is limited by??

Cloud Computing: How did we get here?

▪Parallel and distributed systems

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

▪ Data, thread-level, task-level parallelism

▪ Parallel architectures

▪ SIMD architectures, vector processing, multimedia

extensions

▪ Graphics processing units

▪ Speed-up, Amdahl's Law, Scaled Speedup

▪ Properties of distributed systems

▪Modularity

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.72

OBJECTIVES

67 68

69 70

71 72

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L1.13

 GPU provides multiple SIMD processors

 Typically 7 to 15 SIMD processors each

 32,768 total registers, divided into 16 lanes

(2048 registers each)

 GPU programming model:

single instruction, multiple thread

 Programmed using CUDA- C like programming

language by NVIDIA for GPUs

 CUDA threads – single thread associated with each

data element (e.g. vector or matrix)

 Thousands of threads run concurrently

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.73

GRAPHICAL PROCESSING UNITS (GPUS)

Cloud Computing: How did we get here?

▪Parallel and distributed systems

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

▪ Data, thread-level, task-level parallelism

▪ Parallel architectures

▪ SIMD architectures, vector processing, multimedia

extensions

▪ Graphics processing units

▪ Speed-up, Amdahl's Law, Scaled Speedup

▪ Properties of distributed systems

▪Modularity

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.74

OBJECTIVES

Parallel hardware and software systems allow:

▪ Solve problems demanding resources not available on
single system.

▪ Reduce time required to obtain solution

 The speed-up (S) measures effectiveness of
parallelization:

 S(N) = T(1) / T(N)

T(1) → execution time of total sequential computation

T(N) → execution time for performing N parallel
computations in parallel

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.75

PARALLEL COMPUTING

 Consider embarrassingly parallel image processing

 Eight images (multiple data)

 Apply image transformation (greyscale) in parallel

 8-core CPU, 16 hyper threads

 Sequential processing: perform transformations one at a time
using a single program thread

▪ 8 images, 3 seconds each: T(1) = 24 seconds

 Parallel processing

▪ 8 images, 3 seconds each: T(N) = 3 seconds

 Speedup: S(N) = 24 / 3 = 8x speedup

 Called “perfect scaling”

 Must consider data transfer and computation setup time

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.76

SPEED-UP EXAMPLE

 Amdahl’s law is used to estimate the speed -up of a job
using parallel computing

1. Divide job into two parts

2. Part A that will still be sequential

3. Part B that will be sped-up with parallel computing

 Portion of computation which cannot be parallelized will
determine (i.e. limit) the overall speedup

 Amdahl’s law assumes jobs are of a fixed size

 Also, Amdahl’s assumes no overhead for distributing the
work, and a perfectly even work distribution

October 14, 2020
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.77

AMDAHL’S LAW

 S = theoretical speedup of the whole task

 f= fraction of work that is parallel (ex. 25% or 0.25)

 N= proposed speed up of the parallel part (ex. 5 t imes speedup)

 % improvement

of task execution = 100 * (1 – (1 / S))

 Using Amdahl’s law, what is the maximum possible speed -up?

October 14, 2020
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.78

AMDAHL’S LAW

73 74

75 76

77 78

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L1.14

 Program with two independent parts:

▪ Part A is 75% of the execution time

▪ Part B is 25% of the execution time

 Part B is made 5 times faster with
parallel computing

 Estimate the percent improvement of task execution

 Original Part A is 3 seconds, Part B is 1 second

 N=5 (speedup of part B)

 f=.25 (only 25% of the whole job (A+B) will be sped -up)

 S=1 / ((1-f) + f/S)

 S=1 / ((.75) + .25/5)

 S=1.25

 % improvement = 100 * (1 – 1/1.25) = 20%

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.79

AMDAHL’S LAW EXAMPLE

from Wikipedia

 Calculates the scaled speed-up using “N” processors

 S(N) = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized

(e.g. must run sequentially)

