

Τ

2

6

7

	Started	S 562 : Oct 7 at : z Instr	l:13am		Daily	Feedb	ack S	Surve	y - 10	/5				
		Question 1 On a scale of 1 to 10, please classify your perspective						ective o	0.5 pts					
		1 Mostly Review		3	4 Ne	5 Equal w and Rev	6	7	8	9	10 Mostly New to Me			
		Questi	on 2								0.5 pts			
		Please	rate the	pace of	today's	class:								
		1 Slow	2	3	4 Ji	5 ust Right	6	7	8	9	10			
November	r 28, 20	23	TC: Sch	SS462/5 nool of E	62:(Soft	ware En	gineering	g for) Cla gy, Unive	oud Compersity of V	puting [F Washing	Fall 2023] yton - Tacoma		L17	'.8

8

9

FEEDBACK FROM 11/21

- Could you reiterate what exactly is the different between a set of containers and traditional serverless services?
- Serverless is a characteristic of cloud services which refers to not having to manage servers
 - On AWS we will not see VM types associated with creating "serverless" cloud services . . . There is no c5.large etc...
- Serverless != Function-as-a-Service (FaaS)
- FaaS is a cloud computing delivery model for hosting user functions which are similar to microservices using "serverless" infrastructure managed by the cloud provider
 - Microservices are small, independent deployable services that communicate with each other over a network

November 28, 2023

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023] School of Engineering and Technology, University of Washington - Tacoma

L17.10

10

FEEDBACK - 2

- Containers are infrastructure abstractions for sharing a physical server which are lighter-weight than full virtual machines
- Containers can be used to encapsulate and host microservices
 - Encapsulate means capture all of the software dependencies together in one place for easy deployment
- Containers could also encapsulate and run a Bash script or an entire application

November 28, 2023

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023] School of Engineering and Technology, University of Washington - Tacoma

L17.11

11

FEEDBACK - 3

- When would we prefer deploying a service as a set of docker containers managed by k8s? and when would it be more appropriate to host it on the cloud, managed by the provider?
- By deploying as a set of docker containers on k8s, do you mean the service will be hosted on a private cluster?
- Note that k8s clusters can be created on public clouds for service hosting as well
- Hosting a service on the cloud for be done using a variety of "compute" centric cloud computing delivery models
- Service/microservices can be hosted with any of the following:
 - Infrastructure-as-a-Service: EC2
 - Container-as-a-Service: Fargate, ECS, EKS
 - Function-as-a-Service: AWS Lambda
- Or is it not exclusive, but perhaps we could utilize both?
 - It is possible to combine compute models (laaS, CaaS, FaaS) for service hosting, but less typical that using just one delivery model

November 28, 2023

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023] School of Engineering and Technology, University of Washington - Tacoma

L17.12

12

AWS CLOUD CREDITS UPDATE

- AWS CLOUD CREDITS ARE NOW AVAILABLE FOR TCSS 462/562
- Credits provided on request with expiry of Sept 30, 2024
- Credit codes must be securely exchanged
- Request codes by sending an email with the subject "AWS CREDIT REQUEST" to wlloyd@uw.edu
- Codes can also be obtained in person (or zoom), in the class, during the breaks, after class, during office hours, by appt
 - 62 credit requests fulfilled as of Nov 27 @ 11:59p
- Codes not provided using discord

November 28, 2023

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2023] School of Engineering and Technology, University of Washington - Tacoma

L17.13

13

Don't Forget to Terminate (Shutdown) all EC2 instances for Tutorials 3 & 7

Spot instances:
c5d.large instance @ ~3c cents / hour

\$0.72 / day
\$5.04 / week
\$21.88 / month
\$262.80 / year

AWS CREDITS > > > > > > > > >

14

15

TUTORIAL 6 - NOV 21 NOV 28

- Introduction to Lambda III: Serverless Databases
- https://faculty.washington.edu/wlloyd/courses/tcss562/ tutorials/TCSS462_562_f2023_tutorial_6.pdf
- Create and use Sqlite databases using sqlite3 tool
- Deploy Lambda function with Sqlite3 database under /tmp
- Compare in-memory vs. file-based Sqlite DBs on Lambda
- Create an Amazon Aurora "Serverless" v2 MySQL database
- Using an ec2 instance in the same VPC (Region + availability zone) connect and interact with the database using the mysql CLI app
- Deploy an AWS Lambda function that uses the MySQL "serverless" database

November 16, 2023

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023] School of Engineering and Technology, University of Washington - Tacoma

