
Τ

2

3

4

Star	CSS 562 ted: Oct 7 at uiz Insti	1:13am		Daily	Feedk	ack S	Surve	y - 10	/5		
		Question 1 0.5 pts On a scale of 1 to 10, please classify your perspective on material covered in today's									
	1 Mostly	2 v v To Me	3	4 Ne	5 Equal w and Rev	6 /iew	7	8	9	10 Mostly New to Me	
		Question 2 0.5 pts									
	Please 1 Slow	rate the	pace of	4	class: 5 ust Right	6	7	8	9	10 Fast	
December 2,	2025									Fall 2025] gton - Tacoma	L17.5

5

MATERIAL / PACE Please classify your perspective on material covered in today's class (42 respondents, 23 in-person, 19 online): 1-mostly review, 5-equal new/review, 10-mostly new Average − 6.17 (↓ - previous 6.47) Please rate the pace of today's class: 1-slow, 5-just right, 10-fast Average − 5.12 (↓ - previous 5.16)

6

FEEDBACK FROM 12/2

- <u>Is term project due on final week?</u>
- The term project is due on Friday December 12th AOE
- Which is Saturday December 13th at 4:59 am
- Canvas will close on Saturday December 13th at 11:59 am

December 2, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L17.7

7

FEEDBACK - 2

- is LLM use allowed on term project?
- Yes. One of the term project recommended case studies is to:
 - #1: Implement a data processing pipeline in multiple programming languages (e.g. Java, Python) on AWS Lambda, and compare the performance, where LLMs help convert/write code from Java to Python (or other languages)
 - #2: Implement a data processing pipeline in one programming language (Java), but implement the pipeline multiple times using different LLMs to determine which LLMs generate better code
 - The recommendation is to write detailed prompts to minimize conversations with the LLM. Refactor missing details to create long prompts which can be reused to compare alternate LLMs
 - Evaluate code syntactical correctness, functional correctness, serverless performance

December 2, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L17.8

8

SPEEDING UP DATA INSERTS WITH MYSQL

- Executing each INSERT query separately is prohibitively slow if looking to load 100,000+ rows
- AWS Lambda functions can time out when loading Large CSV files (1,000,000)
- GOAL: Improve the performance of your LOAD function to enable ingestion of 1+ million rows of data
- Techniques:
- 1. SQL Batch Queries
- 2. Prepared Statements
- 3. Stored Procedures
- ChatGPT recommends combining the use of SQL Batch Queries with Prepared Statements for maximum speed-up

December 2, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L17.9

9

OBJECTIVES - 12/2

- Questions from 11/25
- Tutorials Questions
- Class Presentations Schedule -Cloud Technology or Research Paper Review
- Tutorial 9: AWS Step Functions, AWS SQS
- Tutorial 9: Serverless Beyond Java, Container-Based Functions
- Kubernetes

December 2, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

17.10

10

TUTORIAL 6 - CLOSED

- Introduction to Lambda III: Serverless Databases
- https://faculty.washington.edu/wlloyd/courses/tcss562/ tutorials/TCSS462_562_f2025_tutorial_6.pdf
- Create and use Sqlite databases using sqlite3
- Deploy Lambda function with Sqlite3 database under /tmp
- Compare in-memory vs. file-based Sqlite DBs on Lambda
- Create an Amazon Aurora "Serverless" v2 MySQL database
- Using the AWS CloudShell in the same VPC (Region + availability zone) connect and interact your Aurora serverless database using the mysql CLI app
- Deploy an AWS Lambda function that uses the MySQL "serverless" database
- 'FREE PLAN': okay to use db.t3.micro, db.t4g.micro RDS MySQL VM - must indicate use of RDS VM on tutorial PDF

December 2, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L17.11

11

TUTORIAL 7 - DEC 4

- Introduction to Docker
- https://faculty.washington.edu/wlloyd/courses/tcss562/ tutorials/TCSS462_562_f2025_tutorial_7.pdf
- Must complete using c7i-flex.large ec2 instance & Ubuntu 24.04 (for cgroups v2)
- Use DOCX file for copying and pasting Docker install commands
- Topics:
 - Installing Docker
 - Creating a container using a Dockerfile
 - Using cgroups virtual filesystem to monitor CPU utilization of a container
 - Persisting container images to Docker Hub image repository
 - Container vertical scaling of CPU/memory resources
 - Testing container CPU and memory isolation