 Can be used to estimate runtime of parallel portion of

program

October 14, 2020
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.80

GUSTAFSON'S LAW

 Calculates the scaled speed-up using “N” processors

 S(N) = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized

(e.g. must run sequentially)

 Can be used to estimate runtime of parallel portion of

program

 Where α =  / ( + )

 Where = sequential time,  =parallel time

 Our Amdahl’s example: = 3s,  =1s, α =.75

October 14, 2020
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.81

GUSTAFSON'S LAW

 Calculates the scaled speed-up using “N” processors

 S(N) = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized

(e.g. must run sequentially)

 Example:

Consider a program that is embarrassingly parallel,

but 75% cannot be parallelized. α=.75

QUESTION: I f deploying the job on a 2 -core CPU, what

scaled speedup is possible assuming the use of two

processes that run in parallel?

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.82

GUSTAFSON'S LAW

 QUESTION:

What is the maximum theoret ical speed -up on a 2-core CPU ?

S(N) = N + (1 - N) α

N=2, α=.75

S(N) = 2 + (1 - 2) .75

S(N) = ?

 What is the maximum theoret ical speed -up on a 16-core CPU?

S(N) = N + (1 - N) α

N=16, α=.75

S(N) = 16 + (1 - 16) .75

S(N) = ?

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.83

GUSTAFSON’S EXAMPLE

 QUESTION:

What is the maximum theoret ical speed -up on a 2-core CPU ?

S(N) = N + (1 - N) α

N=2, α=.75

S(N) = 2 + (1 - 2) .75

S(N) = ?

 What is the maximum theoret ical speed -up on a 16-core CPU?

S(N) = N + (1 - N) α

N=16, α=.75

S(N) = 16 + (1 - 16) .75

S(N) = ?

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.84

GUSTAFSON’S EXAMPLE

For 2 CPUs, speed up is 1.25x

For 16 CPUs, speed up is 4.75x

For 2 CPUs, speed up is 1.25x

For 16 CPUs, speed up is 4.75x

79 80

81 82

83 84

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L1.15

 Transistors on a chip doubles approximately every 1.5 years

 CPUs now have billions of transistors

 Power dissipation issues at faster clock rates leads to heat

removal challenges

▪ Transition from: increasing clock rates → to adding CPU cores

 Symmetric core processor –multi-core CPU, all cores have the

same computational resources and speed

 Asymmetric core processor – on a multi -core CPU, some cores

have more resources and speed

 Dynamic core processor – processing resources and speed can

be dynamically configured among cores

 Observation: asymmetric processors of fer a higher speedup

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.85

MOORE’S LAW

Cloud Computing: How did we get here?

▪Parallel and distributed systems

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

▪ Data, thread-level, task-level parallelism

▪ Parallel architectures

▪ SIMD architectures, vector processing, multimedia

extensions

▪ Graphics processing units

▪ Speed-up, Amdahl's Law, Scaled Speedup

▪ Properties of distributed systems

▪Modularity

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.86

OBJECTIVES

 Collection of autonomous computers, connected through a

network with distribution software called “middleware” that

enables coordination of activities and sharing of resources

 Key characteristics:

 Users perceive system as a single, integrated computing

facility.

 Compute nodes are autonomous

 Scheduling, resource management, and security implemented

by every node

 Multiple points of control and failure

 Nodes may not be accessible at all times

 System can be scaled by adding additional nodes

 Availability at low levels of HW/software/network reliability

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.87

DISTRIBUTED SYSTEMS

 Key non-functional attributes

▪ Known as “ilities” in software engineering

 Availability – 24/7 access?

 Reliability - Fault tolerance

 Accessibility – reachable?

 Usability – user friendly

 Understandability – can under

 Scalability – responds to variable demand

 Extensibility – can be easily modified, extended

 Maintainability – can be easily fixed

 Consistency – data is replicated correctly in timely manner

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.88

DISTRIBUTED SYSTEMS - 2

 Access transparency: local and remote objects accessed using
identical operations

 Location transparency: objects accessed w/o knowledge of
their location.

