
TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L16.1

 Containerization II

 Wes J. Lloyd
 School of Engineering and Technology

 University of Washington – Tacoma

TCSS 462/562:

(SOFTWARE ENGINEERING

FOR) CLOUD COMPUTING
Tuesday:

▪6:00 to 7:00 pm - CP 229 & Zoom

Or email for appointment

➢ Of f ice Hour s set based on Student Demographics sur vey feedback

➢ * - Fr iday of f ice hour s may be adjusted or canceled due meeting conf l icts or

other obl igat ions. Adjustments w il l be announced v ia Canvas.

OFFICE HOURS – FALL 2025

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.2

 Questions from 11/20

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Tutorial 8: Serverless Beyond Java, Container -Based

Functions

 Containerization

 Kubernetes

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.3

OBJECTIVES – 11/25

 Daily Feedback Quiz in Canvas – Take After Each Class

 Extra Credit

for completing

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.4

ONLINE DAILY FEEDBACK SURVEY

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma L16.5

 Please classify your perspective on material covered in today’s

class (38 respondents, 23 in-person, 15 online):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.47 ( - previous 6.46)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.16 ( - previous 5.29)

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.6

MATERIAL / PACE

1 2

3 4

5 6

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L16.2

 Is the execution of the software in a container affected by the

performance of the PC? I f the PC runs s low does the SW in the

container run s low as well?

 YES - A container is just a collection of Linux processes

(managed as a cgroup)

 The software processes run on Linux and compete for

resources along with everything else

 If the host is slow / overloaded, this will impact the

container(s)

 Ideally a Docker host runs nothing except containers, and then

resource quotas can restrict CPU & memory resources for

dif ferent containers (cgroups)

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.7

FEEDBACK FROM 11/20

 In th is last c lass, you had said that Google put a lo t o f ef for t into

Kubernetes - but why then d id they g ive i t away? Is i t not a good

technology anymore?

 The motivat ion to open source Kubernetes and provide it for free is

to encourage everyone to architect applicat ions for Kubernetes

 Once cloud applicat ions are bundled for Kubernetes, it makes them

portable to any cloud provider with Kubernetes services

 The idea is to encourage more cloud users to migrate away from

AWS and run their Kubernetes apps on Google Cloud

 This also had the affect of helping Azure gain Kubernetes

workloads

 Kubernetes apps are called ‘cloud nat ive applicat ions’ . They don’t

use vendor specific services

 For object storage, for example, you bundle and deploy minio, your

own object storage platform (https://min.io)

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.8

FEEDBACK - 2

 In the public cloud, why is it advantageous for containers

to be run on top of VMs?

 On a private server, why is it advantageous for containers

to be run on top of bare metal?

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.9

PRACTICE QUESTIONS

 Questions from 11/20

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Tutorial 8: Serverless Beyond Java, Container -Based

Functions

 Containerization

 Kubernetes

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.10

OBJECTIVES – 11/25

 Introduction to Lambda III: Serverless Databases

 https://faculty.washington.edu/wlloyd/courses/tcss562/
tutorials/TCSS462_562_f2025_tutorial_6.pdf

 Create and use Sqlite databases using sqlite3

 Deploy Lambda function with Sqlite3 database under / tmp

 Compare in-memory vs. f ile-based Sqlite DBs on Lambda

 Create an Amazon Aurora “Serverless” v2 MySQL database

 Using the AWS CloudShell in the same VPC (Region +
availability zone) connect and interact your Aurora serverless
database using the mysql CLI app

 Deploy an AWS Lambda function that uses the MySQL
“serverless” database

 ‘FREE PLAN’: okay to use db.t3.micro, db.t4g.micro RDS
MySQL VM – must indicate use of RDS VM on tutorial PDF

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.11

TUTORIAL 6 – NOV 23

 Introduction to Docker

 https://faculty.washington.edu/wlloyd/courses/tcss562/
tutorials/TCSS462_562_f2025_tutorial_7.pdf

 Must complete using c7i -flex.large ec2 instance &
Ubuntu 24.04 (for cgroups v2)

 Use DOCX file for copying and pasting Docker install
commands

 Topics:
▪ Installing Docker

▪ Creating a container using a Dockerfile

▪ Using cgroups virtual filesystem to monitor CPU utilization of a
container

▪ Persisting container images to Docker Hub image repository

▪ Container vertical scaling of CPU/memory resources

▪ Testing container CPU and memory isolation

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.12

TUTORIAL 7 – DEC 4

7 8

9 10

11 12

https://min.io/
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_6.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_6.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_6.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_7.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_7.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_7.pdf

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L16.3

 Questions from 11/20

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Tutorial 8: Serverless Beyond Java, Container -Based

