
TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.1

 Containerization

 Wes J. Lloyd
 School of Engineering and Technology

 University of Washington – Tacoma

TCSS 462/562:

(SOFTWARE ENGINEERING

FOR) CLOUD COMPUTING

THIS WEEK

Tuesday:

▪2:30 to 3:30 pm - CP 229

Friday *:

▪1:30 pm to 2:30 pm –via Zoom*

Or email for appointment

> Of f ice Hours set based on Student Demographics sur vey feedback

OFFICE HOURS – FALL 2024

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.2

1

2

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.2

 Questions from 11/14

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Tutorial 8: AWS Step Functions, AWS SQS

 Containerization

 Kubernetes

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.3

OBJECTIVES – 11/19

 Daily Feedback Quiz in Canvas – Take After Each Class

 Extra Credit

for completing

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.4

ONLINE DAILY FEEDBACK SURVEY

3

4

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.3

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma L16.5

 Please classify your perspective on material covered in today’s

class (42 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 5.31 ( - previous 5.60)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.10 ( - previous 5.42)

 Response rates:

 TCSS 462: 28/42 – 66.6%

 TCSS 562: 14/20 – 70.0%

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.6

MATERIAL / PACE

5

6

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.4

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.7

FEEDBACK FROM 11/14

 Why is it advantageous for containers to be run

on top of VMs?

 Why is it advantageous for containers to be run

on top of bare metal?

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.8

FEEDBACK FROM 11/16

7

8

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.5

 AWS CLOUD CREDITS ARE NOW AVAILABLE FOR TCSS

462/562

 Credits provided on request

 Credit codes must be securely exchanged

 Request codes by sending an email with the subject

“AWS CREDIT REQUEST” to wlloyd@uw.edu

 Codes can also be obtained in person (or zoom), in the

class, during the breaks, after class, during office hours,

by appt

▪ 57 credit requests fulfilled as of Nov 18 @ 11:59p

 Codes not provided using discord

November 19, 2024
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.9

AWS CLOUD CREDITS UPDATE

Don’t Forget to Terminate (Shutdown)

all EC2 instances for Tutorials 3 & 7

Tutorial 3 spot instance:

c5d.large instance @ ~3.2 cents / hour

$0.78 / day

$5.48 / week

$23.78 / month

$285.42 / year

AWS CREDITS → → → → → → → →

9

10

mailto:wlloyd@uw.edu

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.6

 Tutorials can now be submitted on the due date until the very

last minute of the day Anywhere-on-Earth (AOE)

▪ Equivalent to 4:59 AM Pacific Standard Time (PST)

 Anywhere-on-Earth timezone: Baker Island, Pacific Ocean

 https://www.timeanddate.com/time/zones/aoe

 Uninhabited island in Pacific Ocean

 Coordinates 0°11′45″N 176°28′45″W

 Area 2.1 km2 (0.81 sq mi)

 Length 1 .81 km (1 .125 mi)

 Width 1 .13 km (0.702 mi)

 Coastline 4.8 km (2.98 mi)

 Highest elevation 8 m (26 ft)

 Population 0 (2000)

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.11

TUTORIAL SUBMISSION TIME

 Questions from 11/14

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Tutorial 8: AWS Step Functions, AWS SQS

 Containerization

 Kubernetes

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.12

OBJECTIVES – 11/19

11

12

https://www.timeanddate.com/time/zones/aoe

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.7

 Introduction to Lambda II: Working with Files in S3 and
CloudWatch Events

 https://faculty.washington.edu/wlloyd/courses/tcss562/tutori
als/TCSS462_562_f2024_tutorial_5.pdf

 Customize the Request object (add getters/setters)
▪ Why do this instead of HashMap ?

 Import dependencies (jar files) into project for AWS S3

 Create an S3 Bucket

 Give your Lambda function(s) permission to work with S3

 Write to the CloudWatch logs

 Use of CloudTrail to generate S3 events

 Creating CloudWatch rule to capture events from CloudTrail

 Have the CloudWatch rule trigger a target Lambda function with
a static JSON input object (hard -coded filename)

 Optional: for the S3 PutObject event, dynamically extract the
name of the file put to the S3 bucket for processing

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.13

TUTORIAL 5 – DUE NOV 14,

LATE SUBMISSIONS UNTIL NOV 19

 Introduction to Lambda III: Serverless Databases

 https://faculty.washington.edu/wlloyd/courses/tcss562/tutori
als/TCSS462_562_f2024_tutorial_6.pdf

 Create and use Sqlite databases using sqlite3 tool

 Deploy Lambda function with Sqlite3 database under / tmp

 Compare in-memory vs. file-based Sqlite DBs on Lambda

 Create an Amazon Aurora “Serverless” v2 MySQL database

 Using an ec2 instance in the same VPC (Region + availability
zone) connect and interact with the database using the mysql
CLI app

 Deploy an AWS Lambda function that uses the MySQL
“serverless” database

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.14

TUTORIAL 6 – NOV 23

13

14

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_5.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_5.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_6.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_6.pdf

