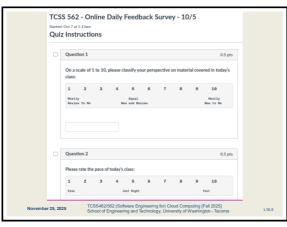

OFFICE HOURS - FALL 2025

Tuesday:
 •6:00 to 7:00 pm - CP 229 & Zoom
 Or email for appointment

> Office Hours set based on Student Demographics survey feedback
> * - Friday office hours may be adjusted or canceled due meeting conflicts or other obligations. Adjustments will be announced via Canvas.

| November 25, 2025 | TCSS402/552-Software Engineering for Court Computing [fall 2025] | School of Engineering and Enchrology University of Westbackton - Taxoma | 116.2

1

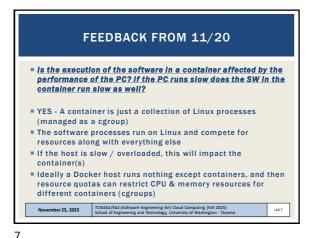

ONLINE DAILY FEEDBACK SURVEY

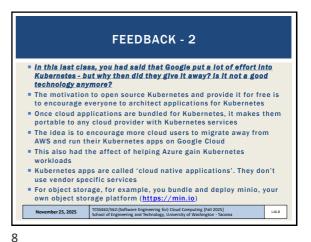
Daily Feedback Quiz in Canvas - Take After Each Class

Extra Credit
for completing

Autgements
Discussion
Carden
Progrie
Pages
Files
Quizzes
Qui

3


MATERIAL / PACE


■ Please classify your perspective on material covered in today's class (38 respondents, 23 in-person, 15 online):
■ 1-mostly review, 5-equal new/review, 10-mostly new
■ Average - 6.47 (↑- previous 6.46)

■ Please rate the pace of today's class:
■ 1-slow, 5-just right, 10-fast
■ Average - 5.16 (↓- previous 5.29)

5

Slides by Wes J. Lloyd L16.1

PRACTICE QUESTIONS

In the public cloud, why is it advantageous for containers to be run on top of VMs?

On a private server, why is it advantageous for containers to be run on top of bare metal?

November 25, 2025

TCSSIG2/682/tichtwave Engineering for Chout Computing [fall 2025] school of Engineering and Technology, University of Washington - Tacoma

9

OBJECTIVES - 11/25

= Questions from 11/20
= Tutorials Questions
= Class Presentations Schedule Cloud Technology or Research Paper Review
= Tutorial 8: Serverless Beyond Java, Container-Based Functions
= Containerization
= Kubernetes

| TCSS462/562:[Software Engineering for) Cloud Computing [Fall 2025]
| School of Engineering and Technology, University of Washington - Taxoma | 114.50

TUTORIAL 6 - NOV 23

Introduction to Lambda III: Serverless Databases

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_6.pdf

Create and use Sqlite databases using sqlite3

Deploy Lambda function with Sqlite3 database under /tmp

Compare in-memory vs. file-based Sqlite DBs on Lambda

Create an Amazon Aurora "Serverless" v2 MySQL database

Using the AWS CloudShell in the same VPC (Region + availability zone) connect and interact your Aurora serverless database using the mysql CLI app

Deploy an AWS Lambda function that uses the MySQL "serverless" database

"FREE PLAN": okay to use db.t3.mlcro, db.t4g.mlcro RDS MySQLVM - must Indicate use of RDS VM on tutorial PDF

TUTORIAL 7 - DEC 4

Introduction to Docker

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_7.pdf

Must complete using c7i-flex.large ec2 instance & Ubuntu 24.04 (for cgroups v2)

Use DOCX file for copying and pasting Docker install commands

Topics:
Installing Docker

Creating a container using a Dockerfile

Using cgroups virtual filesystem to monitor CPU utilization of a container

Persisting container images to Docker Hub image repository

Container vertical scalling of CPU/memory resources


Testing container CPU and memory isolation

November 25, 2025

TCSS462/562;Software Engineering for Cloud Computing [Fall 2025]
school of Engineering and Technology, University of Washington - Tacoma

