
TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L17.1

 Class Presentations, Day 2

 Wes J. Lloyd
 School of Engineering and Technology

 University of Washington – Tacoma

TCSS 462/562:

(SOFTWARE ENGINEERING

FOR) CLOUD COMPUTING THIS WEEK

Tuesday: (After Quiz)

▪6:30 to 7:30 pm - CP 229 & Zoom

Thursday (After Class) :

▪6:00 pm to 7:00 pm – CP 229 & Zoom

Or email for appointment

> Of f ice Hour s set based on Student Demographics sur vey feedback

OFFICE HOURS – THIS WEEK

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.2

 Questions from 11/25

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Tutorial 9: AWS Step Functions, AWS SQS

 Tutorial 8: Serverless Beyond Java, Container -Based

Functions

 Kubernetes

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.3

OBJECTIVES – 12/2

 Daily Feedback Quiz in Canvas – Take After Each Class

 Extra Credit

for completing

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.4

ONLINE DAILY FEEDBACK SURVEY

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma L17.5

 Please classify your perspective on material covered in today’s

class (42 respondents, 23 in-person, 19 online):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.17 ( - previous 6.47)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.12 ( - previous 5.16)

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.6

MATERIAL / PACE

1 2

3 4

5 6

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L17.2

 Is term project due on f inal week?

 The term project is due on Friday December 12 th AOE

 Which is Saturday December 13 th at 4:59 am

 Canvas will close on Saturday December 13 th at 11:59 am

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.7

FEEDBACK FROM 12/2

 is LLM use al lowed on term project?

 Yes. One of the term project recommended case studies is to:

▪ #1: Implement a data processing pipeline in multiple programming

languages (e.g. Java, Python) on AWS Lambda, and compare the

performance, where LLMs help convert/write code from Java to

Python (or other languages)

▪ #2: Implement a data processing pipeline in one programming

language (Java), but implement the pipeline multiple times using

different LLMs to determine which LLMs generate better code

▪ The recommendation is to write detailed prompts to minimize

conversations with the LLM. Refactor missing details to create long

prompts which can be reused to compare alternate LLMs

▪ Evaluate code syntactical correctness, functional correctness, serverless

performance

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.8

FEEDBACK - 2

 Executing each INSERT query separately is prohibitively slow if

looking to load 100,000+ rows

 AWS Lambda functions can time out when loading Large CSV

files (1,000,000)

 GOAL: Improve the performance of your LOAD function to

enable ingestion of 1+ million rows of data

 Techniques:

1. SQL Batch Queries

2. Prepared Statements

3. Stored Procedures

 ChatGPT recommends combining the use of SQL Batch Queries

with Prepared Statements for maximum speed -up

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.9

SPEEDING UP DATA INSERTS

WITH MYSQL

 Questions from 11/25

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Tutorial 9: AWS Step Functions, AWS SQS

 Tutorial 9: Serverless Beyond Java,Container-Based

Functions

 Kubernetes

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.10

OBJECTIVES – 12/2

 Introduction to Lambda III: Serverless Databases

 https://faculty.washington.edu/wlloyd/courses/tcss562/
tutorials/TCSS462_562_f2025_tutorial_6.pdf

 Create and use Sqlite databases using sqlite3

 Deploy Lambda function with Sqlite3 database under / tmp

 Compare in-memory vs. f ile-based Sqlite DBs on Lambda

 Create an Amazon Aurora “Serverless” v2 MySQL database

 Using the AWS CloudShell in the same VPC (Region +
availability zone) connect and interact your Aurora serverless
database using the mysql CLI app

 Deploy an AWS Lambda function that uses the MySQL
“serverless” database

 ‘FREE PLAN’: okay to use db.t3.micro, db.t4g.micro RDS
MySQL VM – must indicate use of RDS VM on tutorial PDF