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.8

 Introduction to Docker

 https://faculty.washington.edu/wlloyd/courses/tcss562/tutori
als/TCSS462_562_f2024_tutorial_7.pdf

 Complete tutorial using Ubuntu 24.04 (for cgroups v2)

 Complete using c6i. large ec2 instance (for consistency)

 Use DOCX file for copying and pasting Docker install
commands

 Topics:

▪ Installing Docker

▪ Creating a container using a Dockerfile

▪ Using cgroups virtual filesystem to monitor CPU utilization of a
container

▪ Persisting container images to Docker Hub image repository

▪ Container vertical scaling of CPU/memory resources

▪ Testing container CPU and memory isolation

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.15

TUTORIAL 7 – DEC 1

 Questions from 11/14

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Tutorial 8: AWS Step Functions, AWS SQS

 Containerization

 Kubernetes

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.16

OBJECTIVES – 11/19

15

16

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_7.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_7.pdf

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.9

 TWO OPTIONS:

 Cloud technology presentation

 Cloud research paper presentation

▪ Recent & suggested papers will be posted at:

http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

 Presentation dates:

▪ Tuesday November 26

▪ Tuesday December 3, Thursday December 5

 Peer Reviews

▪ Word DOCX form will be provided, fill out, submit PDF on Canvas

▪ Feedback shared with groups

▪ TCSS 462: submit 4 total peer reviews in lieu of a group presentation

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.17

GROUP PRESENTATIONS

 9 Presentation Teams

 3 Cloud Technology Talks

 6 Cloud Research Paper Presentations

 2 one-person teams

 4 two-person teams

 3 three-person teams

 Thank you for the submissions

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.18

GROUP PRESENTATIONS

17

18

http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.10

 <Tuesday November 26>

1. Soumith Kondubhotla, Siva Srinivasa Aditya, Sri Mylavarapu
Research paper: Sandboxing Functions for Ef f icient and Secure
Multi-tenant Serverless Deployments

2. Mingzhi Ma, Derry Cheng, Aaron Chen

Research paper: Serverless? RISC more!

3. Ishwarya Narayana Subramanian, Thanvi Yadav Sirla
Cloud Technology: Azure Kubernetes Service

4. Steven Golob

Research paper: Tiny Autoscalers for Tiny Workloads: Dynamic
CPU Allocation for Serverless Functions

 <Tuesday December 3>

1. Andrew Nguyen, Pavel Braginskiy

Cloud Technology: AWS Amplify

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.19

PRESENTATION SCHEDULE

 <Thursday December 5>

1. Viktoria Dolojan and Carla Peterson

Research paper: FootPrinter: Quantifying Data Center Carbon

Footprint

2. Andrew Jang, Shrey Srivastava, Naga

Cloud Technology: SageMaker: training conf igurations

3. Roark Zhang

Research paper: Process-as-a-Service: Unifying Elastic and

Stateful Clouds with Serverless Processes

4. Sanya Sinha, Jackson Davis

Research paper: Goldfish: Serverless Actors with Short -Term

Memory State for the Edge -Cloud Continuum

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.20

PRESENTATION SCHEDULE - 2

19

20

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.11

 Questions from 11/14

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Tutorial 8: AWS Step Functions, AWS SQS

 Containerization

 Kubernetes

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.21

OBJECTIVES – 11/19

 Introduction to AWS Step Functions and Amazon Simple
Queue Service (SQS)

 Not Required, available for extra credit (scored out of 0)

▪ adds points to overall tutorials score

 Tasks

▪ Adapt Caesar Cipher Lambda functions for use with AWS Step
Functions

▪ Create AWS Step Functions State Machine

▪ Create a BASH client to invoke the AWS Step Function

▪ Create Simple Queue Service Queue for messages

▪ Add message to SQS queue from AWS Lambda function

▪ Modify AWS Step Function Bash client script to retrieve AWS
Step Function result from SQS queue

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.22

TUTORIAL 8 – TO BE POSTED

21

22

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.12

 Questions from 11/14

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Tutorial 8: AWS Step Functions, AWS SQS

 Containerization

 Kubernetes

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.23

OBJECTIVES – 11/19

CONTAINERIZATION

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma L16.24

23

24

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.13

 Containers provide “light -weight” alternative to full OS

virtualization provided by a VM hypervisor

 Containers do not provide a full “machine”

 Instead they use operating system constructs to provide

“sand boxes” for execution

▪ Linux cgroups, namespaces, etc.