 Concurrency transparency: several processes run concurrently
using shared objects w/o interference among them

 Replication transparency: multiple instances of objects are
used to increase reliability
- users are unaware if and how the system is replicated

 Failure transparency: concealment of faults

 Migration transparency: objects are moved w/o affecting
operations performed on them

 Performance transparency: system can be reconfigured based
on load and quality of service requirements

 Scaling transparency: system and applications can scale w/o
change in system structure and w/o affecting applications

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.89

TRANSPARENCY PROPERTIES OF

DISTRIBUTED SYSTEMS

Cloud Computing: How did we get here?

▪Parallel and distributed systems

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

▪ Data, thread-level, task-level parallelism

▪ Parallel architectures

▪ SIMD architectures, vector processing, multimedia

extensions

▪ Graphics processing units

▪ Speed-up, Amdahl's Law, Scaled Speedup

▪ Properties of distributed systems

▪Modularity

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.90

OBJECTIVES

85 86

87 88

89 90

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L1.16

 Soft modularity: TRADITIONAL

 Divide a program into modules (classes) that call each other

and communicate with shared-memory

 A procedure calling convention is used (or method invocation)

 Enforced modularity: CLOUD COMPUTING

 Program is divided into modules that communicate only

through message passing

 The ubiquitous client -server paradigm

 Clients and servers are independent decoupled modules

 System is more robust if servers are stateless

 May be scaled and deployed separately

 May also FAIL separately!

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.91

TYPES OF MODULARITY

 Multi-core CPU technology and hyper -threading

 What is a

▪ Heterogeneous system?

▪ Homogeneous system?

▪ Autonomous or self-organizing system?

 Fine grained vs. coarse grained parallelism

 Parallel message passing code is easier to debug than

shared memory (e.g. p-threads)

 Know your application’s max/avg Thread Level

Parallelism (TLP)

 Data-level parallelism: Map-Reduce, (SIMD) Single

Instruction Multiple Data, Vector processing & GPUs

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.92

CLOUD COMPUTING – HOW DID WE GET HERE?

SUMMARY OF KEY POINTS

 Bit-level parallelism

 Instruction-level parallelism (CPU pipelining)

 Flynn’s taxonomy : computer system architecture classification

▪ SISD – Single Instruction, Single Data (modern core of a CPU)

▪ SIMD – Single Instruction, Multiple Data (Data parallelism)

▪ MIMD – Multiple Instruction, Multiple Data

▪ MISD is RARE; application for fault tolerance…

 Arithmetic intensity : ratio of calculations vs memory RW

 Roofline model:

Memory bottleneck with low arithmetic intensity

 GPUs: ideal for programs with high arithmetic intensity

▪ SIMD and Vector processing supported by many large registers

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.93

CLOUD COMPUTING – HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 2

 Speed-up (S)

S(N) = T(1) / T(N)

 Amdahl’s law:
S=1 / ((1-f) + f/N),s=latency, f=parallel fraction, N=speed -up

 α = percent of program that must be sequential

 Scaled speedup with N processes:
S(N) = N – α(N-1)