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.11

TUTORIAL 6 – CLOSED

 Introduction to Docker

 https://faculty.washington.edu/wlloyd/courses/tcss562/
tutorials/TCSS462_562_f2025_tutorial_7.pdf

 Must complete using c7i -flex.large ec2 instance &
Ubuntu 24.04 (for cgroups v2)

 Use DOCX file for copying and pasting Docker install
commands

 Topics:
▪ Installing Docker

▪ Creating a container using a Dockerfile

▪ Using cgroups virtual filesystem to monitor CPU utilization of a
container

▪ Persisting container images to Docker Hub image repository

▪ Container vertical scaling of CPU/memory resources

▪ Testing container CPU and memory isolation

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.12

TUTORIAL 7 – DEC 4

7 8

9 10

11 12

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_6.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_6.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_6.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_7.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_7.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_7.pdf

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L17.3

 Questions from 11/25

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Tutorial 9: AWS Step Functions, AWS SQS

 Tutorial 8: Serverless Beyond Java, Container -Based

Functions

 Kubernetes

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.13

OBJECTIVES – 12/2

 TWO OPTIONS:

 Cloud technology presentation

 Cloud research paper presentation

▪ Recent & suggested papers will be posted at:

http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

 Presentation dates:

▪ Tuesday November 25

▪ Tuesday December 2, Thursday December 4

 Peer Reviews

▪ Word DOCX review form posted, fill out, submit PDF on Canvas

▪ Feedback shared with groups

▪ TCSS 462: submit 4 total peer reviews in lieu of a group presentation

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.14

GROUP PRESENTATIONS

 7 Presentation Teams

 3 Cloud Technology Talks

 4 Cloud Research Paper Presentations

 1 one-person teams

 2 two-person teams

 4 three-person teams

 Thank you for the submissions

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.15

GROUP PRESENTATIONS

 <Tuesday November 25>

1. Team 4: Xiaoling Wei, Bohan Xiong, Xu Zhu
Research paper: Serverless Replication of Object Storage across
Multi-Vendor C louds and Regions
2 . Team 1: William Hay
Cloud Technology: Amazon Athena

3. Robert Cordingly – Original Research Paper: Sky Computing
for Serverless: Infrastructure Assessment to Support
Performance Enhancement (IEEE/ACM UCC 2025 Practice Talk)

 <Tuesday December 2>

1. Team 5: Sparsha Jha, Chris Biju

Cloud Technology: Intelligent Optimization of Distributed
Pipeline Execution in Serverless Platforms: A Predictive Model
Approach

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.16

PRESENTATION SCHEDULE

 <Thursday December 4>

1. Team 3: Jiameng Li, Naomi Nottingham, Headley Brissett

Research paper: A Perfect F it? – Towards Containers on

Microkernels

2. Team 2: Ruby Plangphatthanaphanit , Junjia Li, Ari Yin

Cloud Technology: CI/CD in the Cloud (GitHub Actions + Cloud

Deploy)

3. Team 8: Aamena Suzzane, Dhruva Bhat

Research paper: CoFaaS: Automatic Transformation-based

Consolidation of Serverless Functions

4. Team 6: Han Zhang, Sahil Bhatt, Pengcheng Cao

Cloud Technology: AWS Amplify

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.17

PRESENTATION SCHEDULE - 2

 Questions from 11/25

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Tutorial 9: AWS Step Functions, AWS SQS

 Tutorial 8: Serverless Beyond Java, Container -Based

Functions

 Kubernetes

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.18

OBJECTIVES – 12/2

13 14

15 16

17 18

http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L17.4

 Introduction to AWS Step Functions and Amazon Simple Queue

Service (SQS)

 Not Required, available for EXTRA CREDIT (scored out of 0)