 Containers can run on bare metal, or atop of VMs

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.25

MOTIVATION FOR CONTAINERIZATION

Hypervisor/VMContainers

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.26

CONTAINER PERFORMANCE

– LU FACTORIZATION PERFORMANCE

 Solve linear equations – matrix algebra
Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

25

26

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.14

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.27

CONTAINER PERFORMANCE

– Y-CRUNCHER: PI CALCULATOR
Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.28

CONTAINER PERFORMANCE – BONNIE++

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

27

28

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.15

According to NIST (National Institute of Standards Technology)

 Vir tualization: the simulation of the software and/or hardware
upon which other software runs. (800-125)

 System Vir tual Machine: A System Virtual Machine (VM) is a
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800 -180 draft)

 Operating System Vir tualization (aka OS Container): Provide
multiple virtualized OSes above a single shared kernel (800 -
190). E.g., Solaris Zone, FreeBSD Jails, LXC

 Application Vir tualization (aka Application Containers): Same
shared kernel is exposed to multiple discrete instances (800 -
180 draft). E.g., Docker (containerd), rkt

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.29

WHAT IS A CONTAINER?

 Virtual environments: share the host kernel

 Provide user space isolation

 Replacement for VMs: run multiple processes, services

 Mix different Linux distros on same host

 Examples: LXC,

OpenVZ,

Linux Vserver,

BSD Jails,

Solaris zones

 C r e d i t : h t t p s : / / b l o g . r i s i n g s t a c k . c o m / o p e r a t i n g - s y s t e m - c o n t a i n e r s - v s - a p p l i c a t i o n - c o n t a i n e r s /

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.30

OPERATING SYSTEM CONTAINERS

29

30

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.16

 Designed to package and run a single service

 All containers share host kernel

 Subtle dif ferences from operating system containers

 Examples: Docker, Rocket

 Docker: runs a single process on creation

 OS containers: run many OS services, for an entire OS

 Create application containers for each component of an app

 Supports a micro-services architecture

 DevOPS: developers can package their own components in

application containers

 Supports horizontal and vertical scaling

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.31

APPLICATION CONTAINERS

 Container images are “layered”

 Base image: common for all components

 Add layers that are specific

for components, services

as needed

 Layering promotes reuse

 Reduces duplication of

data across images

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.32

APPLICATION CONTAINERS - 2

31

32

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.17

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.33

2016 DOCKER SURVEY

 Docker application containers

▪ Leading containerization vehicle

 Docker daemon “dockerd”

▪ Implements docker engine that interprets CLI requests
and creates/manages
containers using backend
layered Docker architecture

 Starting in 2017 version
numbering switches from
1.x to YR.x

 2017 releases: 17.03 – 17.12

 2018 releases: 18.01 – 18.09

 2019 releases: 19.03.0 – 19.03.13

 C r e d i t : h t t p s : / / h a c k e r n o o n . c o m / d o c k e r - c o n t a i n e r d - s t a n d a l o n e - r u n t i m e s - h e r e s - w h a t - y o u - s h o u l d - k n o w - b 8 3 4 e f 1 5 5 4 2 6

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.34

DOCKER

33

34

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.18

 (1) Original Docker engine relied on LXC

▪ LXC itself is a containerization tool predating Docker

▪ Original Docker API just called it

▪ LXC originally provided access

to Linux kernel features:

namespaces and cgroups

▪ LXC was Linux specific – caused

issues if wanting to be multi-platform

▪ Docker implemented their own

replacement for LXC

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.35

ORIGINAL DOCKER ENGINE

IMPLEMENTATION

$Docker client

dockerd

LXC

Host Kernel

NamespacesNamespaces CapabilitiesCapabilities

cgroupscgroups

 Docker v0.9: l ibcontainer introduced (~2014) to replace LXC

as the default Docker daemon

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.36

INTRODUCTION OF LIBCONTAINER

$Docker client

dockerd

libcontainer

Host Kernel

NamespacesNamespaces CapabilitiesCapabilities

cgroupscgroups

35

36

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.19

 OCI created container standards for:

▪ Image specification

▪ Container runtime specification

 Docker 1.1 (2016): Docker refactored the docker engine to be
compliant with OCI standards

▪ Essentially this introduced abstraction layers (i.e. generic interfaces
that map to the implementation) so that Docker’s design conformed
to the OCI standard

 Runc was added to implement the OCI container runtime spec

▪ Provides small, lightweight wrapper for libcontainer

▪ Can build and run OCI compliant containers directly using runc
provided in Docker, but it is “bare bones” and low -level.

▪ The Docker API is much more user friendly

 Support for OCI compliant images was added to Containerd

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.37

OPEN CONTAINER INITIATIVE (OCI)

$ docker run -it --rm tcss558client sh

 Docker CLI posts request to Docker daemon

 Daemon calls containerd

 Containerd passes of request to runc

▪ Containerd converts docker image into
OCI compliant bundle

▪ This step would allow any OCI compliant container
to be plugged into the back-end

 Runc interfaces with the Linux kernel
(namespaces, cgroups, etc.) to create container

 Shim: once a container is created, runc exits

▪ Shim remains as a daemonless stub to
implement the container

▪ Allows Docker to be upgraded w/o
stopping the container !!!