December 2, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L17.12

12

OBJECTIVES - 12/2 Questions from 11/25 Tutorials Questions Class Presentations Schedule Cloud Technology or Research Paper Review Tutorial 9: AWS Step Functions, AWS SQS Tutorial 8: Serverless Beyond Java, Container-Based Functions Kubernetes TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

13

■ TWO OPTIONS: ■ Cloud technology presentation ■ Cloud research paper presentation ■ Recent & suggested papers will be posted at: http://faculty.washington.edu/wlloyd/courses/tcss562/papers/ ■ Presentation dates: ■ Tuesday November 25 ■ Tuesday December 2, Thursday December 4 ■ Peer Reviews ■ Word DOCX review form posted, fill out, submit PDF on Canvas ■ Feedback shared with groups ■ TCSS 462: submit 4 total peer reviews in lieu of a group presentation December 2, 2025 | TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] | School of Engineering and Technology, University of Washington - Tacoma | Tacss462/562:(Software Engineering for) Cloud Computing [Fall 2025] | School of Engineering and Technology, University of Washington - Tacoma

14

GROUP PRESENTATIONS

- 7 Presentation Teams
- 3 Cloud Technology Talks
- 4 Cloud Research Paper Presentations
- 1 one-person teams
- 2 two-person teams
- 4 three-person teams
- Thank you for the submissions

December 2, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L17.15

15

PRESENTATION SCHEDULE

- <Tuesday November 25>
- 1. Team 4: Xiaoling Wei, Bohan Xiong, Xu Zhu

Research paper: Serverless Replication of Object Storage across Multi-Vendor Clouds and Regions

2. Team 1: William Hay

Cloud Technology: Amazon Athena

3. Robert Cordingly – Original Research Paper: Sky Computing for Serverless: Infrastructure Assessment to Support Performance Enhancement (IEEE/ACM UCC 2025 Practice Talk)

<Tuesday December 2>

1. Team 5: Sparsha Jha, Chris Biju

<u>Cloud Technology:</u> Intelligent Optimization of Distributed Pipeline Execution in Serverless Platforms: A Predictive Model Approach

December 2, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

17.16

16

PRESENTATION SCHEDULE - 2

- <Thursday December 4>
- 1. Team 3: Jiameng Li, Naomi Nottingham, Headley Brissett Research paper: A Perfect Fit? Towards Containers on Microkernels
- 2. Team 2: Ruby Plangphatthanaphanit, Junjia Li, Ari Yin Cloud Technology: CI/CD in the Cloud (GitHub Actions + Cloud Deploy)
- 3. Team 8: Aamena Suzzane, Dhruva Bhat

Research paper: CoFaaS: Automatic Transformation-based Consolidation of Serverless Functions

4. Team 6: Han Zhang, Sahil Bhatt, Pengcheng Cao Cloud Technology: AWS Amplify

December 2, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L17.17

17

OBJECTIVES - 12/2

- Questions from 11/25
- Tutorials Questions
- Class Presentations Schedule -Cloud Technology or Research Paper Review
- Tutorial 9: AWS Step Functions, AWS SQS
- Tutorial 8: Serverless Beyond Java, Container-Based Functions
- Kubernetes

December 2, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L17.18

18

TUTORIAL 9 - TO BE POSTED

- Introduction to AWS Step Functions and Amazon Simple Queue Service (SQS)
- **Not Required**, available for **EXTRA CREDIT** (scored out of 0)
 - adds points to overall tutorials score
- Tasks
 - Adapt Caesar Cipher Lambda functions for use with AWS Step Functions
 - Create AWS Step Functions State Machine
 - Create a BASH client to invoke the AWS Step Function
 - Create Simple Queue Service Queue for messages
 - Add message to SQS queue from AWS Lambda function
 - Modify AWS Step Function Bash client script to retrieve AWS Step Function result from SQS queue

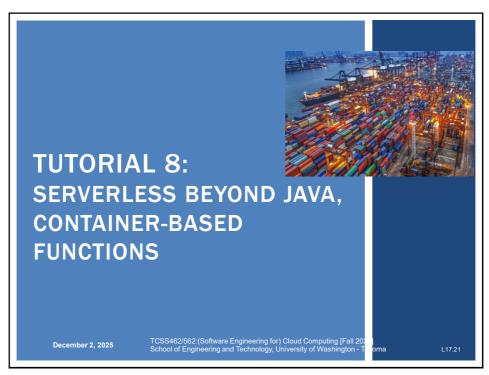
December 2, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L17.19