▪ adds points to overall tutorials score

 Tasks

▪ Adapt Caesar Cipher Lambda functions for use with AWS Step

Functions

▪ Create AWS Step Functions State Machine

▪ Create a BASH client to invoke the AWS Step Function

▪ Create Simple Queue Service Queue for messages

▪ Add message to SQS queue from AWS Lambda function

▪ Modify AWS Step Function Bash client script to retrieve AWS Step

Function result from SQS queue

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.19

TUTORIAL 9 – TO BE POSTED

 Questions from 11/25

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Tutorial 9: AWS Step Functions, AWS SQS

 Tutorial 8: Serverless Beyond Java, Container -Based

Functions

 Kubernetes

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.20

OBJECTIVES – 12/2

TUTORIAL 8:
SERVERLESS BEYOND JAVA,

CONTAINER-BASED

FUNCTIONS

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma L17.21

 Python Based AWS Lambda Functions w/ SAAF, and Container -
Based AWS Lambda Funct ions

 Not Required, available for EXTRA CREDIT (scored out of 0)

▪ adds points to overall tutorials score

▪ 10 pts for Python Functions / 15 pts for Container Based Function

 Tasks

▪ Build/Deploy/Test Python-based Lambda Functions

▪ Deploy and Test Container Based AWS Lambda Function
▪ Requires Docker Engine installation on local VM

▪ Create role to use CLI/publish script

▪ Use a config file to specify container-based function details

▪ Update bash script to deploy hello function

▪ Build Docker container locally, Publish to Elastic Container Registry

▪ Create new ‘hello’ Lambda Function based on Container image

▪ Test Container-based ‘hello’ AWS Lambda Function

▪ Adapt your function to run sysbench prime number generation

▪ Test prime number generation performance on AWS Lambda vs. memory

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.22

TUTORIAL 9

WE WILL RETURN AT

~4:55 PM

 Questions from 11/25

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Tutorial 9: AWS Step Functions, AWS SQS

 Tutorial 9: Serverless Beyond Java,Container-Based

Functions

 Kubernetes

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.24

OBJECTIVES – 12/2

19 20

21 22

23 24

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L17.5

KUBERNETES

L17.25

from: “The Kubernetes Book”, Nigel Poulton and
Pushkar Joglekar, Version 7.0, September 2020

 Name is from the Greek word meaning Helmsman

▪ The person who steers a seafaring ship

▪ The logo reinforces this theme

 Kubernetes is also sometimes called K8s

 Kubernetes is an application orchestrator

 Most common use case is to containerize

cloud-native microservices applications

 What is an orchestrator?

▪ System that deploys and manages applications

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.26

KUBERNETES

 Initially developed by Google

 Goal: make it easier for potential customers to use Google Cloud

 Kubernetes leverages knowledge gained from two internal

container management systems developed at Google

▪ Borg and Omega

 Google donated Kubernetes to the Cloud Native Computing

Foundation in 2014 as an open-source project

 Kubernetes is written in Go (Golang)

 Kubernetes is available under the Apache 2.0 license

 Releases were previously maintained for only 8 months!

 Starting w/ v 1.19 (released Aug 2020) support is 1 year

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.27

KUBERNETES – 2

Why does Google want
to give Kubernetes away

for free? 1. Deploy your application

2. Scale it up and down dynamically according to demand

3. Self-heal it when things break

4. Perform zero-downtime rolling updates and rollbacks

 These features represent automatic infrastructure

management

 Containerized applications run in container(s)

 Compared to VMs, containers are thought of as being:

▪ Faster

▪ More light-weight

▪ More suited to rapidly evolving software requirements

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.28

GOALS OF KUBERNETES

 Applications designed to meet modern software

requirements including:

▪ Auto-scaling: resources to meet demand

▪ Self-healing: required for high availability (HA) and fault

tolerance

▪ Rolling software updates: with no application downtime

for DevOPS

▪ Portability: can run anywhere there’s a Kubernetes cluster

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.29

CLOUD NATIVE APPLICATIONS

 Application consisting of many specialized parts that

communicate and form a meaningful application

 Example components of a microservice eCommerce app:

Web front-end Catalog service

Shopping cart Authentication service

Logging service Persistent data store

 KEY IDEAS:

 Each microservice can be coded/maintained by dif ferent team

 Each has its own release cadence

 Each is deployed/scaled separately

 Can patch & scale the log service w/o impacting others

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.30

WHAT IS A MICROSERVICES APP?