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.38

CREATING A CONTAINER

$Docker client

dockerd

containerd

Host Kernel

NamespacesNamespaces CapabilitiesCapabilities

cgroupscgroups

shim

runc

37

38

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.20

 Docker CLI: interfaces with dockerd daemon

 Docker engine: dockerd daemon, interfaces with containerd

 Containerd: simple daemon, interfaces with runc to manage
containers; CRUD interface for containers, images, volumes,
networks, builds; HTTP API → Google RPC (gRPC) interface;

 runc: lightweight command-line tool for running containers;
Interfaces with Linux cgroups, namespaces; Runs an OCI
container

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.39

CREATING A CONTAINER - 2

 Modularity of Docker implementation supports

“execution drivers concept”:

 Enables docker to support many

alternate container backends

 OpenVZ, system-nspawn, libvirt-lxc,

libvirt-sandbox, qemu/kvm,

BSD Jails, Solaris Zones, and chroot

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.40

SUPPORT FOR

ALTERNATE CONTAINER RUNTIMES

39

40

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.21

WE WILL RETURN AT

~4:50 PM

 7 different namespaces in Linux

(cgroups not shown)

▪ pid, mnt, ipc, user, net, UTS

 Partitions kernel resources

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.42

LINUX KERNEL NAMESPACES

pid mnt

ipc

user net

UTS

41

42

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.22

 Provides isolation of OS

entities for containers

 mnt: separate filesystems

 pid: independent PIDs; first process in container is PID 1

 ipc: prevents processes in dif ferent IPC

namespaces from being able to establish shared

memory. Enables processes in dif ferent containers

to reuse the same identifiers without conflict.

… provides expected VM like isolation…

 user: user identification and privilege isolation

among separate containers

 net: network stack virtualization. Multiple loopbacks (lo)

 UTS (UNIX time sharing) : provides separate host and domain

names
November 19, 2024

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.43

NAMESPACES - 2

 Processes see only their set of resources

 Provides isolation

 Namespaces are hierarchical

 Parent processes can see down the hierarchy

 Each process can only see resources associated

with the namespace, and descendent namespaces

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.44

LINUX KERNEL NAMESPACES - 3

pid mnt

ipc

user net

UTS

43

44

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.23

 Collection of Linux processes

 Group-level resource allocation: CPU, memory, disk I/O, network I/O

 Resource l imiting

▪ Memory, disk cache

 Priorit ization

▪ CPU share

▪ Disk I/O throughput

 Accounting

▪ Track resource utilization

▪ For resource management and/or billing purposes

 Control

▪ Pause/resume processes

▪ Checkpointing → Checkpoint/Restore in Userspace (CRIU)

▪ https://criu.org

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.45

CONTROL GROUPS (CGROUPS)

 Control groups are hierarchical

 Groups inherent limits from parent groups

 Linux has multiple cgroup controllers (subsystems)

 ls /proc/cgroups

 “memory” controller limits memory use

 “cpuacct” controller accounts

for CPU usage

 cgroup fi lesystem:

 /sys/fs/cgroup

 Can browse resource utilization

of containers…

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.46

CGROUPS - 2

45

46

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.24

 Docker leverages overlay filesystems

 1st: AUFS - Advanced multi - layered unification f ilesystem

 Now: overlay2

 Union mount f i le system: combine multiple directories into one that
appears to contain combined contents

 Idea: Docker uses layered file systems

 Only the top layer is writeable

 Other layers are read-only

 Layers are merged to present the notion of a real file system

 Copy-on-write- implicit sharing
▪ Implement duplicate copy

 https://medium.com/@nagarwal/docker -containers -fi lesystem-
demystified-b6ed8112a04a

 https://www.slideshare.net/jpetazzo/scale11x -lxc -talk-1/

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.47

OVERLAY FILE SYSTEMS

 Dockerfile:

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.48

LAYERED FS: BUILDING A CONTAINER

Ubuntu base image →

Copy . /app →

Run make /app →

Python /app/app.py →

47

48

https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.25

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.49

THREE-TIER ARCHITECTURE

 Is the host isolated from application containers?

Are application containers isolated from each

other?

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.50

CONTAINER ISOLATION

Host kernel

Container

runtime

VM kernel

Host kernel

Container

runtime

Application
containers

App

Bins/libs

App

Bins/libs

App

Bins/libs

App

Bins/libs

Application
containers

49

50

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.26

Operating system level virtualization

Run multiple isolated Linux systems on a host

using a single Linux kernel

Control groups(cgroups)

▪ Including in Linux kernels => 2.6.24

▪Limit and prioritize sharing of CPU, memory,

block/network I/O

 Linux namespaces

Docker initially based on LXC

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.51

LXC (LINUX CONTAINERS)

 Docker Machine:

automatically provision

and manage sets of

docker hosts to

form a cluster

 Docker Swarm:

Clusters multiple docker hosts together to manage as a

cluster.