Functions

 Containerization

 Kubernetes

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.13

OBJECTIVES – 11/25

 TWO OPTIONS:

 Cloud technology presentation

 Cloud research paper presentation

▪ Recent & suggested papers will be posted at:

http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

 Presentation dates:

▪ Tuesday November 25

▪ Tuesday December 2, Thursday December 4

 Peer Reviews

▪ Word DOCX review form posted, fill out, submit PDF on Canvas

▪ Feedback shared with groups

▪ TCSS 462: submit 4 total peer reviews in lieu of a group presentation

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.14

GROUP PRESENTATIONS

 7 Presentation Teams

 3 Cloud Technology Talks

 4 Cloud Research Paper Presentations

 1 one-person teams

 2 two-person teams

 4 three-person teams

 Thank you for the submissions

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.15

GROUP PRESENTATIONS

 <Tuesday November 25>

1. Team 4: Xiaoling Wei, Bohan Xiong, Xu Zhu
Research paper: Serverless Replication of Object Storage across
Multi-Vendor C louds and Regions
2 . Team 1: William Hay
Cloud Technology: Amazon Athena

3. Robert Cordingly – Original Research Paper: Sky Computing
for Serverless: Infrastructure Assessment to Support
Performance Enhancement (IEEE/ACM UCC 2025 Practice Talk)

 <Tuesday December 2>

1. Team 5: Sparsha Jha, Chris Biju

Cloud Technology: Intelligent Optimization of Distributed
Pipeline Execution in Serverless Platforms: A Predictive Model
Approach

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.16

PRESENTATION SCHEDULE

 <Thursday December 4>

1. Team 3: Jiameng Li, Naomi Nottingham, Headley Brissett

Research paper: A Perfect F it? – Towards Containers on

Microkernels

2. Team 2: Ruby Plangphatthanaphanit , Junjia Li, Ari Yin

Cloud Technology: CI/CD in the Cloud (GitHub Actions + Cloud

Deploy)

3. Team 8: Aamena Suzzane, Dhruva Bhat

Research paper: CoFaaS: Automatic Transformation-based

Consolidation of Serverless Functions

4. Team 6: Han Zhang, Sahil Bhatt, Pengcheng Cao

Cloud Technology: AWS Amplify

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.17

PRESENTATION SCHEDULE - 2

 Questions from 11/20

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Tutorial 8: Serverless Beyond Java, Container -Based

Functions

 Containerization

 Kubernetes

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.18

OBJECTIVES – 11/25

13 14

15 16

17 18

http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L16.4

 Python Based AWS Lambda Functions w/ SAAF, and Container -
Based AWS Lambda Funct ions

 Not Required, available for extra credit (scored out of 0)

▪ adds points to overall tutorials score

▪ 10 pts for Python Functions / 15 pts for Container Based Function

 Tasks

▪ Build/Deploy/Test Python-based Lambda Functions

▪ Deploy and Test Container Based AWS Lambda Function
▪ Requires Docker Engine installation on local VM

▪ Create role to use CLI/publish script

▪ Use a config file to specify container-based function details

▪ Update bash script to deploy hello function

▪ Build Docker container locally, Publish to Elastic Container Registry

▪ Create new ‘hello’ Lambda Function based on Container image

▪ Test Container-based ‘hello’ AWS Lambda Function

▪ Adapt your function to run sysbench prime number generation

▪ Test prime number generation performance on AWS Lambda vs. memory

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.19

TUTORIAL 8 – TO BE POSTED

 Introduction to AWS Step Functions and Amazon Simple
Queue Service (SQS)

 Not Required, available for extra credit (scored out of 0)

▪ adds points to overall tutorials score

 Tasks

▪ Adapt Caesar Cipher Lambda functions for use with AWS Step
Functions

▪ Create AWS Step Functions State Machine

▪ Create a BASH client to invoke the AWS Step Function

▪ Create Simple Queue Service Queue for messages

▪ Add message to SQS queue from AWS Lambda function

▪ Modify AWS Step Function Bash client script to retrieve AWS
Step Function result from SQS queue

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.20

TUTORIAL 9 – TO BE POSTED

 Questions from 11/20

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Tutorial 8: Serverless Beyond Java, Container -Based

Functions

 Containerization

 Kubernetes

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.21

OBJECTIVES – 11/25

CONTAINERIZATION

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma L16.22

 Is the host isolated from application containers?

Are application containers isolated from each

other?