19

OBJECTIVES - 12/2

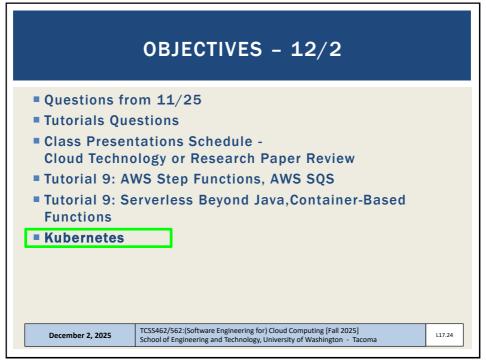

- Questions from 11/25
- Tutorials Questions
- Class Presentations Schedule -Cloud Technology or Research Paper Review
- Tutorial 9: AWS Step Functions, AWS SQS
- Tutorial 8: Serverless Beyond Java, Container-Based Functions
- Kubernetes

December 2, 2025

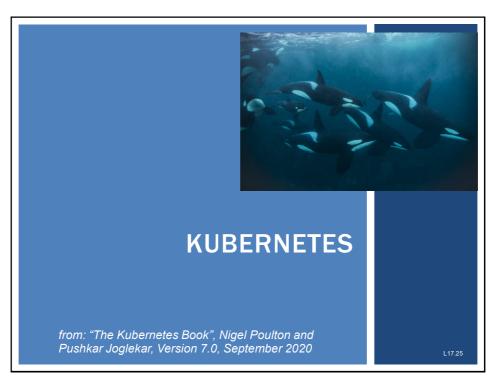
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

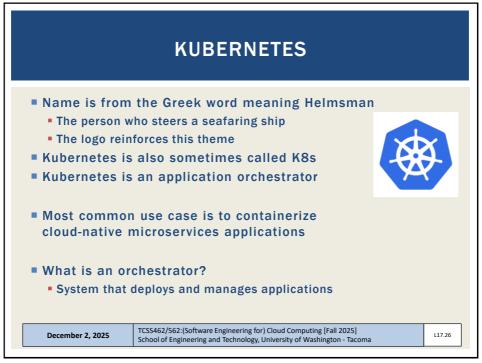
L17.20

20


21

TUTORIAL 9 Python Based AWS Lambda Functions w/ SAAF, and Container-**Based AWS Lambda Functions** ■ Not Required, available for EXTRA CREDIT (scored out of 0) adds points to overall tutorials score 10 pts for Python Functions / 15 pts for Container Based Function Build/Deploy/Test Python-based Lambda Functions Deploy and Test Container Based AWS Lambda Function Requires Docker Engine installation on local VM Create role to use CLI/publish script Use a config file to specify container-based function details Update bash script to deploy hello function Build Docker container locally, Publish to Elastic Container Registry Create new 'hello' Lambda Function based on Container image Test Container-based 'hello' AWS Lambda Function Adapt your function to run sysbench prime number generation Test prime number generation performance on AWS Lambda vs. memory TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma December 2, 2025


22


23

24

25

26

KUBERNETES - 2 Why does Google want to give Kubernetes away for free? Initially developed by Google Goal: make it easier for potential customers to use Google Cloud Kubernetes leverages knowledge gained from two internal container management systems developed at Google Borg and Omega Google donated Kubernetes to the Cloud Native Computing Foundation in 2014 as an open-source project Kubernetes is written in Go (Golang) • Kubernetes is available under the Apache 2.0 license Releases were previously maintained for only 8 months! Starting w/ v 1.19 (released Aug 2020) support is 1 year TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] December 2, 2025 School of Engineering and Technology, University of Washington - Tacoma

27

GOALS OF KUBERNETES

- 1. Deploy your application
- 2. Scale it up and down dynamically according to demand
- 3. Self-heal it when things break
- 4. Perform zero-downtime rolling updates and rollbacks
- These features represent automatic infrastructure management
- Containerized applications run in container(s)
- Compared to VMs, containers are thought of as being:
 - Faster
 - More light-weight
 - More suited to rapidly evolving software requirements

December 2, 2025 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

Tacoma L17.28

28

CLOUD NATIVE APPLICATIONS

- Applications designed to meet modern software requirements including:
 - Auto-scaling: resources to meet demand
 - Self-healing: required for high availability (HA) and fault tolerance
 - Rolling software updates: with no application downtime for DevOPS
 - Portability: can run anywhere there's a Kubernetes cluster

December 2, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L17.29

29

WHAT IS A MICROSERVICES APP?