L15.16

16

TUTORIAL 7 - DEC 1

- Introduction to Docker
- https://faculty.washington.edu/wlloyd/courses/tcss562/ tutorials/TCSS462_562_f2023_tutorial_7.pdf
- Complete tutorial using Ubuntu 22.04 (for cgroups v2)
- Complete using c5.large ec2 instance (for consistency)
- Use DOCX file for copying and pasting Docker install commands
- Topics:
 - Installing Docker

November 16, 2023

- Creating a container using a Dockerfile
- Using cgroups virtual filesystem to monitor CPU utilization of a container
- Persisting container images to Docker Hub image repository
- Container vertical scaling of CPU/memory resources
- Testing container CPU and memory isolation

- resting container or o and memory isolation

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023] School of Engineering and Technology, University of Washington - Tacoma

L15.17

17

OBJECTIVES - 11/28 Questions from 11/21 Tutorials Questions Class Presentations Schedule - Cloud Technology or Research Paper Review Tutorial 8: AWS Step Functions, AWS SQS Team 3: Research paper: Research Paper: The Gap between Serverless Research and Real-world Systems Team 1: Cloud Technology: Amazon Sagemaker (ML) Kubernetes

18

GROUP PRESENTATIONS

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023]

School of Engineering and Technology, University of Washington - Tacoma

TWO OPTIONS:

November 28, 2023

- Cloud technology presentation
- Cloud research paper presentation
 - Recent & suggested papers will be posted at: http://faculty.washington.edu/wlloyd/courses/tcss562/papers/
- Presentation dates:
 - Tuesday November 28, Tuesday November 30
 - Tuesday December 5, Thursday December 7
- Peer Reviews
 - Word DOCX form will be provided, fill out, submit PDF on Canvas
 - Feedback shared with groups
 - TCSS 462: 1 review/day required, additional are extra credit
 - TCSS 562: same as 462, but no peer review req'd on day of your talk

November 28, 2023

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023] School of Engineering and Technology, University of Washington - Tacoma

7.19

19

GROUP PRESENTATIONS

- 9 Presentation Teams
- 4 Cloud Technology Talks
- 5 Cloud Research Paper Presentations
- 2 two-person teams
- 7 three-person teams
- Thank you for the submissions

November 28, 2023

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023] School of Engineering and Technology, University of Washington - Tacoma

L17.20

20

PRESENTATION SCHEDULE

- Tuesday November 28
- 1. Lucas Lu, Yexuan Gao, Christopher Henderson (team 3)

Research paper: Research Paper: The Gap between Serverless Research and Real-world Systems

2. Daniil Filienko, Xuchong (Nicolas) Du, Preethika Pradeep (team 1)

Cloud Technology: Amazon Sagemaker (ML)

- Thursday November 30
- Vishnu Priya Rajendran, Malavika Suresh, Alekhya Parisha (team 5)

Cloud Technology: Amazon DynamoDB

2. Heyuan Wang, Baiqiang Wang, Lynn Yang (team 2)

Cloud Technology: Amazon Elastic Kubernetes Service (EKS)

3. Robert Cordingly: IEEE CloudCom Conference Paper - Practice Presentation: Addressing Serverless Computing Vendor Lock-In

through Cloud Service Abstraction

November 28, 2023

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023] School of Engineering and Technology, University of Washington - Tacoma

L17.21

21

PRESENTATION SCHEDULE - 2

- Tuesday December 5
- 1. Kewei Liu, Sherry Liu (team 15)

<u>Research paper:</u> AWSomePy : A Dataset and Characterization of Serverless Applications

2. Sanjay Vuppugandla, Sai Prateek Atluri, Ankit Kadian (team 9*) Research paper: Lukewarm Serverless Functions: Characterization and Optimization (* - team 9 can swap with team 6, 7, or 8 if

Thursday December 7

agreed)

1. Cynthia Pang, Lifan Cao (team 6)

Research paper: Evicting for the Greater Good: The Case for Reactive Check Pointing in Serverless Computing

2. Srishty, Angela C Farin, Tomoki Kusunoki (team 7)

Cloud Technology: Amazon Redshift

3. Xiaoqing Zhou, Mary Yang, Micaela Nomakchteinsky (team 8)

Research paper: Rendezvous - Where Serverless Functions Find Consistency

November 28, 2023

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023] School of Engineering and Technology, University of Washington - Tacoma

L17.22

22

OBJECTIVES - 11/28

- Questions from 11/21
- Tutorials Questions
- Class Presentations Schedule -Cloud Technology or Research Paper Review
- Tutorial 8: AWS Step Functions, AWS SQS
- Team 3: Research paper: Research Paper: The Gap between Serverless Research and Real-world Systems
- Team 1: Cloud Technology: Amazon Sagemaker (ML)
- Kubernetes