25 26

27 28

29 30

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L17.6

 Provides “an operating system for the cloud”

 Offers the de-facto standard platform for deploying and

managing cloud-native applications

 OS: abstracts physical server, schedules processes

 Kubernetes: abstracts the cloud , schedules microservices

 Kubernetes abstracts dif ferences between private and public

clouds

 Enable cloud-native applications to be cloud agnostic

▪ i.e. they don’t care WHAT cloud they run on

▪ Enables fluid application migration between clouds

 Kubernetes provides rich set of tools/APIs to introspect

(observe and examine) your apps

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.31

KUBERNETES - 3

 Features:

 A “control plane” – brain of the cluster

▪ Implements autoscaling, rolling updates w/o downtime, self -healing

 A “bunch of nodes” – workers (muscle) of the cluster

 Provides orchestration

▪ The process of organizing everything into a useful application

▪ And also the goal of keeping it running smoothly

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.32

KUBERNETES - 4

 Master node(s) manage the cluster by:

▪ Making scheduling decisions

▪ Performing monitoring

▪ Implementing changes

▪ Responding to events

 Masters implement the control plane of a Kubernetes cluster

 Recipe for deploying to Kubernetes:

 Write app as independent microservices in preferred language

 Package each microservice in a container

 Create a manifest to encapsulate the definition of a Pod

 Deploy Pods to the cluster w/ a higher -level controller such as

“Deployments” or “DaemonSets”

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.33

KUBERNETES - CLUSTER MANAGEMENT

 Pod – atomic unit of deployment & scheduling in Kubernetes

 A Kubernetes Pod is defined to run a containerized application

 Kubernetes manages Pods, not individual containers

 Cannot run a container directly on Kubernetes

 All containers run through Pods

 Pod comes from “pod of whales”

 Docker logo shows a whale with containers stacked on top

 Whale represents the Docker engine that runs on a single host

 Pods encapsulate the definition of a s ingle

microservice for hosting purposes

 Pods can have a s ingle container, or multiple

containers, i f the service requires more than one

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.34

LOOK AHEAD: PODS

 Imperative definition: sets of commands and operations

▪ Example: BASH script, Dockerfile

 Declarative definition : specification of a service’s properties

▪ What level of service it should sustain, etc.

▪ Example: Kubernetes YAML files

 Kubernetes manages resources declaratively

 How apps are deployed and run are defined with YAML files

 YAML files are POSTed to Kubernetes endpoints

 Kubernetes deploys and manages applications based on

declarative service requirements

 If something isn’t as it should be: Kubernetes automatically

tries to fix it

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.35

DECLARATIVE SERVICE APPROACH

 Provide system services to host the control plane

 Simplest clusters use only 1 master – (i.e. no replication)

▪ Suitable for lab and dev/test environments

 Production environments: masters are replicated ~3 -5x

▪ Provides fault tolerance and high availability (HA)