- Application consisting of many specialized parts that communicate and form a meaningful application
- Example components of a microservice eCommerce app:

Web front-end

Catalog service

Shopping cart

Authentication service

Logging service

Persistent data store

- **KEY IDEAS:**
- Each microservice can be coded/maintained by different team
- Each has its own release cadence
- Each is deployed/scaled separately
- Can patch & scale the log service w/o impacting others

December 2, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L17.30

30

KUBERNETES - 3

- Provides "an operating system for the cloud"
- Offers the de-facto standard platform for deploying and managing <u>cloud-native applications</u>
- OS: abstracts physical server, schedules processes
- Kubernetes: abstracts the cloud, schedules microservices
- Kubernetes abstracts differences between private and public clouds
- Enable cloud-native applications to be cloud agnostic
 - i.e. they don't care WHAT cloud they run on
 - Enables fluid application migration between clouds
- Kubernetes provides rich set of tools/APIs to introspect (observe and examine) your apps

December 2, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L17.31

31

KUBERNETES - 4

- **■** Features:
- A "control plane" brain of the cluster
 - Implements autoscaling, rolling updates w/o downtime, self-healing
- A "bunch of nodes" workers (muscle) of the cluster
- Provides orchestration
 - The process of organizing everything into a useful application
 - And also the goal of keeping it running smoothly

December 2, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L17.32

32

KUBERNETES - CLUSTER MANAGEMENT

- Master node(s) manage the cluster by:
 - Making scheduling decisions
 - Performing monitoring
 - Implementing changes
 - Responding to events
- Masters implement the control plane of a Kubernetes cluster
- Recipe for deploying to Kubernetes:
- Write app as independent microservices in preferred language
- Package each microservice in a container
- Create a manifest to encapsulate the definition of a Pod
- Deploy Pods to the cluster w/ a higher-level controller such as "Deployments" or "DaemonSets"

December 2, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L17.33

33

LOOK AHEAD: PODS

- Pod atomic unit of deployment & scheduling in Kubernetes
- A Kubernetes Pod is defined to run a containerized application
- Kubernetes manages Pods, not individual containers
- Cannot run a container directly on Kubernetes
- All containers run through Pods
- Pod comes from "pod of whales"
- Docker logo shows a whale with containers stacked on top
- Whale represents the Docker engine that runs on a single host
- Pods encapsulate the definition of a single microservice for hosting purposes
- Pods can have a single container, or multiple containers, if the service requires more than one

December 2, 2025 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

docke

L17.34

34

DECLARATIVE SERVICE APPROACH

- Imperative definition: sets of commands and operations
 - Example: BASH script, Dockerfile
- **Declarative definition**: specification of a service's properties
 - What level of service it should sustain, etc.
 - Example: Kubernetes YAML files
- Kubernetes manages resources <u>declaratively</u>
- How apps are deployed and run are defined with YAML files
- YAML files are POSTed to Kubernetes endpoints
- Kubernetes deploys and manages applications based on declarative service requirements
- If something isn't as it should be: Kubernetes automatically tries to fix it

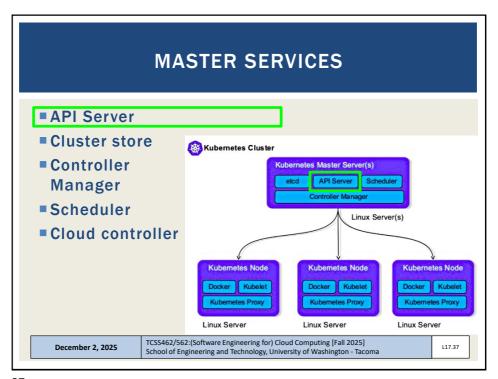
December 2, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