November 28, 2023

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023] School of Engineering and Technology, University of Washington - Tacoma

L17.23

23

TUTORIAL 8 - TO BE POSTED

- Introduction to AWS Step Functions and Amazon Simple Queue Service (SQS)
- Not Required, available for extra credit
 - adds points to overall tutorials score
- https://faculty.washington.edu/wlloyd/courses/tcss562/ tutorials/TCSS462_562_f2023_tutorial_8.pdf
- Tasks
 - Adapt Caesar Cipher Lambda functions for use with AWS Step Functions
 - Create AWS Step Functions State Machine
 - Create a BASH client to invoke the AWS Step Function
 - Create Simple Queue Service Queue for messages
 - Add message to SQS queue from AWS Lambda function
 - Modify AWS Step Function Bash client script to retrieve AWS Step Function result from SQS queue

November 16, 2023

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023] School of Engineering and Technology, University of Washington - Tacoma

L15.24

24

OBJECTIVES - 11/28

- Questions from 11/21
- Tutorials Questions
- Class Presentations Schedule -Cloud Technology or Research Paper Review
- Tutorial 8: AWS Step Functions, AWS SQS
- Team 3: Research paper: Research Paper: The Gap between Serverless Research and Real-world Systems
- Team 1: Cloud Technology: Amazon Sagemaker (ML)
- Kubernetes

November 28, 2023

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023] School of Engineering and Technology, University of Washington - Tacoma

L17.25

25

26

27

OBJECTIVES - 11/28 Questions from 11/21 Tutorials Questions Class Presentations Schedule Cloud Technology or Research Paper Review Tutorial 8: AWS Step Functions, AWS SQS Team 3: Research paper: Research Paper: The Gap between Serverless Research and Real-world Systems Team 1: Cloud Technology: Amazon Sagemaker (ML) Kubernetes Covember 28, 2023 CCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023] School of Engineering and Technology, University of Washington - Tacoma

28

29

30

31

32

33

35

37

39

40

41

CORE KUBERNETES COMPONENTS					
■ Kubernetes I	ONS				
■ Pods					
■ Services					
	CSS462/562:(Software Engineering for) Cloud Computing [Fall 2023] chool of Engineering and Technology, University of Washington - Tacoma				

42

43

PODS - 2 Examples of multi-container Pods: Service meshes Web containers with a helper container that pulls latest content Containers with a tightly coupled log scraper or profiler YAML manifest files are used to provide a declarative description for how to run and manage a Pod ■ To run a pod, POST a YAML to the API Server: "kubectl run <NAME>" where NAME is the service A Pod runs on a single node (host) Pods share: Interprocess communication (IPC) namespace Memory, Volumes, Network stack TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023] November 28, 2023 School of Engineering and Technology, University of Washington - Tacoma

44

PODS - 3 Pods provide a "fenced" environment to run containers Provide a "sandbox" Only tightly coupled containers are deployed with a single pod Best practice: decouple individual containers to separate pods • What is the best container composition into pods? (1:1, 1:many) Scaling Pods are the unit of scaling Add and remove pods to scale up/down Do not add containers to a pod, add pod instances Pod instances can be scheduled on the same or different host Atomic Operation Pods are either fully up and running their service (i.e. port open/exposed), or pods are down / offline TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023] November 28, 2023 117.45 School of Engineering and Technology, University of Washington - Tacoma

45

46

47

KUBERNETES "SERVICES"

- Pods managed with "Deployments" or "DameonSets" controllers are automatically replaced when they die
 - This provides resiliency for the application
- **KEY IDEA**: Pods are unreliable
- Services provide reliability by acting as a "GATEWAY" to pods that implement the services
 - They underlying pods can change over time
 - The services endpoints remain and are always available
- Service objects provide an abstraction layer w/ a reliable name and load balancing of requests to a set of pods

November 28, 2023

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023] School of Engineering and Technology, University of Washington - Tacoma

L17.48

48

SERVICES

- Provide reliable front-end with:
 - Stable DNS name
 - IP Address
 - Port
- Services do not posses application intelligence
- No support for application-layer host and path routing
- Services have a "label selector" which is a set of lables
- Requests/traffic is only sent to Pods with matching labels
- Services only send traffic to healthy Pods
- KEY IDEA: Services bring stable IP addresses and DNS names to unstable Pods

November 28, 2023

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2023] School of Engineering and Technology, University of Washington - Tacoma

L17.49

49

51