 Moore’s Law

 Symmetric core, Asymmetric core, Dynamic core CPU

 Distributed Systems Non-function quality attributes

 Distributed Systems – Types of Transparency

 Types of modularity - Soft, Enforced

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1.94

CLOUD COMPUTING – HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 3

QUESTIONS

September 30, 2025
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma L1.95

91 92

93 94

95

	Slide 1: TCSS 462/562: (Software Engineering for) Cloud Computing
	Slide 2: OBJECTIVES – 9/30
	Slide 3: TCSS562 – software engineering for cloud computing
	Slide 4: OBJECTIVES – 9/30
	Slide 5: TCSS 462/ TCSS 562 Fall 2025
	Slide 6: Delivery format
	Slide 7: Improving performance in college classes
	Slide 8: 462/562 recommendations
	Slide 9: Industry challenges
	Slide 10: Graduate credit opportunity
	Slide 11: references
	Slide 12: References - 2
	Slide 13: Tcs462/562 course work
	Slide 14: term project
	Slide 15: Term project - 2
	Slide 16: Term project - 3
	Slide 17: term project - 4
	Slide 18: Term project - 5
	Slide 19: Comparing DIFFERENT design trade-offs
	Slide 20: Comparing DIFFERENT design trade-offs - 2
	Slide 21: TERM PROJECT: big picture
	Slide 22: Term project - Key requirements
	Slide 23: Term project: research
	Slide 24: Project support
	Slide 25: Project support - 2
	Slide 26: term project RESEARCH opportunities
	Slide 27: Tcss562 term project - 3
	Slide 28: TCSS 562: Class presentation
	Slide 29: Class presentation peer reviews
	Slide 30: Class presentation peer reviews – 2
	Slide 31: daily feedback survey
	Slide 32
	Slide 33: OBJECTIVES – 9/30
	Slide 34: Demographics survey
	Slide 35: OBJECTIVES – 9/30
	Slide 36: AWS Cloud Credits survey
	Slide 37: OBJECTIVES – 9/30
	Slide 38: OBJECTIVES – 9/30
	Slide 39: OBJECTIVES – 9/30
	Slide 40: objectives
	Slide 41: Cloud computing: How did we get here?
	Slide 42
	Slide 43: Hyper threading
	Slide 44: AMD’s 64-core <14nm CPUs
	Slide 45: AMD’s 64-core <14nm CPUs
	Slide 46: Cloud computing: How did we get here? - 2
	Slide 47: cloud computing: How did we get here? - 3
	Slide 48: Cloud computing: how did we get here? - 4
	Slide 49: Smith Waterman Use Case
	Slide 50: Smith waterman runtime
	Slide 51: cloud computing: How did we get here? - 3
	Slide 52: objectives
	Slide 53: parallelism
	Slide 54: Parallelism - 2
	Slide 55: Types of parallelism
	Slide 56: Thread level parallelism (TLP)
	Slide 57: Control-Flow architecture
	Slide 58: Data-level Parallelism
	Slide 59: Data flow architecture
	Slide 60: Data flow architecture - 2
	Slide 61: Bit-level parallelism
	Slide 62: Instruction-level parallelism (ILP)
	Slide 63: Cpu pipelining
	Slide 64: Instruction level parallelism - 2
	Slide 65: objectives
	Slide 66: Michael Flynn’s computer architecture taxonomy
	Slide 67: Flynn’s taxonomy
	Slide 68: (Simd): VECtOR PROCESSING advantages
	Slide 69: Flynn’s taxonomy - 2
	Slide 70: Arithmetic intensity
	Slide 71: Roofline model
	Slide 72: objectives
	Slide 73: Graphical processing units (gpus)
	Slide 74: objectives
	Slide 75: Parallel computing
	Slide 76: Speed-up example
	Slide 77: Amdahl’s law
	Slide 78: Amdahl’s law
	Slide 79: Amdahl’s law example
	Slide 80: Gustafson's Law
	Slide 81: Gustafson's Law
	Slide 82: Gustafson's Law
	Slide 83: Gustafson’s example
	Slide 84: Gustafson’s example
	Slide 85: Moore’s law
	Slide 86: objectives
	Slide 87: Distributed systems
	Slide 88: Distributed systems - 2
	Slide 89: Transparency properties of distributed systems
	Slide 90: objectives
	Slide 91: Types of modularity
	Slide 92: Cloud computing – how did we get here? Summary of key points
	Slide 93: Cloud computing – how did we get here? Summary of key points - 2
	Slide 94: Cloud computing – how did we get here? Summary of key points - 3
	Slide 95: Questions