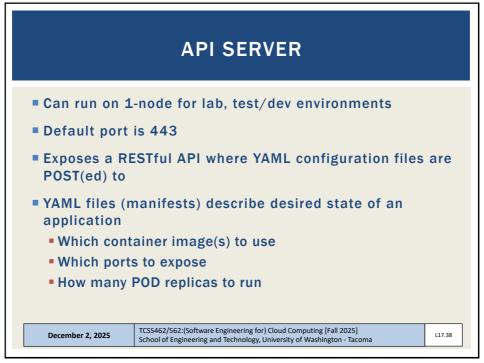
L17.35

35

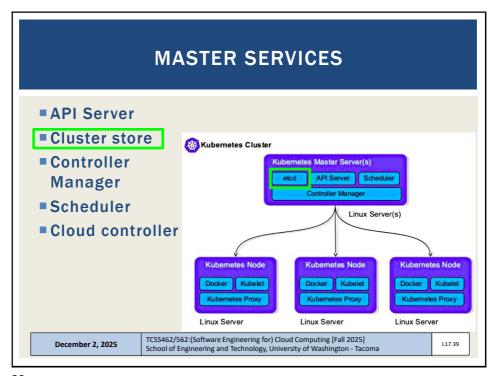
KUBERNETES MASTERS

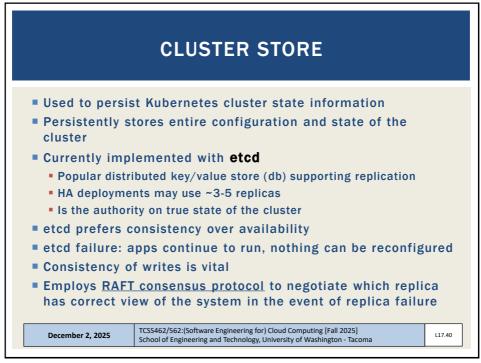

- Provide system services to host the control plane
- Simplest clusters use only 1 master (i.e. no replication)
 - Suitable for lab and dev/test environments
- Production environments: masters are replicated ~3-5x
 - Provides fault tolerance and high availability (HA)
 - Cloud-based managed Kubernetes services offer HA deployments

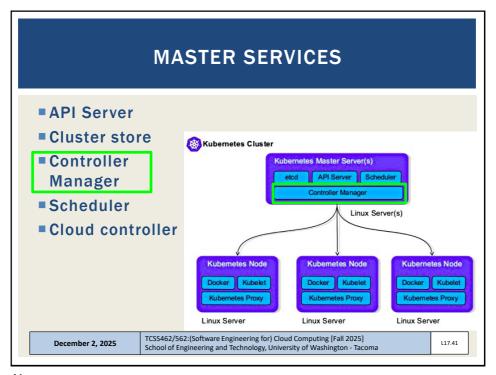
December 2, 2025

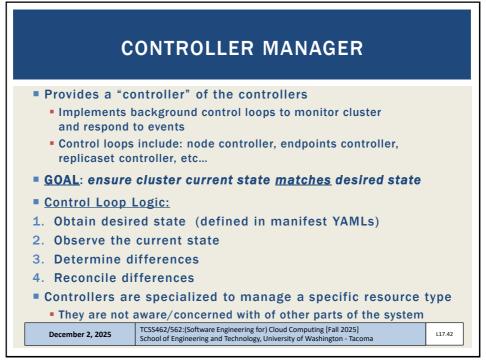

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

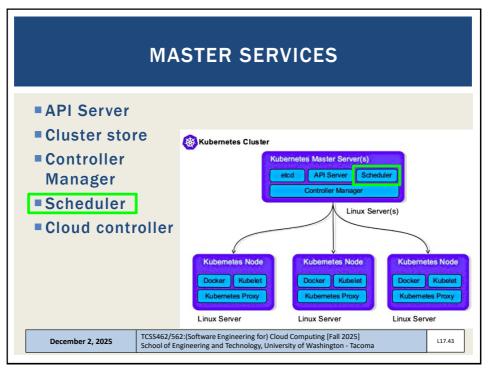
L17.36

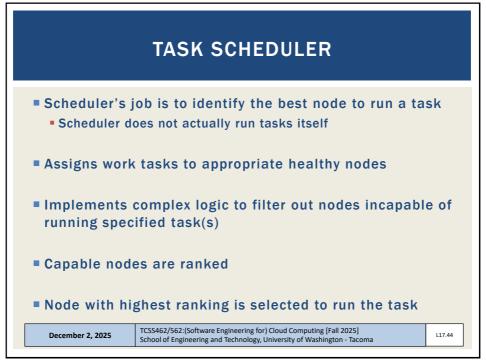

36


37


38


39


40


41

42

43

44

ENFORCING SCHEDULING PREDICATES

- Scheduler performs predicate (property) checks to verify how/where to run tasks
 - Is a node tainted?
 - Does task have affinity (deploy together), anti-affinity (separation) requirements?
 - Is a required network port available on the node?
 - Does node have sufficient free resources?
- Nodes incapable of running the task are eliminated as candidate hosts