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.23

CONTAINER ISOLATION

Host kernel

Container
runtime

VM kernel

Host kernel

Container
runtime

Application
containers

App

Bins/libs

App

Bins/libs

App

Bins/libs

App

Bins/libs

Application
containers

Operating system level virtualization

Run multiple isolated Linux systems on a host

using a single Linux kernel

Control groups(cgroups)

▪ Including in Linux kernels => 2.6.24

▪Limit and prioritize sharing of CPU, memory,

block/network I/O

 Linux namespaces

Docker initially based on LXC

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.24

LXC (LINUX CONTAINERS)

19 20

21 22

23 24

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L16.5

 Docker Machine:

automatically provision

and manage sets of

docker hosts to

form a cluster

 Docker Swarm:

Clusters multiple docker hosts together to manage as a

cluster.

 Docker Compose: Config file (YAML) for multi -container

application; Describes how to deploy and configure multiple

containers

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.25

OTHER DOCKER TOOLS

 Framework(s) to deploy multiple containers

Provide container clusters using cloud VMs

Similar to “private clusters”

Reduce VM idle CPU time in public clouds

Better leverage “sunk cost” resources

Compact multiple apps onto shared public cloud
infrastructure

Generate to cost savings

Reduce vendor lock-in

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.26

CONTAINER ORCHESTRATION

FRAMEWORKS

 Management of container hosts

 Launching set of containers

 Rescheduling failed containers

 Linking containers to support workflows

 Providing connectivity to clients outside the container cluster

 Firewall: control network/port accessibility

 Dynamic scaling of containers: horizontal scaling

▪ Scale in/out, add/remove containers

 Load balancing over groups of containers

 Rolling upgrades of containers for application

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.27

KEY ORCHESTRATION FEATURES

 Docker swarm

 Apache mesos/marathon

 Kubernetes

▪ Many public cloud provides moving to offer Kubernetes-as-

a-service

 Amazon elastic container service (ECS)

 Apache aurora

 Container-as-a-Service

▪ Serverles containers without managing clusters

▪ Azure Container Instances, AWS Fargate…

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.28

CONTAINER ORCHESTRATION

FRAMEWORKS - 2

 Questions from 11/20

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Tutorial 8: Serverless Beyond Java, Container -Based

Functions

 Containerization

 Kubernetes

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.29

OBJECTIVES – 11/25

KUBERNETES

L16.30

from: “The Kubernetes Book”, Nigel Poulton and
Pushkar Joglekar, Version 7.0, September 2020

25 26

27 28

29 30

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L16.6

 Name is from the Greek word meaning Helmsman

▪ The person who steers a seafaring ship

▪ The logo reinforces this theme

 Kubernetes is also sometimes called K8s

 Kubernetes is an application orchestrator

 Most common use case is to containerize

cloud-native microservices applications

 What is an orchestrator?

▪ System that deploys and manages applications

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.31

KUBERNETES

 Initially developed by Google

 Goal: make it easier for potential customers to use Google Cloud

 Kubernetes leverages knowledge gained from two internal

container management systems developed at Google

▪ Borg and Omega

 Google donated Kubernetes to the Cloud Native Computing

Foundation in 2014 as an open-source project

 Kubernetes is written in Go (Golang)

 Kubernetes is available under the Apache 2.0 license

 Releases were previously maintained for only 8 months!

 Starting w/ v 1.19 (released Aug 2020) support is 1 year

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.32

KUBERNETES – 2

Why does Google want
to give Kubernetes away

for free?

1. Deploy your application

2. Scale it up and down dynamically according to demand

3. Self-heal it when things break

4. Perform zero-downtime rolling updates and rollbacks

 These features represent automatic infrastructure

management

 Containerized applications run in container(s)

 Compared to VMs, containers are thought of as being:

▪ Faster

▪More light-weight

▪ More suited to rapidly evolving software requirements

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.33

GOALS OF KUBERNETES

 Applications designed to meet modern software

requirements including:

▪ Auto-scaling: resources to meet demand

▪ Self-healing: required for high availability (HA) and fault

tolerance

▪ Rolling software updates: with no application downtime

for DevOPS

▪ Portability: can run anywhere there’s a Kubernetes cluster

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.34

CLOUD NATIVE APPLICATIONS

 Application consisting of many specialized parts that

communicate and form a meaningful application

 Example components of a microservice eCommerce app:

Web front-end Catalog service

Shopping cart Authentication service

Logging service Persistent data store

 KEY IDEAS:

 Each microservice can be coded/maintained by dif ferent team

 Each has its own release cadence

 Each is deployed/scaled separately

 Can patch & scale the log service w/o impacting others

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.35

WHAT IS A MICROSERVICES APP?