▪ Cloud-based managed Kubernetes services offer HA

deployments

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.36

KUBERNETES MASTERS

31 32

33 34

35 36

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L17.7

API Server

Cluster store

Controller

Manager

Scheduler

Cloud controller manager

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.37

MASTER SERVICES

 Can run on 1-node for lab, test/dev environments

 Default port is 443

 Exposes a RESTful API where YAML configuration files are

POST(ed) to

 YAML files (manifests) describe desired state of an

application

▪ Which container image(s) to use

▪ Which ports to expose

▪ How many POD replicas to run

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.38

API SERVER

API Server

Cluster store

Controller

Manager

Scheduler

Cloud controller manager

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.39

MASTER SERVICES

 Used to persist Kubernetes cluster state information

 Persistently stores entire configuration and state of the

cluster

 Currently implemented with etcd

▪ Popular distributed key/value store (db) supporting replication

▪ HA deployments may use ~3-5 replicas

▪ Is the authority on true state of the cluster

 etcd prefers consistency over availability

 etcd failure: apps continue to run, nothing can be reconfigured

 Consistency of writes is vital

 Employs RAFT consensus protocol to negotiate which replica

has correct view of the system in the event of replica failure

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.40

CLUSTER STORE

API Server

Cluster store

Controller

Manager

Scheduler

Cloud controller manager

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.41

MASTER SERVICES

 Provides a “controller” of the controllers

▪ Implements background control loops to monitor cluster

and respond to events

▪ Control loops include: node controller, endpoints controller,

replicaset controller, etc…

 GOAL: ensure c luster current state matches desired state

 Control Loop Logic:

1. Obtain desired state (defined in manifest YAMLs)

2. Observe the current state

3. Determine dif ferences

4. Reconcile dif ferences

 Controllers are specialized to manage a specific resource type

▪ They are not aware/concerned with of other parts of the system

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.42

CONTROLLER MANAGER

37 38

39 40

41 42

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L17.8

API Server

Cluster store

Controller

Manager

Scheduler

Cloud controller manager

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.43

MASTER SERVICES

 Scheduler’s job is to identify the best node to run a task

▪ Scheduler does not actually run tasks itself

 Assigns work tasks to appropriate healthy nodes

 Implements complex logic to filter out nodes incapable of

running specified task(s)

 Capable nodes are ranked

 Node with highest ranking is selected to run the task

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.44

TASK SCHEDULER

 Scheduler performs predicate (property) checks to verify

how/where to run tasks

▪ Is a node tainted?

▪ Does task have affinity (deploy together), anti-affinity

(separation) requirements?

▪ Is a required network port available on the node?

▪ Does node have sufficient free resources?

 Nodes incapable of running the task are eliminated as

candidate hosts

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.45

ENFORCING SCHEDULING PREDICATES

 Remaining nodes are ranked based on for example:

1. Does the node have the required images?

▪ Cached images will lead to faster deployment time

2. How much free capacity (CPU, memory) does the node have?

3. How many tasks is the node already running?

 Each criterion is worth points

 Node with most points is selected

 If there is no suitable node, task is not scheduled, but marked

as pending

 PROBLEM: There is no one-sized fits all solution to selecting

the best node. How weights are assigned to conditions may

not reflect what is best for the task

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.46

RANKING NODES

API Server

Cluster store

Controller

Manager

Scheduler

Cloud controller manager

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.47

MASTER SERVICES

 Abstracts and manages integration with specific cloud(s)

 Manages vendor specific cloud infrastructure to provide

instances (VMs), load balancing, storage, etc.

 Support for AWS, Azure, GCP, Digital Ocean, IBM, etc.

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.48

CLOUD CONTROLLER MANAGER

43 44

45 46

47 48

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L17.9

API Server

Cluster store

Controller

Manager

Scheduler

Cloud controller manager

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.49

MASTER SERVICES

 Nodes perform tasks (i.e. host containers & services)

 Three primary functions:

1. Wait for the scheduler to assign work

2. Execute work (host containers, etc.)

3. Report back state information, etc.

 Nodes are considerably simpler than masters

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.50

WORKER NODES

Kubelet

Container

runtime

(Docker, etc.)

Kubernetes

Proxy

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.51

WORKER NODES

 Main Kubernetes agent

 Runs on every node

 Adding a new node installs the kubelet onto the node

 Kubelet registers the node with the cluster

 Monitors API server for new work assignments

 Maintains reporting back to control plane

 When a node can’t run a task, kubelet is NOT responsible

for finding an alternate node

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.52

KUBELET

Kubelet

Container

runtime

(Docker, etc.)