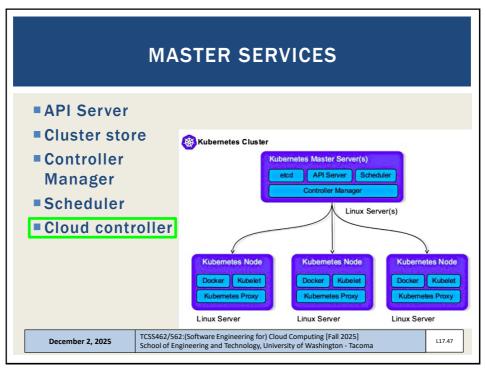
December 2, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

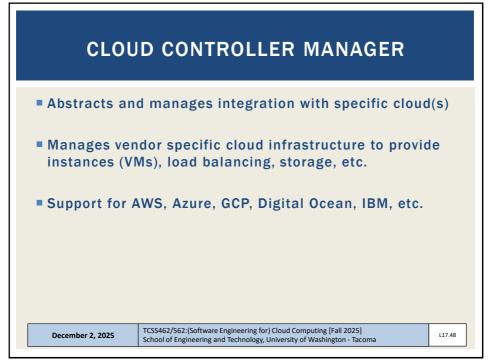
L17.45

45

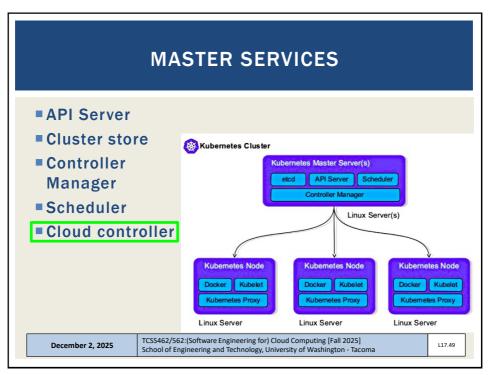
RANKING NODES

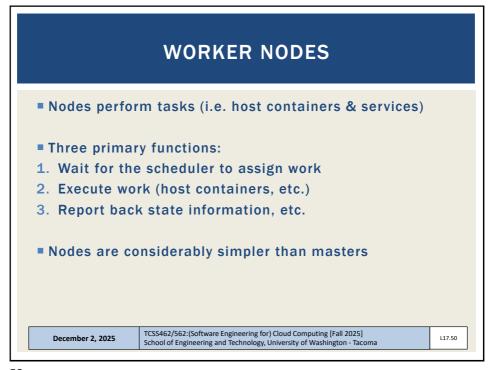

- Remaining nodes are ranked based on for example:
- 1. Does the node have the required images?
 - Cached images will lead to faster deployment time
- 2. How much free capacity (CPU, memory) does the node have?
- 3. How many tasks is the node already running?
- Each criterion is worth points
- Node with most points is selected
- If there is no suitable node, task is not scheduled, but marked as pending
- PROBLEM: There is no one-sized fits all solution to selecting the best node. How weights are assigned to conditions may not reflect what is best for the task