 Provides “an operating system for the cloud”

 Offers the de-facto standard platform for deploying and

managing cloud-native applications

 OS: abstracts physical server, schedules processes

 Kubernetes: abstracts the c loud , schedules microservices

 Kubernetes abstracts dif ferences between private and public

clouds

 Enable cloud-native applications to be cloud agnostic

▪ i.e. they don’t care WHAT cloud they run on

▪ Enables fluid application migration between clouds

 Kubernetes provides rich set of tools/APIs to introspect

(observe and examine) your apps

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.36

KUBERNETES - 3

31 32

33 34

35 36

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L16.7

 Features:

 A “control plane” – brain of the cluster

▪ Implements autoscaling, rolling updates w/o downtime, self -healing

 A “bunch of nodes” – workers (muscle) of the cluster

 Provides orchestration

▪ The process of organizing everything into a useful application

▪ And also the goal of keeping it running smoothly

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.37

KUBERNETES - 4

 Master node(s) manage the cluster by:

▪ Making scheduling decisions

▪ Performing monitoring

▪ Implementing changes

▪ Responding to events

 Masters implement the control plane of a Kubernetes cluster

 Recipe for deploying to Kubernetes:

 Write app as independent microservices in preferred language

 Package each microservice in a container

 Create a manifest to encapsulate the definition of a Pod

 Deploy Pods to the cluster w/ a higher -level controller such as

“Deployments” or “DaemonSets”

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.38

KUBERNETES - CLUSTER MANAGEMENT

 Pod – atomic unit of deployment & scheduling in Kubernetes

 A Kubernetes Pod is defined to run a containerized application

 Kubernetes manages Pods, not individual containers

 Cannot run a container directly on Kubernetes

 All containers run through Pods

 Pod comes from “pod of whales”

 Docker logo shows a whale with containers stacked on top

 Whale represents the Docker engine that runs on a single host

 Pods encapsulate the definition of a s ingle

microservice for hosting purposes

 Pods can have a s ingle container, or multiple

containers, i f the service requires more than one

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.39

PODS

 Imperative definition: sets of commands and operations

▪ Example: BASH script, Dockerfile

 Declarative definition : specification of a service’s properties

▪ What level of service it should sustain, etc.

▪ Example: Kubernetes YAML files

 Kubernetes manages resources declaratively

 How apps are deployed and run are defined with YAML files

 YAML files are POSTed to Kubernetes endpoints

 Kubernetes deploys and manages applications based on

declarative service requirements

 If something isn’t as it should be: Kubernetes automatically

tries to fix it

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.40

DECLARATIVE SERVICE APPROACH

 Provide system services to host the control plane

 Simplest clusters use only 1 master – (i.e. no replication)

▪ Suitable for lab and dev/test environments

 Production environments: masters are replicated ~3 -5x

▪ Provides fault tolerance and high availability (HA)

▪ Cloud-based managed Kubernetes services offer HA

deployments

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.41

KUBERNETES MASTER

API Server

Cluster store

Controller

Manager

Scheduler

Cloud controller manager

November 25, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L16.42

MASTER SERVICES

37 38

39 40

41 42

	Slide 1: TCSS 462/562: (Software Engineering for) Cloud Computing
	Slide 2: Office hours – Fall 2025
	Slide 3: OBJECTIVES – 11/25
	Slide 4: Online daily feedback survey
	Slide 5
	Slide 6: Material / pace
	Slide 7: Feedback from 11/20
	Slide 8: Feedback - 2
	Slide 9: Practice Questions
	Slide 10: OBJECTIVES – 11/25
	Slide 11: Tutorial 6 – nov 23
	Slide 12: Tutorial 7 – dec 4
	Slide 13: OBJECTIVES – 11/25
	Slide 14: Group presentations
	Slide 15: Group presentations
	Slide 16: Presentation schedule
	Slide 17: Presentation schedule - 2
	Slide 18: OBJECTIVES – 11/25
	Slide 19: Tutorial 8 – to be posted
	Slide 20: Tutorial 9 – to be posted
	Slide 21: OBJECTIVES – 11/25
	Slide 22: Containerization
	Slide 23: Container isolation
	Slide 24: Lxc (linux containers)
	Slide 25: Other docker tools
	Slide 26: Container orchestration frameworks
	Slide 27: Key orchestration features
	Slide 28: Container orchestration frameworks - 2
	Slide 29: OBJECTIVES – 11/25
	Slide 30: Kubernetes
	Slide 31: kubernetes
	Slide 32: Kubernetes – 2
	Slide 33: Goals of kubernetes
	Slide 34: Cloud native applications
	Slide 35: What is a microservices app?
	Slide 36: Kubernetes - 3
	Slide 37: Kubernetes - 4
	Slide 38: Kubernetes - Cluster management
	Slide 39: Pods
	Slide 40: Declarative service approach
	Slide 41: Kubernetes master
	Slide 42: Master services