 Docker Compose: Config file (YAML) for multi -container

application; Describes how to deploy and configure multiple

containers

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.52

OTHER DOCKER TOOLS

51

52

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.27

Framework(s) to deploy multiple containers

Provide container clusters using cloud VMs

Similar to “private clusters”

Reduce VM idle CPU time in public clouds

Better leverage “sunk cost” resources

Compact multiple apps onto shared public cloud
infrastructure

Generate to cost savings

Reduce vendor lock-in

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.53

CONTAINER ORCHESTRATION

FRAMEWORKS

 Management of container hosts

 Launching set of containers

 Rescheduling failed containers

 Linking containers to support workflows

 Providing connectivity to clients outside the container cluster

 Firewall: control network/port accessibility

 Dynamic scaling of containers: horizontal scaling

▪ Scale in/out, add/remove containers

 Load balancing over groups of containers

 Rolling upgrades of containers for application

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.54

KEY ORCHESTRATION FEATURES

53

54

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.28

 Docker swarm

 Apache mesos/marathon

 Kubernetes

▪ Many public clouds now offer managed services to host
Kubernetes clusters

▪ Amazon Elastic Kubernetes Service (EKS), Azure Kubernetes
Service (AKS), Google Kubernetes Engine (GKE)

 Amazon elastic container service (ECS)

 Apache aurora (retired project based on Mesos)

 Container-as-a-Service

▪ Serverles containers without managing clusters

▪ Azure Container Instances, AWS Fargate…

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.55

CONTAINER ORCHESTRATION

FRAMEWORKS - 2

 Questions from 11/14

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Tutorial 8: AWS Step Functions, AWS SQS

 Containerization

 Kubernetes

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.56

OBJECTIVES – 11/19

55

56

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.29

KUBERNETES

L16.57

from: “The Kubernetes Book”, Nigel Poulton and
Pushkar Joglekar, Version 7.0, September 2020

 Name is from the Greek word meaning Helmsman

▪ The person who steers a seafaring ship

▪ The logo reinforces this theme

 Kubernetes is also sometimes called K8s

 Kubernetes is an application orchestrator

 Most common use case is to containerize

cloud-native microservices applications

 What is an orchestrator?

▪ System that deploys and manages applications

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.58

KUBERNETES

57

58

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.30

 Initially developed by Google

 Goal: make it easier for potential customers to use Google Cloud

 Kubernetes leverages knowledge gained from two internal

container management systems developed at Google

▪ Borg and Omega

 Google donated Kubernetes to the Cloud Native Computing

Foundation in 2014 as an open-source project

 Kubernetes is written in Go (Golang)

 Kubernetes is available under the Apache 2.0 license

 Releases were previously maintained for only 8 months!

 Starting w/ v 1.19 (released Aug 2020) support is 1 year

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.59

KUBERNETES – 2

Why does Google want
to give Kubernetes away

for free?

1. Deploy your application

2. Scale it up and down dynamically according to demand

3. Self-heal it when things break

4. Perform zero-downtime rolling updates and rollbacks

 These features represent automatic infrastructure

management

 Containerized applications run in container(s)

 Compared to VMs, containers are thought of as being:

▪ Faster

▪More light-weight

▪More suited to rapidly evolving software requirements

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.60

GOALS OF KUBERNETES

59

60

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.31

 Applications designed to meet modern software

requirements including:

▪ Auto-scaling: resources to meet demand

▪ Self-healing: required for high availability (HA) and fault

tolerance

▪ Rolling software updates: with no application downtime

for DevOPS

▪ Portability: can run anywhere there’s a Kubernetes cluster

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.61

CLOUD NATIVE APPLICATIONS

 Application consisting of many specialized parts that

communicate and form a meaningful application

 Example components of a microservice eCommerce app:

Web front-end Catalog service

Shopping cart Authentication service

Logging service Persistent data store

 KEY IDEAS:

 Each microservice can be coded/maintained by dif ferent team

 Each has its own release cadence

 Each is deployed/scaled separately

 Can patch & scale the log service w/o impacting others

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.62

WHAT IS A MICROSERVICES APP?

61

62

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.32

 Provides “an operating system for the cloud”

 Offers the de-facto standard platform for deploying and

managing cloud-native applications

 OS: abstracts physical server, schedules processes

 Kubernetes: abstracts the cloud , schedules microservices

 Kubernetes abstracts dif ferences between private and public

clouds

 Enable cloud-native applications to be cloud agnostic

▪ i.e. they don’t care WHAT cloud they run on

▪ Enables fluid application migration between clouds

 Kubernetes provides rich set of tools/APIs to introspect

(observe and examine) your apps

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.63

KUBERNETES - 3

 Features:

 A “control plane” – brain of the cluster

▪ Implements autoscaling, rolling updates w/o downtime, self -healing

 A “bunch of nodes” – workers (muscle) of the cluster

 Provides orchestration

▪ The process of organizing everything into a useful application

▪ And also the goal of keeping it running smoothly

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.64

KUBERNETES - 4

63

64

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.33

 Master node(s) manage the cluster by:

▪ Making scheduling decisions

▪ Performing monitoring

▪ Implementing changes

▪ Responding to events

 Masters implement the control plane of a Kubernetes cluster

 Recipe for deploying to Kubernetes:

 Write app as independent microservices in preferred language

 Package each microservice in a container

 Create a manifest to encapsulate the definition of a Pod

 Deploy Pods to the cluster w/ a higher -level controller such as

“Deployments” or “DaemonSets”