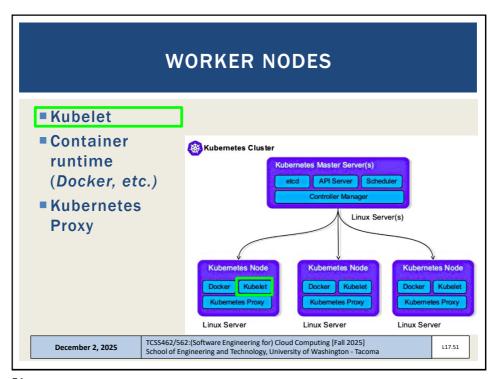
December 2, 2025

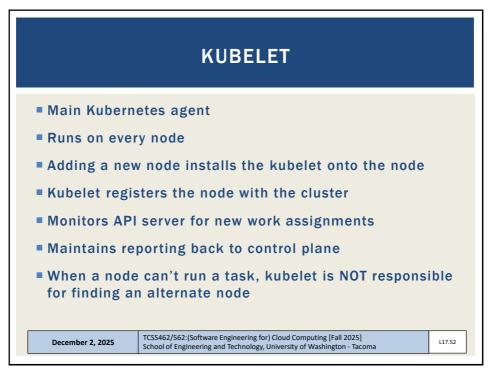

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

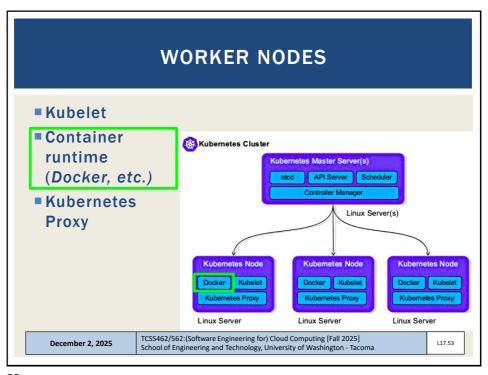
17.46

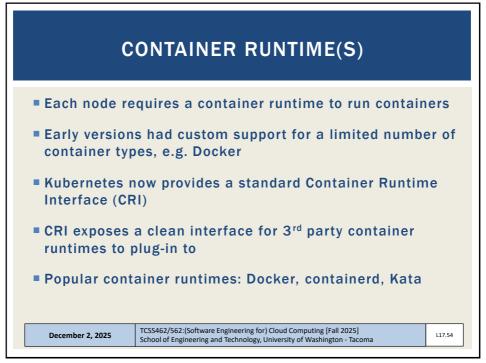

46

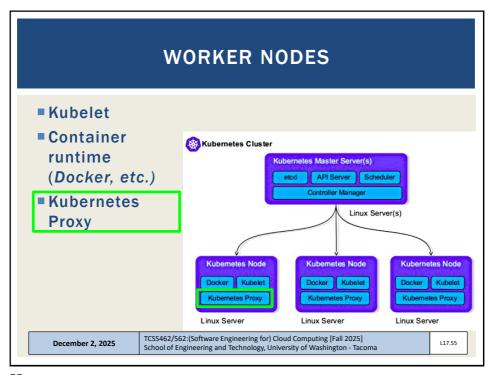

47

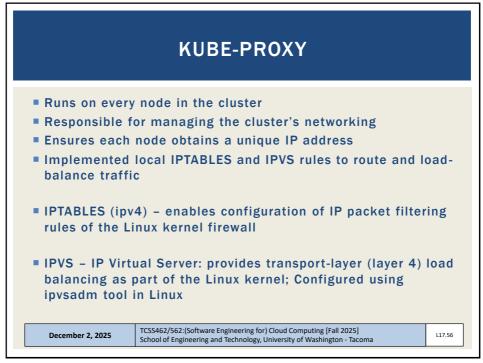

48

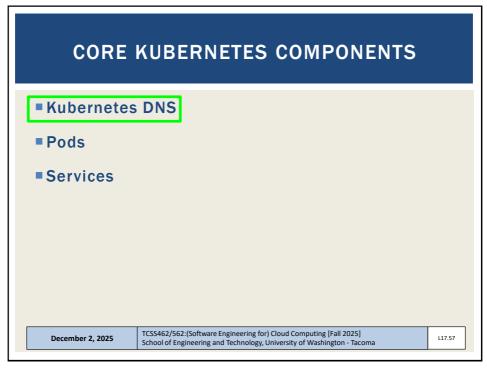

49

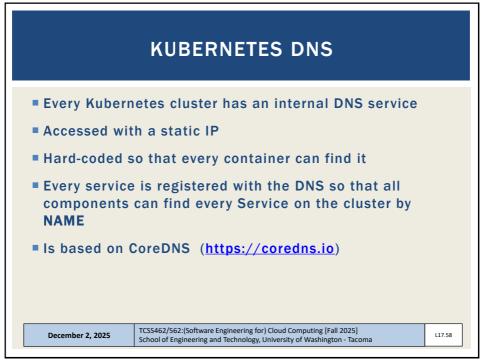

50


51

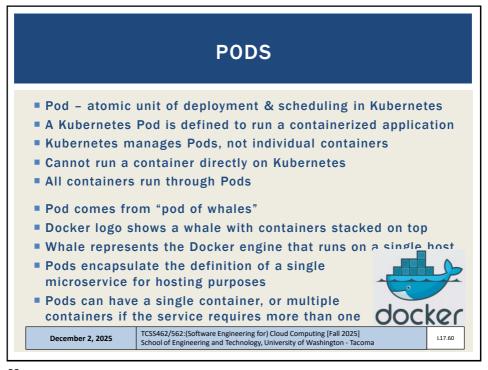

52


53


54


55

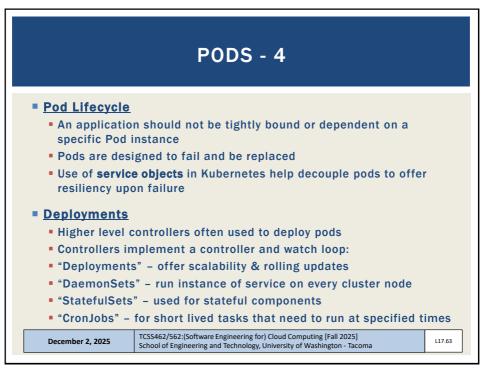
56


57

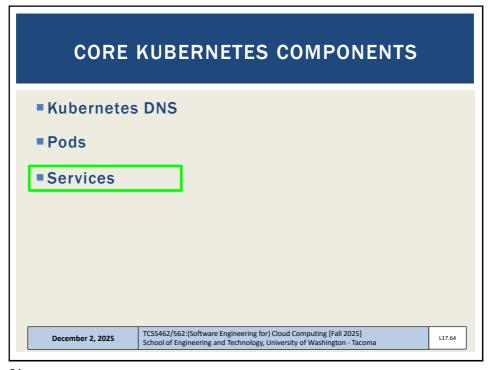
58

CORE KUBERNETES COMPONENTS							
■ Kubernetes	DNS						
■ Pods							
■ Services							
December 2, 2025	TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]	7.59					
December 2, 2025	School of Engineering and Technology, University of Washington - Tacoma	7.59					

59


60

PODS - 2 Examples of multi-container Pods: Service meshes Web containers with a helper container that pulls latest content Containers with a tightly coupled log scraper or profiler YAML manifest files are used to provide a declarative description for how to run and manage a Pod ■ To run a pod, POST a YAML to the API Server: "kubectl run <NAME>" where NAME is the service A Pod runs on a single node (host) Pods share: Interprocess communication (IPC) namespace Memory, Volumes, Network stack TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma December 2, 2025


61