Kubernetes

Proxy

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.53

WORKER NODES

 Each node requires a container runtime to run containers

 Early versions had custom support for a limited number of

container types, e.g. Docker

 Kubernetes now provides a standard Container Runtime

Interface (CRI)

 CRI exposes a clean interface for 3 rd party container

runtimes to plug-in to

 Popular container runtimes: Docker, containerd, Kata

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.54

CONTAINER RUNTIME(S)

49 50

51 52

53 54

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L17.10

Kubelet

Container

runtime

(Docker, etc.)

Kubernetes

Proxy

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.55

WORKER NODES

 Runs on every node in the cluster

 Responsible for managing the cluster’s networking

 Ensures each node obtains a unique IP address

 Implemented local IPTABLES and IPVS rules to route and load -

balance traffic

 IPTABLES (ipv4) – enables configuration of IP packet filtering

rules of the Linux kernel firewall

 IPVS – IP Vir tual Server: provides transport -layer (layer 4) load

balancing as part of the Linux kernel; Configured using

ipvsadm tool in Linux

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.56

KUBE-PROXY

Kubernetes DNS

Pods

Services

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.57

CORE KUBERNETES COMPONENTS

 Every Kubernetes cluster has an internal DNS service

 Accessed with a static IP

 Hard-coded so that every container can find it

 Every service is registered with the DNS so that all

components can find every Service on the cluster by

NAME

 Is based on CoreDNS (https://coredns.io)

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.58

KUBERNETES DNS

Kubernetes DNS

Pods

Services

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.59

CORE KUBERNETES COMPONENTS

 Pod – atomic unit of deployment & scheduling in Kubernetes

 A Kubernetes Pod is defined to run a containerized application

 Kubernetes manages Pods, not individual containers

 Cannot run a container directly on Kubernetes

 All containers run through Pods

 Pod comes from “pod of whales”

 Docker logo shows a whale with containers stacked on top

 Whale represents the Docker engine that runs on a single host

 Pods encapsulate the definition of a single

microservice for hosting purposes

 Pods can have a single container, or multiple

containers if the service requires more than one

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.60

PODS

55 56

57 58

59 60

https://coredns.io/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L17.11

 Examples of multi -container Pods:

▪ Service meshes

▪ Web containers with a helper container that pulls latest content

▪ Containers with a tightly coupled log scraper or profiler

 YAML manifest files are used to provide a declarative

description for how to run and manage a Pod

 To run a pod, POST a YAML to the API Server:

“kubectl run <NAME>” where NAME is the service

 A Pod runs on a single node (host)

 Pods share:

▪ Interprocess communication (IPC) namespace

▪ Memory, Volumes, Network stack

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.61

PODS - 2

 Pods provide a “fenced” environment to run containers

 Provide a “sandbox”

 Only tightly coupled containers are deployed with a single pod

 Best practice: decouple individual containers to separate pods

▪ What is the best container composition into pods? (1:1, 1:many)

 Scaling

▪ Pods are the unit of scaling

▪ Add and remove pods to scale up/down

▪ Do not add containers to a pod, add pod instances

▪ Pod instances can be scheduled on the same or different host

 Atomic Operation

▪ Pods are either fully up and running their service (i.e. port
open/exposed), or pods are down / offline

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.62

PODS - 3

 Pod Lifecycle

▪ An application should not be tightly bound or dependent on a

specific Pod instance

▪ Pods are designed to fail and be replaced

▪ Use of service objects in Kubernetes help decouple pods to offer

resiliency upon failure

 Deployments

▪ Higher level controllers often used to deploy pods

▪ Controllers implement a controller and watch loop:

▪ “Deployments” – offer scalability & rolling updates

▪ “DaemonSets” – run instance of service on every cluster node

▪ “StatefulSets” – used for stateful components

▪ “CronJobs” – for short lived tasks that need to run at specified times

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.63

PODS - 4

Kubernetes DNS

Pods

Services

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.64

CORE KUBERNETES COMPONENTS

 Pods managed with “Deployments” or “DameonSets”

controllers are automatically replaced when they die

▪ This provides resiliency for the application

 KEY IDEA: Pods are unreliable

 Services provide reliability by acting as a “GATEWAY”

to pods that implement the services

▪ They underlying pods can change over time

▪ The services endpoints remain and are always available

 Service objects provide an abstraction layer w/ a reliable

name and load balancing of requests to a set of pods

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.65

KUBERNETES “SERVICES”

 Provide reliable front-end with:

▪ Stable DNS name

▪ IP Address

▪ Port

 Services do not posses application intelligence

 No support for application-layer host and path routing

 Services have a “label selector” which is a set of lables

 Requests/traffic is only sent to Pods with matching labels

 Services only send traffic to healthy Pods

 KEY IDEA: Services bring stable IP addresses and DNS

names to unstable Pods

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L17.66

SERVICES

61 62

63 64

65 66

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L17.12

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma L17.67

QUESTIONS

December 2, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma L17.68

67 68

	Slide 1: TCSS 462/562: (Software Engineering for) Cloud Computing
	Slide 2: Office hours – this week
	Slide 3: OBJECTIVES – 12/2
	Slide 4: Online daily feedback survey
	Slide 5
	Slide 6: Material / pace
	Slide 7: Feedback from 12/2
	Slide 8: Feedback - 2
	Slide 9: Speeding up data inserts with Mysql
	Slide 10: OBJECTIVES – 12/2
	Slide 11: Tutorial 6 – CLOSED
	Slide 12: Tutorial 7 – dec 4
	Slide 13: OBJECTIVES – 12/2
	Slide 14: Group presentations
	Slide 15: Group presentations
	Slide 16: Presentation schedule
	Slide 17: Presentation schedule - 2
	Slide 18: OBJECTIVES – 12/2
	Slide 19: Tutorial 9 – to be posted
	Slide 20: OBJECTIVES – 12/2
	Slide 21: Tutorial 8: Serverless Beyond Java, Container-Based Functions
	Slide 22: Tutorial 9
	Slide 23: We will return at ~4:55 pm
	Slide 24: OBJECTIVES – 12/2
	Slide 25: Kubernetes
	Slide 26: kubernetes
	Slide 27: Kubernetes – 2
	Slide 28: Goals of kubernetes
	Slide 29: Cloud native applications
	Slide 30: What is a microservices app?
	Slide 31: Kubernetes - 3
	Slide 32: Kubernetes - 4
	Slide 33: Kubernetes - Cluster management
	Slide 34: Look ahead: Pods
	Slide 35: Declarative service approach
	Slide 36: Kubernetes masters
	Slide 37: Master services
	Slide 38: Api server
	Slide 39: Master services
	Slide 40: Cluster store
	Slide 41: Master services
	Slide 42: Controller manager
	Slide 43: Master services
	Slide 44: Task scheduler
	Slide 45: Enforcing Scheduling predicates
	Slide 46: Ranking nodes
	Slide 47: Master services
	Slide 48: Cloud controller manager
	Slide 49: Master services
	Slide 50: Worker nodes
	Slide 51: Worker nodes
	Slide 52: kubelet
	Slide 53: Worker nodes
	Slide 54: Container runtime(s)
	Slide 55: Worker nodes
	Slide 56: Kube-proxy
	Slide 57: Core kubernetes components
	Slide 58: Kubernetes dns
	Slide 59: Core kubernetes components
	Slide 60: Pods
	Slide 61: Pods - 2
	Slide 62: Pods - 3
	Slide 63: Pods - 4
	Slide 64: Core kubernetes components
	Slide 65: Kubernetes “Services”
	Slide 66: services
	Slide 67
	Slide 68: Questions