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.65

KUBERNETES - CLUSTER MANAGEMENT

 Pod – atomic unit of deployment & scheduling in Kubernetes

 A Kubernetes Pod is defined to run a containerized application

 Kubernetes manages Pods, not individual containers

 Cannot run a container directly on Kubernetes

 All containers run through Pods

 Pod comes from “pod of whales”

 Docker logo shows a whale with containers stacked on top

 Whale represents the Docker engine that runs on a single host

 Pods encapsulate the definition of a single

microservice for hosting purposes

 Pods can have a single container, or multiple

containers, if the service requires more than one

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.66

LOOK AHEAD: PODS

65

66

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.34

 Imperative definition: sets of commands and operations

▪ Example: BASH script, Dockerfile

 Declarative definition : specification of a service’s properties

▪ What level of service it should sustain, etc.

▪ Example: Kubernetes YAML files

 Kubernetes manages resources declaratively

 How apps are deployed and run are defined with YAML files

 YAML files are POSTed to Kubernetes endpoints

 Kubernetes deploys and manages applications based on

declarative service requirements

 If something isn’t as it should be: Kubernetes automatically

tries to fix it

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.67

DECLARATIVE SERVICE APPROACH

 Provide system services to host the control plane

 Simplest clusters use only 1 master – (i.e. no replication)

▪ Suitable for lab and dev/test environments

 Production environments: masters are replicated ~3 -5x

▪ Provides fault tolerance and high availability (HA)

▪ Cloud-based managed Kubernetes services offer HA

deployments

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.68

KUBERNETES MASTERS

67

68

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.35

API Server

Cluster store

Controller

Manager

Scheduler

Cloud controller manager

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.69

MASTER SERVICES

 Can run on 1-node for lab, test/dev environments

 Default port is 443

 Exposes a RESTful API where YAML configuration files are

POST(ed) to

 YAML files (manifests) describe desired state of an

application

▪Which container image(s) to use

▪Which ports to expose

▪ How many POD replicas to run

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.70

API SERVER

69

70

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.36

API Server

Cluster store

Controller

Manager

Scheduler

Cloud controller manager

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.71

MASTER SERVICES

 Used to persist Kubernetes cluster state information

 Persistently stores entire configuration and state of the

cluster

 Currently implemented with etcd

▪ Popular distributed key/value store (db) supporting replication

▪ HA deployments may use ~3-5 replicas

▪ Is the authority on true state of the cluster

 etcd prefers consistency over availability

 etcd failure: apps continue to run, nothing can be reconfigured

 Consistency of writes is vital

 Employs RAFT consensus protocol to negotiate which replica

has correct view of the system in the event of replica failure

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.72

CLUSTER STORE

71

72

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.37

API Server

Cluster store

Controller

Manager

Scheduler

Cloud controller manager

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.73

MASTER SERVICES

 Provides a “controller” of the controllers

▪ Implements background control loops to monitor cluster

and respond to events

▪ Control loops include: node controller, endpoints controller,

replicaset controller, etc…

 GOAL: ensure cluster current state matches desired state

 Control Loop Logic:

1. Obtain desired state (defined in manifest YAMLs)

2. Observe the current state

3. Determine dif ferences

4. Reconcile dif ferences

 Controllers are specialized to manage a specific resource type

▪ They are not aware/concerned with of other parts of the system

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.74

CONTROLLER MANAGER

73

74

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.38

API Server

Cluster store

Controller

Manager

Scheduler

Cloud controller manager

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.75

MASTER SERVICES

 Scheduler’s job is to identify the best node to run a task

▪ Scheduler does not actually run tasks itself

 Assigns work tasks to appropriate healthy nodes

 Implements complex logic to filter out nodes incapable of

running specified task(s)

 Capable nodes are ranked

 Node with highest ranking is selected to run the task

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.76

TASK SCHEDULER

75

76

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.39

 Scheduler performs predicate (property) checks to verify

how/where to run tasks

▪ Is a node tainted?

▪ Does task have affinity (deploy together), anti-affinity

(separation) requirements?

▪ Is a required network port available on the node?

▪Does node have sufficient free resources?

 Nodes incapable of running the task are eliminated as

candidate hosts

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.77

ENFORCING SCHEDULING PREDICATES

 Remaining nodes are ranked based on for example:

1. Does the node have the required images?

▪ Cached images will lead to faster deployment time

2. How much free capacity (CPU, memory) does the node have?

3. How many tasks is the node already running?

 Each criterion is worth points

 Node with most points is selected

 If there is no suitable node, task is not scheduled, but marked

as pending

 PROBLEM: There is no one-sized fits all solution to selecting

the best node. How weights are assigned to conditions may

not reflect what is best for the task

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.78

RANKING NODES

77

78

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.40

API Server

Cluster store

Controller

Manager

Scheduler

Cloud controller manager

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.79

MASTER SERVICES

 Abstracts and manages integration with specific cloud(s)

 Manages vendor specific cloud infrastructure to provide

instances (VMs), load balancing, storage, etc.