PODS - 3 Pods provide a "fenced" environment to run containers ■ Provide a "sandbox" Only tightly coupled containers are deployed with a single pod Best practice: decouple individual containers to separate pods • What is the best container composition into pods? (1:1, 1:many) Scaling Pods are the unit of scaling Add and remove pods to scale up/down Do not add containers to a pod, add pod instances Pod instances can be scheduled on the same or different host Atomic Operation Pods are either fully up and running their service (i.e. port open/exposed), or pods are down / offline TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma December 2, 2025 117.62

62

63

64

KUBERNETES "SERVICES"

- Pods managed with "Deployments" or "DameonSets" controllers are automatically replaced when they die
 - This provides resiliency for the application
- **KEY IDEA**: Pods are unreliable
- Services provide reliability by acting as a "GATEWAY" to pods that implement the services
 - They underlying pods can change over time
 - The services endpoints remain and are always available
- Service objects provide an abstraction layer w/ a reliable name and load balancing of requests to a set of pods

December 2, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

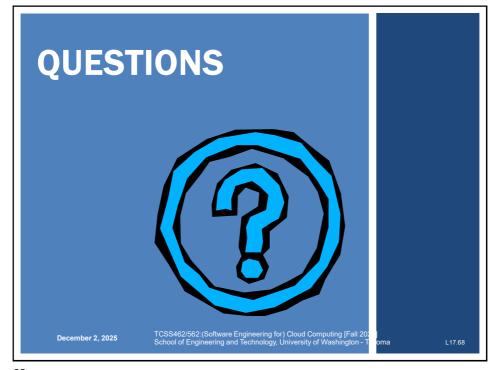
L17.65

65

SERVICES


- Provide reliable front-end with:
 - Stable DNS name
 - IP Address
 - Port
- Services do not posses application intelligence
- No support for application-layer host and path routing
- Services have a "label selector" which is a set of lables
- Requests/traffic is only sent to Pods with matching labels
- Services only send traffic to healthy Pods
- KEY IDEA: Services bring stable IP addresses and DNS names to unstable Pods

December 2, 2025


TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L17.66

66

67

68