11 12

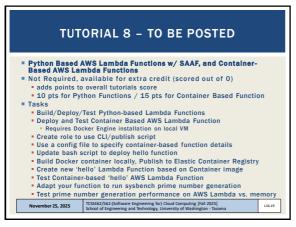
Slides by Wes J. Lloyd L16.2

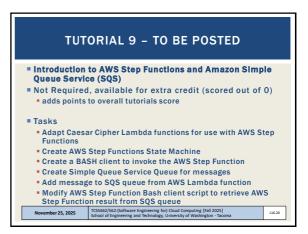
13 14

PRESENTATION SCHEDULE <Tuesday November 25> 1. Team 4: Xiaoling Wei, Bohan Xiong, Xu Zhu Research paper: Serveriess Replication of Object Storage across Multi-Vendor Clouds and Regions 2. Team 1: William Hay Cloud Technology: Amazon Athena 3. Robert Cordingly - Original Research Paper: Sky Computing for Serverless: Infrastructure Assessment to Support Performance Enhancement (IEEE/ACM UCC 2025 Practice Talk) <Tuesday December 2> 1. Team 5: Sparsha Jha, Chris Biju Cloud Technology: Intelligent Optimization of Distributed Pipeline Execution in Serveriess Platforms: A Predictive Model Approach November 25, 2025 L16.16

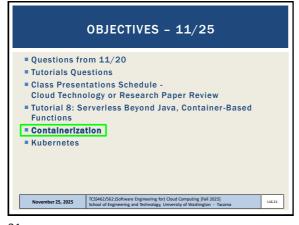
15

PRESENTATION SCHEDULE - 2 <Thursday December 4> 1. Team 3: Jiameng Li, Naomi Nottingham, Headley Brissett Research paper: A Perfect Fit? - Towards Containers on **Microkernels** 2. Team 2: Ruby Plangphatthanaphanit, Junjia Li, Ari Yin Cloud Technology: CI/CD in the Cloud (GitHub Actions + Cloud Deploy) 3. Team 8: Aamena Suzzane, Dhruva Bhat Research paper: CoFaaS: Automatic Transformation-based **Consolidation of Serverless Functions** 4. Team 6: Han Zhang, Sahil Bhatt, Pengcheng Cao Cloud Technology: AWS Amplify TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tac November 20, 2025 L16.17 OBJECTIVES - 11/25

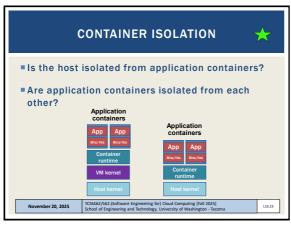

Questions from 11/20
Tutorials Questions
Class Presentations Schedule Cloud Technology or Research Paper Review
Tutorial 8: Serverless Beyond Java, Container-Based Functions
Containerization
Kubernetes


November 25, 2025

TCS3462/562:Software Engineering for Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

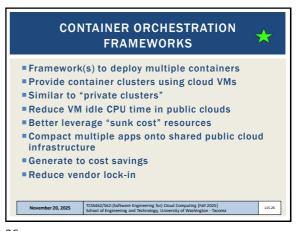

17 18

Slides by Wes J. Lloyd L16.3

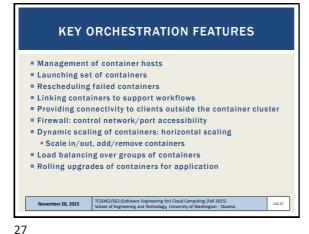


19 20

21



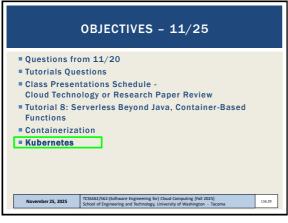
| Operating system level virtualization
| Run multiple isolated Linux systems on a host using a single Linux kernel
| Control groups(cgroups)
| Including in Linux kernels => 2.6.24
| Limit and prioritize sharing of CPU, memory, block/network I/O
| Linux namespaces
| Docker initially based on LXC
| November 20, 2025 | TCSA62/JSC2/Software Engineering for/ Cloud Computing [Pail 2025] School of Engineering and Technology, University of Washington-Taccoma (15.24)
| Linux namespaces | Docker initially based on LXC | TCSA62/JSC2/Software Engineering for/ Cloud Computing [Pail 2025] | School of Engineering and Technology, University of Washington-Taccoma (15.24)
| Linux namespaces | TCSA62/JSC2/Software Engineering for/ Cloud Computing [Pail 2025] |