 Support for AWS, Azure, GCP, Digital Ocean, IBM, etc.

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.80

CLOUD CONTROLLER MANAGER

79

80

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.41

API Server

Cluster store

Controller

Manager

Scheduler

Cloud controller manager

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.81

MASTER SERVICES

 Nodes perform tasks (i.e. host containers & services)

 Three primary functions:

1. Wait for the scheduler to assign work

2. Execute work (host containers, etc.)

3. Report back state information, etc.

 Nodes are considerably simpler than masters

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.82

WORKER NODES

81

82

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.42

Kubelet

Container

runtime

(Docker, etc.)

Kubernetes

Proxy

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.83

WORKER NODES

 Main Kubernetes agent

 Runs on every node

 Adding a new node installs the kubelet onto the node

 Kubelet registers the node with the cluster

 Monitors API server for new work assignments

 Maintains reporting back to control plane

 When a node can’t run a task, kubelet is NOT responsible

for finding an alternate node

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.84

KUBELET

83

84

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.43

Kubelet

Container

runtime

(Docker, etc.)

Kubernetes

Proxy

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.85

WORKER NODES

 Each node requires a container runtime to run containers

 Early versions had custom support for a limited number of

container types, e.g. Docker

 Kubernetes now provides a standard Container Runtime

Interface (CRI)

 CRI exposes a clean interface for 3 rd party container

runtimes to plug-in to

 Popular container runtimes: Docker, containerd, Kata

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.86

CONTAINER RUNTIME(S)

85

86

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.44

Kubelet

Container

runtime

(Docker, etc.)

Kubernetes

Proxy

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.87

WORKER NODES

 Runs on every node in the cluster

 Responsible for managing the cluster’s networking

 Ensures each node obtains a unique IP address

 Implemented local IPTABLES and IPVS rules to route and load -

balance traffic

 IPTABLES (ipv4) – enables configuration of IP packet filtering

rules of the Linux kernel firewall

 IPVS – IP Virtual Server: provides transport -layer (layer 4) load

balancing as part of the Linux kernel; Configured using

ipvsadm tool in Linux

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.88

KUBE-PROXY

87

88

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.45

Kubernetes DNS

Pods

Services

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.89

CORE KUBERNETES COMPONENTS

 Every Kubernetes cluster has an internal DNS service

 Accessed with a static IP

 Hard-coded so that every container can find it

 Every service is registered with the DNS so that all

components can find every Service on the cluster by

NAME

 Is based on CoreDNS (https://coredns.io)

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.90

KUBERNETES DNS

89

90

https://coredns.io/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.46

Kubernetes DNS

Pods

Services

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.91

CORE KUBERNETES COMPONENTS

 Pod – atomic unit of deployment & scheduling in Kubernetes

 A Kubernetes Pod is defined to run a containerized application

 Kubernetes manages Pods, not individual containers

 Cannot run a container directly on Kubernetes

 All containers run through Pods

 Pod comes from “pod of whales”

 Docker logo shows a whale with containers stacked on top

 Whale represents the Docker engine that runs on a single host

 Pods encapsulate the definition of a single

microservice for hosting purposes

 Pods can have a single container, or multiple

containers if the service requires more than one

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.92

PODS

91

92

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.47

 Examples of multi -container Pods:

▪ Service meshes

▪ Web containers with a helper container that pulls latest content

▪ Containers with a tightly coupled log scraper or profiler

 YAML manifest files are used to provide a declarative

description for how to run and manage a Pod

 To run a pod, POST a YAML to the API Server:

“kubectl run <NAME>” where NAME is the service

 A Pod runs on a single node (host)

 Pods share:

▪ Interprocess communication (IPC) namespace

▪ Memory, Volumes, Network stack

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.93

PODS - 2

 Pods provide a “fenced” environment to run containers

 Provide a “sandbox”

 Only tightly coupled containers are deployed with a single pod

 Best practice: decouple individual containers to separate pods

▪ What is the best container composition into pods? (1:1, 1:many)

 Scaling

▪ Pods are the unit of scaling

▪ Add and remove pods to scale up/down

▪ Do not add containers to a pod, add pod instances

▪ Pod instances can be scheduled on the same or different host

 Atomic Operation

▪ Pods are either fully up and running their service (i.e. port
open/exposed), or pods are down / offline

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.94

PODS - 3

93

94

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.48

 Pod Lifecycle

▪ An application should not be tightly bound or dependent on a

specific Pod instance

▪ Pods are designed to fail and be replaced

▪ Use of service objects in Kubernetes help decouple pods to offer

resiliency upon failure

 Deployments

▪ Higher level controllers often used to deploy pods

▪ Controllers implement a controller and watch loop:

▪ “Deployments” – offer scalability & rolling updates

▪ “DaemonSets” – run instance of service on every cluster node

▪ “StatefulSets” – used for stateful components

▪ “CronJobs” – for short lived tasks that need to run at specified times

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.95

PODS - 4

Kubernetes DNS

Pods

Services

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.96

CORE KUBERNETES COMPONENTS

95

96

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.49

 Pods managed with “Deployments” or “DameonSets”

controllers are automatically replaced when they die

▪ This provides resiliency for the application

 KEY IDEA: Pods are unreliable

 Services provide reliability by acting as a “GATEWAY”

to pods that implement the services

▪ They underlying pods can change over time

▪ The services endpoints remain and are always available

 Service objects provide an abstraction layer w/ a reliable

name and load balancing of requests to a set of pods

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.97

KUBERNETES “SERVICES”

 Provide reliable front-end with:

▪ Stable DNS name

▪ IP Address

▪ Port

 Services do not posses application intelligence

 No support for application-layer host and path routing

 Services have a “label selector” which is a set of lables

 Requests/traffic is only sent to Pods with matching labels

 Services only send traffic to healthy Pods

 KEY IDEA: Services bring stable IP addresses and DNS

names to unstable Pods

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.98

SERVICES

97

98

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.50

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma L16.99

QUESTIONS

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.10
0

99

100

	Slide 1: TCSS 462/562: (Software Engineering for) Cloud Computing
	Slide 2: Office hours – Fall 2024
	Slide 3: OBJECTIVES – 11/19
	Slide 4: Online daily feedback survey
	Slide 5
	Slide 6: Material / pace
	Slide 7: Feedback from 11/14
	Slide 8: Feedback from 11/16
	Slide 9: AWS Cloud Credits update
	Slide 10
	Slide 11: Tutorial submission time
	Slide 12: OBJECTIVES – 11/19
	Slide 13: Tutorial 5 – due nov 14, late submissions until nov 19
	Slide 14: Tutorial 6 – nov 23
	Slide 15: Tutorial 7 – dec 1
	Slide 16: OBJECTIVES – 11/19
	Slide 17: Group presentations
	Slide 18: Group presentations
	Slide 19: Presentation schedule
	Slide 20: Presentation schedule - 2
	Slide 21: OBJECTIVES – 11/19
	Slide 22: Tutorial 8 – to be posted
	Slide 23: OBJECTIVES – 11/19
	Slide 24: Containerization
	Slide 25: Motivation for containerization
	Slide 26: Container performance – LU factorization performance
	Slide 27: Container performance – y-cruncher: pi calculator
	Slide 28: Container performance – bonnie++
	Slide 29: What is a container?
	Slide 30: Operating system containers
	Slide 31: Application containers
	Slide 32: Application containers - 2
	Slide 33: 2016 docker survey
	Slide 34: docker
	Slide 35: Original Docker engine implementation
	Slide 36: Introduction of libcontainer
	Slide 37: Open container initiative (OCI)
	Slide 38: Creating a container
	Slide 39: Creating a container - 2
	Slide 40: Support for alternate container runtimes
	Slide 41: We will return at ~4:50 pm
	Slide 42: Linux kernel namespaces
	Slide 43: Namespaces - 2
	Slide 44: Linux kernel namespaces - 3
	Slide 45: Control groups (cgroups)
	Slide 46: Cgroups - 2
	Slide 47: Overlay file systems
	Slide 48: Layered fs: Building a container
	Slide 49: Three-tier architecture
	Slide 50: Container isolation
	Slide 51: Lxc (linux containers)
	Slide 52: Other docker tools
	Slide 53: Container orchestration frameworks
	Slide 54: Key orchestration features
	Slide 55: Container orchestration frameworks - 2
	Slide 56: OBJECTIVES – 11/19
	Slide 57: Kubernetes
	Slide 58: kubernetes
	Slide 59: Kubernetes – 2
	Slide 60: Goals of kubernetes
	Slide 61: Cloud native applications
	Slide 62: What is a microservices app?
	Slide 63: Kubernetes - 3
	Slide 64: Kubernetes - 4
	Slide 65: Kubernetes - Cluster management
	Slide 66: Look ahead: Pods
	Slide 67: Declarative service approach
	Slide 68: Kubernetes masters
	Slide 69: Master services
	Slide 70: Api server
	Slide 71: Master services
	Slide 72: Cluster store
	Slide 73: Master services
	Slide 74: Controller manager
	Slide 75: Master services
	Slide 76: Task scheduler
	Slide 77: Enforcing Scheduling predicates
	Slide 78: Ranking nodes
	Slide 79: Master services
	Slide 80: Cloud controller manager
	Slide 81: Master services
	Slide 82: Worker nodes
	Slide 83: Worker nodes
	Slide 84: kubelet
	Slide 85: Worker nodes
	Slide 86: Container runtime(s)
	Slide 87: Worker nodes
	Slide 88: Kube-proxy
	Slide 89: Core kubernetes components
	Slide 90: Kubernetes dns
	Slide 91: Core kubernetes components
	Slide 92: Pods
	Slide 93: Pods - 2
	Slide 94: Pods - 3
	Slide 95: Pods - 4
	Slide 96: Core kubernetes components
	Slide 97: Kubernetes “Services”
	Slide 98: services
	Slide 99
	Slide 100: Questions