23 24

Slides by Wes J. Lloyd L16.4

25 26

CONTAINER ORCHESTRATION
FRAMEWORKS - 2

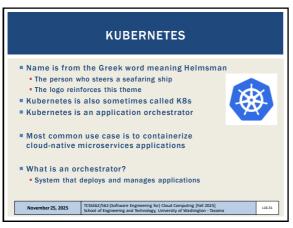

Docker swarm
Apache mesos/marathon
Kubernetes
Many public cloud provides moving to offer Kubernetes-as-a-service
Amazon elastic container service (ECS)
Apache aurora

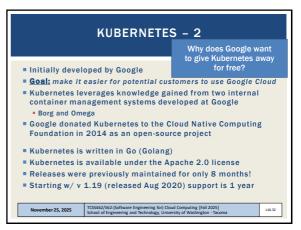
Container-as-a-Service
Serverles containers without managing clusters
Azure Container Instances, AWS Fargate...

November 20, 2025

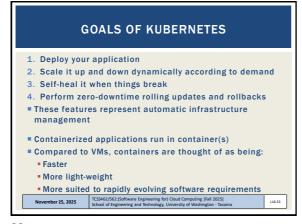
TCSS462/S621/Software Engineering for Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

21




KUBERNETES

from: "The Kubernetes Book", Nigel Poulton and Pushkar Joglekar, Version 7.0, September 2020

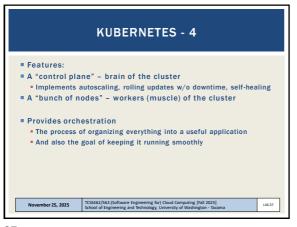

29 30

Slides by Wes J. Lloyd L16.5

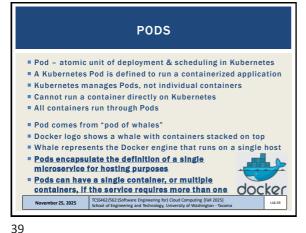
31 32

CLOUD NATIVE APPLICATIONS

 Applications designed to meet modern software requirements including:
 Auto-scaling: resources to meet demand
 Self-healing: required for high availability (HA) and fault tolerance
 Rolling software updates: with no application downtime for DevOPS
 Portability: can run anywhere there's a Kubernetes cluster

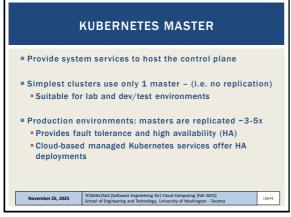

| November 25, 2025 | TCSS462/562/Software Engineering for) Cloud Computing [Fall 2025] | School of Engineering and Technology, University of Washington - Tacoma | LIE.M.

33


WHAT IS A MICROSERVICES APP? Application consisting of many specialized parts that communicate and form a meaningful application Example components of a microservice eCommerce app: Web front-end Catalog service **Shopping cart Authentication service** Logging service Persistent data store ■ Each microservice can be coded/maintained by different team Each has its own release cadence ■ Each is deployed/scaled separately Can patch & scale the log service w/o impacting others November 25, 2025 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tac L16.35

35 36

Slides by Wes J. Lloyd L16.6



37 38

| Imperative definition: sets of commands and operations
| Example: BASH script, Dockerfile
| Declarative definition: specification of a service's properties
| What level of service it should sustain, etc.
| Example: Kubernetes YAML files
| Kubernetes manages resources declaratively
| How apps are deployed and run are defined with YAML files
| YAML files are POSTed to Kubernetes endpoints
| Kubernetes deploys and manages applications based on declarative service requirements
| If something isn't as it should be: Kubernetes automatically tries to fix it
| November 25, 2025 | TCSS42/S62:(Software Engineering for) Cloud Computing [Fall 2025] | School of Engineering and Technology, University of Washington - Tacoma | Ust.60 | Indicating the computing [Fall 2025] | Indicating the computing file in the

59

MASTER SERVICES

= API Server
= Cluster store
= Controller
Manager
= Scheduler
= Cloud controller

Kuberneles Node
| Controller | Contr

41 42

Slides by Wes J. Lloyd L16.7